aliasyraf.wordpress.com

Similar documents
Ch 9 Transport of substances in humans

Circulatory System Objective sheet 3

CIE Biology GCSE. 9: Transport in animals. Notes.

The Cardiovascular System home study course

Levels of Organization. Chapter 19 6/11/2012. Homeostasis & Organization of the animal body. 4 Primary Tissues

Biology 1442 Supplemental Instruction Worksheet Cardiovascular System Jacaruso - 1 -

CIE Biology A-level Topic 8: Transport in mammals

1. Which of the following blood vessels has a thin elastic layer? A. Aorta. B. Pulmonary artery. C. Posterior vena cava. D. Mesenteric capillary.

Class XI Chapter 18 Body Fluids and Circulation Biology

Topic 6: Human Physiology

Transport in Animals. Gastrovascular cavities. Nutrients and gases can move by processes such as diffusion and active transport.

Lower Secondary Science Blood Circulatory System Notes / Advanced Notes

Transport in Animals (IGCSE Biology Syllabus )

Human Circulatory System

learningobjectives At the end of the lesson, you should be able to: - Humans Explain the need for a transport system in multicellular

Multicellular Organisms. Sub-Topic 2.6 Transport Systems in Animals

Chapter 23. Circulation

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues

07 Human transport Biology Notes IGCSE Cambridge #69 Transport in humans - the circulatory system

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Types of circulatory systems

Chapter 16: Circulation

1. Name the components of the formed elements in the blood and mention one major function of each of them.

Circulation And Blood. Circulation And Blood. Circulation And Blood. Circulation And Blood. Blood 10/22/2012

Ch. 12 The Circulatory System. The heart. The heart is a double pump. A quick note on arteries vs. veins. = the muscular pump of the CV system

Glossary: The Cardiovascular System

TOPIC 6: HUMAN HEALTH AND PHYSIOLOGY

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart

Summary table: artery capillary vein Blood pressure Hi Low lowest Valves present or Absent Absent Present

Section 5.1 The heart and heart disease

Cardiovascular System. Supplementary Information

The circulatory system

CHAPTER 2: BLOOD CIRCULATION AND TRANSPORT

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-18 BODY FLUIDS AND CIRCULATION

Chapter 9 Homeostasis and Circulation

The circulatory system transports blood to deliver important substances, such as oxygen, to cells and to remove wastes, such as carbon dioxide.

CIRCULATION & GAS EXCHANGE

Unit 7 Transport in Humans

Circulatory, Respiratory, and Excretory Systems

Cardiovascular System. Chapters 11, 12

Circulation and Respiration

BLOOD RUNS THROUGH YOUR BODY

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

Circulatory System Review

Today s objectives:! - Learn BASICS of circulatory system (Heart, different veins and arteries)! - Appreciate effects and treatment for

Scrub In: Red blood cells are called: Which component of blood is necessary for the initiation of the blood clotting process:

Cardiovascular System. Biology 105 Lecture 15 Chapter 12

d) Cardiovascular System Higher Human Biology

CIRCULATORY SYSTEM BLOOD VESSELS

Class X Chapter 7 The Circulatory System Biology REVIEW QUESTIONS: A. MULTIPLE CHOICE TYPE: (Select the most appropriate option in each case)

Chapter 23 Circulation

The Function. To carry nutrients and oxygen to and remove waste from the cells of the body.

This is a TRANSPORT system that allows every cell: i) uptake of nutrients ( ex. oxygen, glucose) ii) excretes wastes (ex C02, ammonia)

7.L.1.4 Circulatory System Guided Study Notes. Circulation

The Circulatory System. The circulatory system includes the Heart, Blood Tissue and the Blood Vessels.

Unit 23.1: The Circulatory System


Chapter 14. The Cardiovascular System

Open Circulatory System. Closed Circulatory System

The Circulatory System. The Heart, Blood Vessels, Blood Types

12.1 The Function of Circulation

Mammalian Transport and The Heart

PART A: MULTIPLE CHOICE (100 questions 65% of exam mark)

The Cardiovascular and Lymphatic Systems

The Circulatory System. The Circulatory System. The circulatory system distributes materials such as oxygen and nutrients throughout the body.

Unit 10 Cardiovascular System

Capillary Action and Blood Components. Biology 20 Unit D: Body Systems Circulation

KS4 Physical Education

TRANSPORTATION AND CIRCULATION THE CIRCULATORY SYSTEM

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system

C3, 4, 5, 6, & 7 Worksheet. C3 Describe the inter-relationships of the structures of the heart

The Circulatory System. Blood and Blood Pressure

Mr. Ulrich Circulatory Review Name: Regents Biology

Circulatory System. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted. Circulatory System 1

Circulatory System Review ANSWERS

Health Science 20 Circulatory System Notes

As a courtesy to your fellow classmates please refrain from talking, beating, or snoring. And Now Our Feature Presentation.

Unit 4: The circulatory and excretory systems

The Circulatory System

Circulatory System 10.1

Cardiovascular. Function of the cardiovascular system is to transport blood containing: Nutrients Waste Hormones Immune cells Oxygen

Chapter 42: Circulation / Gas Exchange. d = t 2

30.1 Respiratory and Circulatory Functions. KEY CONCEPT The respiratory and circulatory systems bring oxygen and nutrients to the cells.

DISCUSSION QUESTIONS: BLOOD AND TRANSPORT IN ANIMALS

Transportation and Excretion 7 th Biology

Circulation. Invertebrates on Land: such as insects, and such as earthworms also do not have a gastrovascular cavity.

LIFE PROCESSES TRANSPORT OF MATERIALS IN ANIMALS AND PLANTS

Monday 14 th May The Body Anatomy and Physiology Lesson 10 Cardio-Respiratory System

CHAPTER 26. Circulation and Gas Exchange

37 1 The Circulatory System

Circulatory System. Circulatory System

CIRCULATORY SYSTEM TASK CARDS Worksheet

The Circulatory System

What is the composition of blood, including blood cells? What organs and structures control the flow of blood throughout the body?

Life Processes. dronstudy.com

Structure and organization of blood vessels

Chapter 10 The Circulatory & Lymphatic Systems

Circulatory Systems AP Biology

A. Incorrect! The left ventricle receives oxygenated blood from the lungs via the left atrium.

Chapter 9 Homeostasis and Circulation. Biology 2201

Transcription:

aliasyraf.wordpress.com

1.1 Understanding the importance of having a transport system in some multicellular organisms

1.1 Understanding the importance of having a transport system in some multicellular organisms Organisms that are small in size have a large total surface area to volume (TSA/V) ratio. Large organisms have a small TSA/V ratio. Hence, the rate of diffusion is higher in small size organisms than the large ones.

1.1 Understanding the importance of having a transport system in some multicellular organisms (cont d) Unicellular organisms my obtain their nutrients and oxygen by diffusion alone but multicellular organisms are more complex and bigger in size. Thus, they need a special transport system to transport the nutrients and oxygen to the body cells. The transport system in humans and animals are called the circulatory system. The transport system in plants are the vascular tissue which consists of xylem and phloem tissues.

1.2 The concept of circulatory system

1.2 The concept of circulatory system The circulatory system in humans and animals consists of blood, blood vessels and heart. Blood is the connective tissue in liquid form. The human blood is made up of 55% plasma and 45% blood cells.

1.2 The concept of circulatory system (cont d)

Blood Blood cells (45%) Plasma (55%) Eryhtrocyte Leucocyte Platelet Water Dissolved substances Granulocyte Agranulocyte Neutrophil Eosinophil Basophil Lymphocyte Monocyte

1.2 The concept of circulatory system (cont d)

1.2 The concept of circulatory system (cont d) Plasma Constituents Water Ions Plasma proteins Albumin Fibrinogen Immunoglobulins Hormones Dissolved substances Major functions Solvent for transporting dissolved substances such as glucose Maintain osmotic balance in the blodd and ph of the blood at 7.4 Maintain osmotic balance, and act as buffers against ph changes. Fibrinogen is involved in the clotting of the blood. Immunoglobulins are antibodies that help in the body s defence. Control physiological activities of the body Nutrients that are essential for the body

1.2 The concept of circulatory system (cont d) Erythrocyte (red blood cells) Biconcave disc-shaped : to increase TSA/V ratio to facilitate the gas diffusion Produced in bone marrow Lifespan = 120 days Destroyed in spleen and liver Contains haemoglobin; oxygencarrying protein pigment

1.2 The concept of circulatory system (cont d) Leucocyte (white blood cells) Colourless, have nucleus (do not contain haemoglobin) Functions ; fight infections Can be divided into 2 groups; 1. Granulocytes (granular cytoplasm) 2. Agranular

1.2 The concept of circulatory system (cont d) Granulocytes Neutrophils Eosinophils Basophils Carry out phagocytosis to engulf and digest bacteria Regulate allergic responses Produce heparin which prevent blood from clotting too quickly

1.2 The concept of circulatory system (cont d) Agranulocytes Lymphocytes Found in lymph system, produce antibodies Monocytes Phagocytes

1.2 The concept of circulatory system (cont d) Platelets Fragments in bone marrow Involved in blood-clotting

1.2 The concept of circulatory system (cont d) Blood vessels 1. Arteries carries blood away from the heart 2. Vein carries blood back to the heart 3. Cappillaries

Artery Capillary Vein Located deeper in the body Between arteriole and venule Located near skin surface Thick muscular wall Thin wall, one-cell thick Thin wall, less muscular Small lumen Very small lumen Big lumen No valves (except pulmonary artery) Blood flow very fast, at high pressure No valves Blood flows is slow, at pressure decreases Valve is present (except pulmonary vein) Blood flow is slow, at low pressure

1.2 The concept of circulatory system (cont d) The human heart Refer to figure 1.7, textbook pg. 9

Contains four chambers Right atrium Left atrium Right ventricle Left ventricle Muscular wall on the left ventricle is thicker To pump blood to the whole body

Valves are present to prevent backflow of the blood. Tricuspid valve Bicuspid valve Semi-lunar valve

1.2 The concept of circulatory system (cont d) Blood is propelled through the whole body by forced produced from the pumping of the heart and contraction of skeletal muscle. The heart is made of strong cardiac muscle. Cardiac muscle Interconnected, allow signals to be conducted rapidly Myogenic, contract spontaneously without nervous stimulation

1.2 The concept of circulatory system (cont d) Contraction of the heart is controlled by sinoatrial node (SA node) a.k.a pacemaker. Impulse from SA node move to atrioventricular node (AV node). Then, it moves through bundle of His fibres, bundle branches and Purkinje fibres.

SA Node generate electrical impulse. The electrical impulse spread rapidly over atria, causing atria to contract Electrical impulse reach AV node, the pass to the ventricles, causing it to contract simultaneously. The whole atria and ventricles relax and the pressure in the heart is lowered. Blood moves into both atrium.

1.2 The concept of circulatory system (cont d) Skeletal muscle are usually located around the veins. Contraction and relaxation of the muscles enables the blood to flow Valves ensure the blood to flow in one direction

1.2 The concept of circulatory system (cont d) Blood pressure is the pressure exerted by the blood on the walls of the blood vessels. Normal blood pressure is 120/80 mmhg. 120 mmhg = systolic pressure 80 mmhg = diastolic pressure Blood pressure is regulated by baroreceptors (pressure receptors) in aorta and carotid arteries.

Blood pressure regulation Heartbeat rate decrease Diameter of arteries increase Cardiac muscles Smooth muscles of arteries Brain Normal blood pressure Baroreceptors Heartbeat rate increase Diameter of arteries decrease Cardiac muscles Smooth muscles of arteries Brain

1.2 The concept of circulatory system (cont d) Circulatory system Open Closed Insects (open circulatory system) Single Double Fish Incomplete (Amphibians) Complete (Human)

1.2 The concept of circulatory system (cont d) Open circulatory system Haemolymph is pumped into cavity around the cells Insects have a tube-shaped heart called ostia. Materials are exchanged between haemolymph and bode cells through diffusion.

Closed circulatory system Blood is confined in one vessel One or more hearts pumped blood into major vessels that branches into smaller vessels

1.2 The concept of circulatory system (cont d) Single closed circulatory system Blood flows into the heart only once Blood is pumped by the heart to the gills, body tissues and back to heart again. The heart of a fish is simple; only one atrium and one ventricle.

1.2 The concept of circulatory system (cont d) Double -closed incomplete circulatory system Blood flows into the heart twice. Heart has two atrium and one ventricle. The oxygenated blood and deoxygenated blood is mixed in the undivided ventricle.

1.2 The concept of circulatory system (cont d) Double -closed complete circulatory system Blood flows into the heart twice. Heart has two atrium and two ventricle. Made up of two main circulation 1. Pulmonary circulation Deoxygenated blood is pumped into the pulmonary arteries 2. Systemic circulation Blood is pumped to the whole body

1.3 The Mechanism of Blood Clotting

1.3 The Mechanism of Blood Clotting Importance of blood-clotting To prevent blood loss To prevent the entry of microorganisms and foreign particles into the body To maintain blood pressure To maintain the circulation of blood in a closed circulatory system

1.3 The Mechanism of Blood Clotting Blood-clotting related problems Haemophilia Prolonged bleeding will cause blood loss Thrombosis Formation of blood clot inside the blood vessels Venous thrombosis blood clots in the veins Arterial thrombosis blood clots in the arteries Arteriosclerosis arteries becomes narrow due to the deposits of cholesterol and fats, then the artery is hardened by calcium deposits.

1.4 The Lymphatic System

1.4 The Lymphatic System Interstitial Fluid Blood arrives at the capillary with high hydrostatic pressure Force some of the plasma to pass across the thin-membrane to fill the space between cell. This will form interstitial fluid. Contains water, dissolved nutrients, hormones, waste products, gases, small proteins.

1.4 The Lymphatic System (cont d) 90 % of the interstitial fluid diffuses back into the blood capillaries 10 % of the interstitial fluid diffuse into the lymph capillaries of the lymphatic system.

1.4 The Lymphatic System (cont d) Lymphatic system consist of : 1. Lymphatic capillaries Fine, blind end lymphatic vessels 2. Lymph vessels Carries lymph 3. Lymph nodes Found along lymph vessels Produce lymphocytes provide antibody Phagocytes are present ingest bacteria, dead leucocytes, foreign particles

1.4 The Lymphatic System (cont d) Lymph flow to two main lymphatic vessels; 1. Thoracic duct Will enter the circulatory system via the left subclavian vein 2. Right lymphatic duct Will enter the circulatory system via the left subclavian vein

1.4 The Lymphatic System (cont d) The flow of lymph is aided by a few factors such as: Contraction of smooth muscles in the wall of lymphatic nodes Contraction of skeletal muscles when body moves Peristalsis movement in the alimentary canal Breathing movement The pulses in blood vessels

1.4 The Lymphatic System (cont d) The role of the lymphatic system Collect the interstitial fluid and return in into the circulatory system Defend the body against disease by producing lymphocytes Transport lipid, glycerol and fat soluble vitamin A, D, E dan K Transport water, hormones, glucose, amino acids, minerals and heat in the interstitial fluid Transport waste products such as carbon dioxide and nitrogenous compounds in the interstitial fluids

1.4 The Lymphatic System (cont d) Comparison among the blood, interstitial fluid and lymph. Content Blood Interstitial fluid Lymph Water Small molecules like glucose, amino acids and minerals Large molecules like erythrocytes, platelets and plasma protein Lymphocytes

1.5 The Role of Circulatory System in Body Defence Mechanism

1.5 Body Defence Mechanism Human are exposed to disease-causing microorganisms called pathogens. Body defence mechanism are need to 1. Prevent the entry of pathogen 2. React with pathogen that enters the body Three lines of defence system: 1. First line of defence skin and mucous membrane 2. Second line of defence - phagocytes 3. Third line of defence - lymphocytes

1.5 Body Defence Mechanism (cont d) First line of defence Consists of skin and mucous membrane Skin Outer layer consists of keratin physical barrier against microorganisms Sebaceous gland secrets sebum that forms a protective layer Sebum is a mild antiseptic prevent growth of microorganisms Sweat can destroy microorganisms Mucous membrane Secretes mucus to protect epithelial tissues

1.5 Body Defence Mechanism (cont d) Second line of defence Involves phagocytes e.g neutrophills and monocytes Phagocytosis Phagocytes approach the pathogen (bacteria) surrounds it by using its pseudopodium Phagocytes then engulf the bacteria forming a phagocytic vacuole called phagosome Lysosome release enzyme, then digest the pathogen

1.5 Body Defence Mechanism (cont d)

1.5 Body Defence Mechanism (cont d) Third line of defence Immune system Involves the production of antibodies by lymphocytes Antigens foreign substances produced by microorganisms, pathogens, toxin Antibody protein to react with antigen Specific one type of antibody can only react with one type of antigen

1.5 Body Defence Mechanism (cont d) Antigen is destroyed by different mechanisms Agglutination clump pathogen together for phagocytosis Neutralisation neutralize toxin Opsonisation mark antigens for phagocytes Lysis cause antigens to rupture or disintegrate

1.5 Body Defence Mechanism (cont d) Immunity ability of the body to resist and infection by producing antibodies When a person has immunity towards certain disease, he/she is said to be immuned to the disease. Immunisation process of acquiring an immunity Two types of immunity : 1. Active immunity 2. Passive immunity

1.5 Body Defence Mechanism (cont d) Active immunity - body acquired immunity when the body produces antibodies against pathogen and antigen. Passive immunity body acquired immunity when the body receives antibodies from external sources Both active and passive immunities can be acquired naturally or artificially.

1.5 Body Defence Mechanism (cont d) Immunity Active Passive Natural Artificial Natural Artificial Acquired after recovering from a disease Acquired by injection of vaccine Acquired from mother via the placenta and breast milk Acquired by injecting serum containing antibodies