Hiroyuki Tanishima 1*, Masamichi Kimura 1, Toshiji Tominaga 1, Shinji Iwakura 1, Yoshihiko Hoshida 2 and Tetsuya Horiuchi 1

Similar documents
Diagnostic and management strategies for lateral pelvic lymph nodes in low rectal cancer a review of the evidence

8. The polyp in the illustration can be described as (circle all that apply) a. Exophytic b. Pedunculated c. Sessile d. Frank

editoriale Optimal lymph node dissection for T3-T4 lower rectal cancer, the so-called high risk group: the Japanese experience Introduction

Benefit of Lateral Lymph Node Dissection for Rectal Cancer: Long-term Analysis of 944 Cases Undergoing Surgery at a Single Center ( )

Metachronous metastasis to inguinal lymph nodes from sigmoid colon adenocarcinoma with abdominal wall metastasis: a case report

RECTAL CANCER CLINICAL CASE PRESENTATION

11/21/13 CEA: 1.7 WNL

Effect of particle beam radiotherapy on locally recurrent rectal cancer: Three case reports

A Proposed Strategy for Treatment of Superficial Carcinoma. in the Thoracic Esophagus Based on an Analysis. of Lymph Node Metastasis

Akiko Serizawa *, Kiyoaki Taniguchi, Takuji Yamada, Kunihiko Amano, Sho Kotake, Shunichi Ito and Masakazu Yamamoto

Index. Note: Page numbers of article titles are in boldface type.

Metastatic colon cancer derived from a diverticulum incidentally found at herniorrhaphy: a case report

Imaging in gastric cancer

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

COLORECTAL CARCINOMA

Index. Surg Oncol Clin N Am 16 (2007) Note: Page numbers of article titles are in boldface type.

Robotic and laparoscopic pelvic lymph node dissection for rectal cancer: short-term outcomes of 21 consecutive series

Impact of Adjuvant Chemotherapy in Patients With Curatively Resected Stage IV Colorectal Cancer

Disclosure. Acknowledgement. What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Rectal cancer imaging. None

Neoadjuvant Therapy for Rectal Cancer is Overrated. Joon H. Lee, Research Resident University of Colorado 8/31/2009

COLON AND RECTAL CANCER

Laparoscopic Resection Of Colon & Rectal Cancers. R Sim Centre for Advanced Laparoscopic Surgery, TTSH

Introduction. Approximately 40,000 patients are diagnosed with rectal. Original Article

Present Status and Perspectives of Colorectal Cancer in Asia: Colorectal Cancer Working Group Report in 30th Asia-Pacific Cancer Conference

Advanced Pelvic Malignancy: Defining Resectability Be Aggressive. Lloyd A. Mack September 19, 2015

Current Issues and Controversies in the Management of Rectal Cancer

Staging Colorectal Cancer

COLON AND RECTAL CANCER

Kaoru Takeshima, Kazuo Yamafuji, Atsunori Asami, Hideo Baba, Nobuhiko Okamoto, Hidena Takahashi, Chisato Takagi, and Kiyoshi Kubochi

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

Mucosal Esophageal Squamous Cell Carcinoma With Intramural Gastric Metastasis Invading Liver and Pancreas: A Case Report

Formula One Study. Assessment criteria of pathological parameters. Ver.2. UK Japan Joint Study for Risk Factors of Lymph Node

Adjuvant Chemotherapy for Rectal Cancer: Are we making progress?

Case Conference. Craig Morgenthal Department of Surgery Long Island College Hospital

A Case of Marked Response to Preoperative Chemoradiotherapy for Rectal Cancer With Para-Aortic Lymph Node Metastasis

Pathohistological Assessment of the Circular Margin of Resection During Total Mesorectal Excision, Conducted on The Malignant Formations of the Rectum

Retroperitoneal and Lateral Pelvic Lymphadenectomy Mapped by Lymphoscintigraphy for Rectal Adenocarcinoma Staging

Case Scenario 1. The patient has now completed his neoadjuvant chemoradiation and has been cleared for surgery.

CHAPTER 7 Concluding remarks and implications for further research

Index. Note: Page numbers of article titles are in boldface type.

Metachronous solitary splenic metastasis arising from early gastric cancer: a case report and literature review

Local recurrence of T1a rectal cancer following radical endoscopic mucosal resection: A case report

Management of pt1 polyps. Maria Pellise

Xiang Hu*, Liang Cao*, Yi Yu. Introduction

Mingtian Wei 1, Qingbin Wu 2, Chuanwen Fan 1, Yan Li 3, Xiangzheng Chen 3, Zongguang Zhou 2, Junhong Han 3* and Ziqiang Wang 2*

Oncological Outcomes following Rectal Cancer Surgery with High or Low Ligation of the Inferior Mesenteric Artery

Index. Note: Page numbers of article titles are in boldface type.

RESEARCH ARTICLE. Qian Liu, Jian-Jun Bi, Yan-Tao Tian, Qiang Feng, Zhao-Xu Zheng, Zheng Wang* Abstract. Introduction. Materials and Methods

IMAGING GUIDELINES - COLORECTAL CANCER

Cover Page. The handle holds various files of this Leiden University dissertation.

Metastatic mechanism of spermatic cord tumor from stomach cancer

malignant polyp Daily Challenges in Digestive Endoscopy for Endoscopists and Endoscopy Nurses BSGIE Annual Meeting 18/09/2014 Mechelen

Rectal Cancer: Classic Hits

Carcinoma del retto: Highlights

Guidelines for Laparoscopic Resection of Curable Colon and Rectal Cancer

COLORECTAL CANCER STAGING in 2010

Colorectal Pathway Board (Clinical Subgroup): Imaging Guidelines September 2015

Early Rectal Cancer Surgical options Organ Preservation? Chinna Reddy Colorectal Surgeon Western General, Edinburgh

State-of-the-art of surgery for resectable primary tumors

Treatment strategy of metastatic rectal cancer

The right middle lobe is the smallest lobe in the lung, and

Lateral Lymph-node Dissection for Rectal Cancer: Meta-analysis of all 944 Cases Undergoing Surgery During

Prognostic Significance of Lymph Node Ratio in Stage III Rectal Cancer

World Journal of Colorectal Surgery

Is adjuvant radiotherapy warranted in resected pt1-2 node-positive rectal cancer?

Sakamoto et al. Journal of Medical Case Reports (2018) 12:136

Role of MRI for Staging Rectal Cancer

PET in Rectal Carcinoma

Title: What is the role of pre-operative PET/PET-CT in the management of patients with

Pulmonary Resection for Metastases from Colorectal Cancer

World Journal of Clinical Oncology

Index. Surg Oncol Clin N Am 14 (2005) Note: Page numbers of article titles are in boldface type.

Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer

Mini J.Elnaggar M.D. Radiation Oncology Ochsner Medical Center 9/23/2016. Background

A case of local recurrence and distant metastasis following curative endoscopic submucosal dissection of early gastric cancer

Metachronous pulmonary metastasis after radical esophagectomy for esophageal cancer: prognosis and outcome

Rectal cancer with synchroneous liver mets: A challenging clinical case

COLON CANCER CARE GUIDELINES NON-METASTATIC DISEASE

A multidisciplinary clinical treatment of locally advanced rectal cancer complicated with rectovesical fistula: a case report

Effect of Tumor Deposits on Overall Survival in Colorectal Cancer Patients with Regional Lymph Node Metastases

RECTAL CARCINOMA: A DISTANCE APPROACH. Stephanie Nougaret

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Colorectal Cancer and FDG PET/CT

A916: rectum: adenocarcinoma

Cervical Cancer 3/25/2019. Abnormal vaginal bleeding

Chapter 2: Initial treatment for endometrial cancer (including histologic variant type)

Short and longterm outcomes after endoscopic resection of malignant polyps.

Adjuvant and neoadjuvant chemotherapy for rectal cancer: Expensive but little gain

Transanal endoscopic microsurgery for early rectal cancer: single center experience

Evaluation of the Efficacy of Modified De Gramont and Modified FOLFOX4 Regimens for Adjuvant Therapy of Locally Advanced Rectal Cancer

Clinical guideline Published: 1 November 2011 nice.org.uk/guidance/cg131

Multivisceral resections for locally advanced colorectal cancer after preoperative treatment

Clinicopathological Characteristics and Outcome Indicators of Stage II Gastric Cancer According to the Japanese Classification of Gastric Cancer

Staging of rectal cancer on MRI: What the surgeons want to know.

Large polyps: EMR, ESD, TEM and segmental resection. Terry Phang 2017 SON fall update

Ulcerative Colitis after Multidisciplinary Treatment for Colorectal Cancer with Multiple Liver Metastases : A Case Report

MRI in staging of rectal carcinoma

Esophageal cancer: Biology, natural history, staging and therapeutic options

Endoscopic Resection of Ampullary Neuroendocrine Tumor

Transcription:

Tanishima et al. Surgical Case Reports (2017) 3:93 DOI 10.1186/s40792-017-0366-3 CASE REPORT Open Access Lateral lymph node metastasis in a patient with T1 upper rectal cancer treated by lateral lymph node dissection: a case report and brief literature review Hiroyuki Tanishima 1*, Masamichi Kimura 1, Toshiji Tominaga 1, Shinji Iwakura 1, Yoshihiko Hoshida 2 and Tetsuya Horiuchi 1 Abstract Background: Lateral lymph node (LLN) metastasis may occur in patients with advanced rectal cancers of which the lower margins are located at or below the peritoneal reflection. However, LLN metastasis from a T1 rectal cancer is rare. Here, we report a case of LLN metastasis from a T1 upper rectal cancer that was successfully treated by sequential LLN dissection. Case presentation: A 56-year-old man was referred to our hospital for the treatment of a T1 upper rectal cancer. We performed a laparoscopic low anterior resection. Histological examination showed a moderately differentiated adenocarcinoma with submucosal layer invasion; the invasion depth was classified as head invasion, without vessel or lymph duct invasion. Tumor budding was classified as grade 1. A total of six lymph nodes were harvested, and no lymph node metastases were detected. The postoperative course was uneventful. At 6 months after surgery, however, the serum carcinoembryonic antigen levels were elevated, and abdominal computed tomography (CT) revealed swollen lymph nodes in the right internal and common iliac artery area. Positron emission tomography with CT revealed hot spots in the same lesions. A retrospective re-evaluation of the preoperative CT images revealed no apparent swollen lymph nodes; however, an unusual soft tissue area was detected around the right internal iliac artery. A right LLN dissection was performed. Fifteen lymph nodes were resected, and histologically, metastases of adenocarcinoma were identified in 3 nodes. The postoperative course was again uneventful. The patient was given 12 cycles of adjuvant chemotherapy with FOLFOX (fluorouracil, leucovorin, and oxaliplatin). The patient remains healthy and with no signs of recurrence at 30 months after the second surgery. Conclusions: LLN metastasis occurs very rarely in patients with T1 upper rectal cancer and no risk factors for lymph node metastasis; however, a careful perioperative examination of the LLN should be performed. In cases involving LLN metastasis, a LLN dissection may be a therapeutic option if performed with curative intent. Keywords: Lateral lymph node metastasis, T1 upper rectal cancer, Lateral lymph node dissection, Perioperative examination * Correspondence: drspock@ommc-hp.jp 1 Department of Surgery, National Hospital Organization, Osaka Minami Medical Center, 2-1 Kidohigashimachi, Kawachinagano, Osaka, Japan Full list of author information is available at the end of the article The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Tanishima et al. Surgical Case Reports (2017) 3:93 Background The standard treatment for T1 rectal cancer is total mesorectal excision (TME) without preoperative chemoradiotherapy in Western countries and TME without lateral lymph node (LLN) dissection in Japan [1 3]. LLN metastases are detected in approximately 15% of patients with rectal cancer; however, LLN metastases from T1 rectal cancers are rare [4 6]. Here, we report a case of LLN metastasis from a T1 upper rectal cancer that was successfully treated by sequential LLN dissection. Case presentation A 56-year-old man was referred to our hospital for the treatment of rectal cancer. The patient was otherwise healthy, without significant previous or current medical problems. His serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 levels were 1.8 ng/ml (normal, <3.4 ng/ml) and 7.7 U/mL (normal, <37 U/mL), respectively. Colonoscopy revealed a pedunculated-type tumor measuring 1.5 cm 1.0 cm in the upper rectum, 12 cm from the anal verge, and proctographic examination revealed a filling defect in the upper rectum (Fig. 1a, b). Contrastenhanced computed tomography (CT) revealed no swollen lymph nodes or distant metastases. We diagnosed the rectal cancer as T1N0M0 stage I and performed a laparoscopic low anterior resection. Regarding the extent of lymph node dissection, a division of the superior rectal artery root was performed without LLN dissection. A histological examination revealed a moderately differentiated adenocarcinoma that had invaded the submucosal layer (T1); the invasion depth was classified as a head invasion, without vessel or lymph duct invasion (Fig. 2a c). Tumor budding was classified as grade 1. A total of six lymph nodes were harvested, and no lymph node metastases were detected. The postoperative course was uneventful. Page 2 of 6 Six months after the operation, however, the patient s serum CEA levels increased to 7.0 ng/ml. Abdominal CT revealed swollen lymph nodes in the right common and internal iliac artery area (Fig. 3a, b). Positron emission tomography (PET) with CT revealed hot spots (SUVmax, 5.3) in the same lesions (Fig. 4a, b). No other metastases were observed. Accordingly, we retrospectively re-evaluated the preoperative CT images. Although we detected no apparent swollen lymph nodes, we observed an unusual soft tissue area around the right internal iliac artery (Fig. 5). The preoperative diagnosis was an LLN metastasis localized in the right pelvic area, and an open unilateral LLN dissection of the right common iliac, internal iliac, and obturator nodes was performed. The branches of the right internal iliac vessels, including the superior vesical and obturator vessels, were ligated and divided at their origins with resected lymph nodes; however, the internal iliac artery and pelvic nerve plexus were preserved. Histologically, 15 lymph nodes were resected; of these, 3 (2 in the proximal internal iliac node and 1 in the common iliac node) contained metastases of adenocarcinoma (Fig. 2d). The postoperative course was uneventful. The patient was given 12 cycles of adjuvant chemotherapy with FOLFOX (fluorouracil, leucovorin, and oxaliplatin). He remains healthy without signs of recurrence at 30 months after the second surgery. Discussion The course of the patient described in this report suggests two important clinical issues. First, LLN metastasis can occur in a patient with T1 upper rectal cancer and no risk factors for lymph node metastasis; second, sequential LLN dissection is useful for the treatment of this condition. With regard to the first point, LLN metastasis occurs in 7.7 28.8% of patients with T3 T4 lower rectal cancer [4]. In contrast, the reported incidence of LLN metastasis among patients with T1 lower rectal cancer is only Fig. 1 Endoscopic and proctographic findings. a Colonoscopy revealed a pedunculated-type tumor measuring 1.5 cm 1.0 cm. b Proctographic examination revealed a filling defect in the upper rectum (arrow)

Tanishima et al. Surgical Case Reports (2017) 3:93 Page 3 of 6 Fig. 2 Histological examination showed a moderately differentiated adenocarcinoma that had invaded the submucosal layer; the invasion depth was classified as a head invasion (a). Immunohistochemical staining for CD34 (b) and D2-40 (c) revealed no infiltration of the vessels or lymph ducts. d The resected lateral lymph nodes confirmed a metastasis of moderately differentiated adenocarcinoma Fig. 3 Contrast-enhanced computed tomography. Images show swollen lymph nodes a in the right common iliac artery area (arrow) and b right internal iliac artery area (arrowhead) Fig. 4 Positron emission tomography. Images show hot spots a in the right common iliac artery area and b right internal iliac artery area

Tanishima et al. Surgical Case Reports (2017) 3:93 Page 4 of 6 Fig. 5 Contrast-enhanced computed tomography performed prior to initial surgery. The image shows an unusual area of soft tissue around the right internal iliac artery (arrow) 0.9% [4]. To date, only four cases of isolated LLN metastasis from a lower rectal cancer have been reported [7 10], and to our knowledge, ours is the first case of LLN metastasis in a patient with T1 upper rectal cancer. The incidence of lymph node metastasis from a T1 colorectal cancer is approximately 15% [3]. Additional major surgery is recommended after a successful endoscopic excision if the tumor has at least one risk factor for lymph node metastasis, including an invasion depth 1000 μm from the muscularis mucosa, lymphatic and vascular invasion, non-well or moderately differentiated adenocarcinoma, and high-grade budding [3]. Table 1 presents a review of the five reported cases (including this case) of isolated LLN metastasis from T1 rectal cancer. Three of the five cases had risk factors for lymph node metastasis [8 10]; in contrast, our case had no identified risk factors and involved a pedunculated-type tumor with head invasion that could be managed by endoscopic treatment alone [11]. In general, enhanced CT is used as a preoperative imaging tool for rectal cancer. Currently, the European Society for Medical Oncology guidelines recommend pelvic magnetic resonance imaging (MRI) for the initial staging of rectal cancer because this modality is highly accurate for determining localization, clinical T and N stages, and potential circumferential resection margins [1]. The diagnostic sensitivity and specificity of MRI for lymph node metastasis are 77 and 71%, respectively [12]. Additionally, the usefulness of diffusion-weighted imaging (DWI)-MRI has recently been reported [13 15]. The accuracy of DWI-MRI is better than that of both CT and 18 FDG-PET (86.6 vs. 76.0% and 78.3 vs. 69.9%, respectively) [14, 15]. In our case, we considered the patient to be metastasis-negative, based on enhanced CT findings. The LLN metastasis was revealed only 6 months after the initial surgery, when an unusual soft tissue area around the right internal iliac artery was retrospectively detected on preoperative CT images. Based on these two factors, it is possible that the LLN metastasis existed at the time of initial surgery and could have been diagnosed by DWI-MRI. With regard to the second point about the therapeutic usefulness of sequential LLN dissection, the status of the LLN has not been fully established. In Japan, LLN metastasis is considered a local disease [16], and prophylactic LLN dissection is recommended [3]. This type of dissection does not appear to increase morbidity, mortality, or sexual dysfunction [17, 18]. In Western countries, LLN is categorized as a distant metastasis, and preoperative chemoradiotherapy, rather than prophylactic LLN dissection, has been administered to patients with advanced rectal cancers [l, 2]. However, therapeutic LLN dissection is recommended at the time of primary tumor resection for cases with clinically evident LLN metastasis, assuming that curative resection can be achieved [19]. Extended LLN dissection is recommended due to favorable oncologic outcomes in this situation [6, 7]. Table 2 lists the treatments and outcomes of the five cases of isolated LLN metastasis from T1 rectal cancer. In four cases, extended LLN dissection was performed [7 10]. We disagree with the LLN dissection with skeletonizing of the branches of the internal iliac vessels; however, we think a routine en bloc resection of the internal iliac vessels is not necessary when the metastatic tumors do not invade or adhere firmly to the internal iliac vessels because there is the possibility of increasing the risk of complications. In our case, the internal iliac vessels Table 1 Review of four reported cases (including the present case) of isolated LLN metastasis from a T1 rectal cancer Case Year Author Age Sex Location of Risk factors of lymph node metastasis (years) primary tumor Depth of invasion (μm) Histological type ly v Budding grade 1 2008 Hara 61 Male Lower Well 0 0 2 2010 Yamaguchi 67 Female Lower 3000 Well to moderately 0 0 3 2013 Sueda 41 Female Lower Moderately 0 Positive 4 2016 Ogawa 35 Female Lower 3000 Moderately Positive 0 5 2017 Ours 56 Male Upper Head invasion Moderately 0 0 1 LLN lateral lymph node, not described

Tanishima et al. Surgical Case Reports (2017) 3:93 Page 5 of 6 Table 2 Treatments and outcomes of the four reported cases of isolated LLN metastasis from a T1 rectal cancer Case Time after 1st surgery (months) Treatment 1 22 Extended 2 Synchronous Extended 3 6 Extended 4 Synchronous Extended Bilateral or unilateral were preserved, while the branches of the internal iliac vessels, including the superior vesical and obturator vessels, were resected with the lymph nodes. Bilateral LLN dissection has greater benefits on reducing local recurrence than unilateral LLN dissection [20]; however, in all four cases, the patients with isolated LLN metastases from early rectal cancers were treated successfully via unilateral LLN dissection in the affected side [7 10]. With regard to adjuvant chemotherapy, two patients refused chemotherapy after LLN dissection [7, 9]. Conclusions LLN metastasis can occur in patients with T1 upper rectal cancer and no risk factors for lymph node metastasis, and sequential LLN dissection is useful for the treatment of this condition. Although LLN metastasis occurs very rarely in this patient population, a careful perioperative evaluation of the LLN should be performed. In cases involving LLN metastasis, LLN dissection could be considered a therapeutic option if performed curatively. Abbreviations CEA: Carcinoembryonic antigen; CT: Computed tomography; DWI: Diffusionweighted imaging; LLN: Lateral lymph node; MRI: Magnetic resonance imaging; PET: Positron emission tomography Funding No funding was received for this case report. Chemotherapy after LLLD Unilateral None Alive Unilateral 5-Fluorouracil Alive Unilateral None Alive Unilateral Tegafur-uracil + leucovorin Authors contributions HT, MK, TT, SI, and TH performed the surgery, YH diagnosed the pathology, and TH approved the final manuscript. All authors read and approved the final manuscript. Consent for publication Written informed consent was obtained from the patient for publication of this case report and any accompanying images. Competing interests The authors declare that they have no competing interest. Outcome and time after (months) Alive 5 6 Unilateral FOLFOX Alive lateral lymph node dissection, FOLFOX fluorouracil, leucovorin, and oxaliplatin Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Department of Surgery, National Hospital Organization, Osaka Minami Medical Center, 2-1 Kidohigashimachi, Kawachinagano, Osaka, Japan. 2 Department of Pathology, National Hospital Organization, Osaka Minami Medical Center, 2-1 Kidohigashimachi, Kawachinagano, Osaka 586-8521, Japan. Received: 26 April 2017 Accepted: 17 August 2017 References 1. Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, et al. ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol. 2012;23:2479 516. 2. National Comprehensive Cancer Network, NCCN clinical practice guidelines in oncology, rectal cancer. Ver. 3. 2017. (https://www.nccn.org/professionals/ physician_gls/pdf/rectal.pdf). 3. Watanabe T, Itabashi M, Shimada Y, Tanaka S, Ito Y, Ajioka Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2014 for treatment of colorectal cancer. Int J Clin Oncol. 2015;20:207 39. 4. Sugihara K, Kobayashi H, Kato T, Mori T, Mochizuki H, Kameoka S, et al. Indication and benefit of pelvic sidewall dissection for rectal cancer. Dis Colon rectum. 2006;49:1663 72. 5. Kobayashi H, Mochizuki H, Kato T, Mori T, Kameoka S, Shirouzu K, et al. Outcomes of surgery alone for lower rectal cancer with and without pelvic sidewall dissection. Dis Colon rectum. 2009;52:567 76. 6. Moriya Y, Sugihara K, Akasu T, Fujita S. Importance of extended lymphadenectomy with lateral node dissection for advanced lower rectal cancer. World J Surg. 1997;21:728 32. 7. Hara J, Yamamoto S, Fujita S, Akasu T, Moriya Y. A case of lateral pelvic lymph node recurrence after TME for submucosal rectal carcinoma successfully treated by lymph node dissection with en bloc resection of the internal iliac vessels. Jpn J Clin Oncol. 2008;38:305 7. 8. Yamaguchi T, Yamamoto S, Fujita S, Akasu T, Kobayashi Y, Moriya Y. Early lower rectal carcinoma with synchronous isolated lateral pelvic lymph node metastasis: report of a case. J Jpn Coll Surg. 2010;35:799 803. 9. Sueda T, Noura S, Ohue M, Shingai T, Imada S, Fujiwara Y, et al. Case of isolated lateral lymph node recurrence occurring after TME for T1 lower rectal cancer treated with lateral lymph node dissection: report of a case. Surg Today. 2013;43:809 13. 10. Ogawa S, Itabashi M, Hirosawa T, Hashimoto T, Bamba Y, Okamoto T. Diagnosis of lateral pelvic lymph node metastasis of T1 lower rectal cancer using diffusion-weighted magnetic resonance imaging: a case report with lateral pelvic lymph node dissection of lower rectal cancer. Mol Clin Oncol. 2016;4:817 20. 11. Matsuda T, Fukuzawa M, Uraoka T, Nishi M, Yamaguchi Y, Kobayashi N, et al. Risk of lymph node metastasis in patients with pedunculated type early invasive colorectal cancer: a retrospective multicenter study. Cancer Sci. 2011;102:1693 7. 12. Al-Sukhni E, Milot L, Fruitman M, Beyene J, Victor JC, Schmocker S, et al. Diagnostic accuracy of MRI for assessment of T category, lymph node metastases, and circumferential resection margin involvement in patients with rectal cancer: a systematic review and meta-analysis. Ann Surg Oncol. 2012;19:2212 23. 13. Zhao Q, Liu L, Wang Q, Liang Z, Shi G. Preoperative diagnosis and staging of rectal cancer using diffusion-weighted and water imaging combined with dynamic contrast-enhanced scanning. Oncol Lett. 2014;8:2734 40. 14. Mizukami Y, Ueda S, Mizumoto A, Sasada T, Okumura R, Kohno S, et al. Diffusion-weighted magnetic resonance imaging for detecting lymph node metastasis of rectal cancer. World J Surg. 2011;35:895 9. 15. Ono K, Ochiai R, Yoshida T, Kitagawa M, Omagari J, Kobayashi H, et al. Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-Dglucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging. 2009;29:336 40.

Tanishima et al. Surgical Case Reports (2017) 3:93 Page 6 of 6 16. Akiyoshi T, Watanabe T, Miyata S, Kotake K, Muto T, Sugihara K, Japanese Society for Cancer of the Colon and Rectum. Results of a Japanese nationwide multi-institutional study on lateral pelvic lymph node metastasis in low rectal cancer: is it regional or distant disease? Ann Surg. 2012;255: 1129 34. 17. Fujita S, Akasu T, Mizusawa J, Saito N, Kinugasa Y, Kanemitsu Y, et al. Postoperative morbidity and mortality after mesorectal excision with and without lateral lymph node dissection for clinical stage II or stage III lower rectal cancer (JCOG0212): results from a multicentre, randomised controlled, non-inferiority trial. Lancet Oncol. 2012;13:616 21. 18. Saito S, Fujita S, Mizusawa J, Kanemitsu Y, Saito N, Kinugasa Y, et al. Male sexual dysfunction after rectal cancer surgery: results of a randomized trial comparing mesorectal excision with and without lateral lymph node dissection for patients with lower rectal cancer: Japan clinical oncology group study JCOG0212. Eur J Surg Oncol. 2016;42:1851 8. 19. Monson JR, Weiser MR, Buie WD, Chang GJ, Rafferty JF, Buie WD, et al. Practice parameters for the management of rectal cancer (revised). Dis Colon rectum. 2013;56:535 50. 20. Kusters M, van de Velde CJ, Beets-Tan RG, Akasu T, Fujita S, Yamamoto S, Moriya Y. Patterns of local recurrence in rectal cancer: a single-center experience. Ann Surg Oncol. 2009;16:289 96.