ABSTRACT INTRODUCTION

Similar documents
Efficiency of Electrical Stunning by Electronarcosis: Current Situation and Perspective of Improvement in a Medium-Size Processing Plant

Gas stunning and quality characteristics of turkey breast meat

W. Berry, D. Bourassa, J. Davis, J. Hess, J. Johnson, A. Morey, R. Wallace Auburn University Department of Poultry Science

POULTRY STUNNING: A REVIEW OF CURRENT AND EXPERIMENTAL TECHNIQUES A LITERATURE BASED ASSESSMENT OF WELFARE ISSUES AND OTHER FACTORS

Effect of different electrical stunning conditions on meat quality in broilers

Animal Sciences Group, Wageningen UR, Animal Production Division, P.O. Box 65, 8200 AB Lelystad, The Netherlands

Pre-Slaughter Stunning: Why it is important

ENVIRONMENT, WELL-BEING, AND BEHAVIOR

Animal Welfare at Slaughter

Broiler Chicken PSE (Pale, Soft, Exudative) Meat and Water Release during Chicken Carcass Thawing and Brazilian Legislation

Research Note INCIDENCE AND DEGREE OF SEVERITY OF DEEP PECTORAL IN COMMERCIAL GENOTYPES OF BROILERS'- 2. J. Agrie. Univ. P.R. 98(2): (2014)

On-farm poultry euthanasia technologies. Phase 1 Lab Based Evaluation

Chicken Meat Quality as a Function of Fasting Period and Water Spray

Effect of electrical water bath stunning on physical reflexes of broilers: evaluation of stunning efficacy under field conditions

Stunning, Handling, and Determining Insensibility in Pigs. Temple Grandin Department of Animal Sciences Colorado State University

Metabolism of broilers subjected to different lairage times at the abattoir and its relationship with broiler meat quality

Determining Insensibility for Accurate Stunning and On-Farm Euthanasia

Scientific Opinion on the electrical requirements for waterbath stunning equipment applicable for poultry 1

Welfare assessment of Low Atmospheric Pressure Stunning (LAPS) in chickens

Indicators for assessing unconsciousness and death during slaughter without stunning

Improving Electrical Stunning with B&D Stunner Erika L. Voogd, Voogd Consulting, Inc.

Effects of temperature variation in the simulation of the supply chain of poultry products

Head-only electrical stunning of poultry using a waterbath: a feasibility study

Comparison of Carcass Appearance, Texture Quality, and Sensory Profile of Broilers Chilled by Air, Evaporative Air or Water Immersion

Electrical stunning of pigs using high frequency electrical currents

PROCESSING, PRODUCTS, AND FOOD SAFETY

PROCESSING AND PRODUCTS

1993 Poultry Science 72: Received for publication January 4, Accepted for publication April 26, 1993.

Electrical and CO 2 Stunning, Handling, and Determining Insensibility in Pigs and Sheep, 2 nd Edition

Animal Welfare Subprogram, Institut de Recerca i Tecnologia Agroalimentaries, Veïnat de Sies s/n, E17121 Monells, (Girona) Spain

Incidence and Physical Properties of PSE Chicken Meat in a Commercial Processing Plant

Performance and Color of Broilers Fed Diets Containing Rhodocyclus gelatinosus Biomass

Normative ruling 32/2010 of the Ministry of Agricultural, Livestock and Food Supply Mapa: Ratio moisture/protein contents in poultry cuts

THE WELFARE OF PIGS, CATTLE AND SHEEP AT SLAUGHTER

Revista Brasileira de Ciência Avícola ISSN: X Fundação APINCO de Ciência e Tecnologia Avícolas.

Energy and Lysine for Broilers from 44 to 55 Days of Age

Nutrient requirements of broilers for optimum growth and lean mass

AviagenBrief. Evaluating Comparative Broiler Performance through Trials INTRODUCTION KEY CONSIDERATIONS. November 2018

The Characterization and Incidence of Pale, Soft, and Exudative Broiler Meat in a Commercial Processing Plant

Carcass characteristics of two different rooster breeds (Mos and Sasso T-44) slaughtered at 10 months

THE INFLUENCE OF FEED WITHDRAWAL AND TRANSPORTATION ON WEIGHT LOSS, MORTALITY RATE AND CARCASS QUALITY IN BROILER CHICKENS AT SLAUGHTER

Sex Effect on Productive Parameters, Carcass and Body Fat Composition of Two Commercial Broilers Lines

N.M.T.S. Disanayaka 1, M.A.J.P. Munasinghe 1, R.M.A.S. Bandara 1, L.A.N. Liyanage 1 and P.D.C. Dissanayake 2

Metabolic parameters as indicators of broiler chicken welfare and meat qualify Savenije, Bartholomeus

Stamping out procedures (domestic pigs)

Freeze-Thaw and Cooking Effects on Broiler Breast Fillets with Extreme Initial L* Values 1

Sample size calculation tool for monitoring stunning at slaughter 1 2

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Commercial Preslaughter Blue Light Ambience for Controlling Broiler Stress and Meat Qualities

Broiler Performance Objectives

Genetic and phenotypic parameters of carcass and organ traits of broiler chickens

Revista Brasileira de Ciência Avícola ISSN: X Fundação APINCO de Ciência e Tecnologia Avícolas.

Revista Brasileira de Ciência Avícola ISSN: X Fundação APINCO de Ciência e Tecnologia Avícolas.

Postharvest changes of fresh cilantro

K. D. Vogel,* 1 J. R. Claus, T.Grandin,* G. R. Oetzel,# and D. M. Schaefer. Kurt Vogel Colorado State University

OIE European Regional Conference on Animal Welfare Istanbul July 2009

Overview on the Performance of Brazilian Broilers (1990 to 2009) ABSTRACT. Review

Effectiveness of a non-penetrating captive bolt for the euthanasia of piglets from birth to 9 kg

CHANGES IN QUALITY OF PARENTS STOCK HENS MEAT DURING CHILLED STORAGE

Update on PSE in Poultry Meat. Christine Z. Alvarado, Ph.D. Department of Animal and Food Sciences Texas Tech University

R. A. U. J. MARAPANA*

Research Notes. Effects of Post-Mortem Time Before Chilling and Chilling Temperatures on Water-Holding Capacity and Texture of Turkey Breast Muscle 1

Broiler Performance, Bodyweight Variance, Feed and Water Intake, and Carcass Quality at Different Stocking Densities

McDonald s Corporation Religious Slaughter Requirements. McDonald s Animal Health and Welfare. Religious Slaughter Requirements

Determining cessation of brain activity during depopulation or euthanasia of broilers using accelerometers

Authors: Key Words: Vitamin E, Vitamin D 3, Shelf-Life, Tenderness, Beef Color

Performance and Carcass Characteristics of Broiler Chickens with Different Growth Potential and Submitted to Heat Stress

Effects of the primary process on further processing

Poultry Muscle Profiles

Primary Audience: Field Management Personnel, Nutritionists, Poultry Scientists, Processing Plant Personnel SUMMARY

Improved performance of Cobb 500 birds fed increased amino acid density in Wheat or Maizebased

Mycotoxin Lesions in the Slaughter House-Broilers

ABSTRACT INTRODUCTION

Revista Brasileira de Ciência Avícola ISSN: X Fundação APINCO de Ciência e Tecnologia Avícolas.

The Effect of Broiler Breast Meat Color on ph, Moisture, Water-Holding Capacity, and Emulsification Capacity

Influence of the season of the year on some technological. parameters and ultrastructure of PSE, normal and DFD chicken

ABSTRACT Research concerning the qualitative characterization of turkey meat by traceability analysis

RESEARCHES ON ANIMAL WELFARE AND MEAT QUALITY IN A POULTRY PROCESSING PLANT

ABSTRACT. ISSN X Jan - Mar 2016 / v.18 / n.1 / Author(s)

HOW SELISSEO HELPS INCREASING PROFIT IN POULTRY PRODUCTION

Scientific Opinion on monitoring procedures at slaughterhouses for bovines 1

THE EFFECT OF PERIOD FROM CATCHING OF TURKEYS TO SLAUGHTERING ON BREAST MEAT PSE INCIDENCE

Instrumental color measurement specifications and factors affecting measurement consistency in pork. NPB #

RADIOGRAPHIC IMAGE QUALITY AND DOSE AT THÓRAX, ABDOMEN AND SKULL OF PATIENTS AT HC-FMB UNESP

Grower-Finisher Performance and Carcass Characteristics of Pigs Fed Genetically Modified Bt Corn

EFFECT OF DIETARY OMEGA-3 PUFA RICH SOURCES ON GROWTH PERFORMANCE OF JAPANESE QUAIL

GENETICS OF MEAT QUALITY CHARACTERISTICS - AUSTRALIAN WORK

Evaluation of Free-Range Broilers Using the Welfare Quality Protocol ABSTRACT INTRODUCTION

The effect of Tarragon extract on performance, Carcass quality, Hematologic parameters and microbial flora of intestinal contents in Japanese Quail

OPTIFEED POULTRY. Introduction to the consumption of solid feed (starter)

Effect of electrical stunning current and frequency on meat quality, plasma parameters, and glycolytic potential in broilers

Scientific Opinion on monitoring procedures at slaughterhouses for sheep and goats 1

Chapter 29 - Chest_and_Abdominal_Trauma

BROILER. YIELD PLUS x ROSS 708. Performance Objectives An Aviagen Brand An Aviagen Brand

UK presentation of the meat chicken trigger system used in Great Britain

MYCOPLASMA SYNOVIAE INFECTION ON NEWCASTLE DISEASE VACCINATION OF CHICKENS

Scientific Opinion on monitoring procedures at slaughterhouses for pigs 1

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-2, February- 2016]

International Journal of Science, Environment and Technology, Vol. 7, No 5, 2018,

Transcription:

Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola ISSN 1516-635X Jul - Sept 2015 / v.17 / n.3 / 341-346 Exposure to Carbonic Gas Enriched Atmosphere or http://dx.doi.org/10.1590/1516-635x1703341-346 Author(s) Nicolau JP I Pinto MF I Ponsano EHG I Perri SHV I Garcia Neto M I I UNESP Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina Veterinária de Araçatuba ABSTRACT The objective of this study was to compare the effects of two methods (electrical water bath or carbonic gas atmosphere) for stunning or killing broiler chickens prior to bleeding on weight loss due to bleeding and meat traits. A completely randomized design with 2 x 2 factorial arrangement (electrical or gas system x stunning or killing) was applied. The time required for stunning and killing and the birds behavior were evaluated for the gas exposure method. The birds killed by the electrical method retained more blood than those killed by the exposure to gas and, therefore, presented redder meat. The exposure to 10 to 15% CO 2 atmosphere caused discomfort reactions in 100% of birds, and the intensity of reaction presented a wide variation: 35% for weak reaction, 40% for intermediate reaction, and 25% for strong reaction. The time required to stun or kill the birds by CO 2 exposure varied from 28 to 97 seconds and from 42 to 158 seconds, respectively. It was concluded that the time required to stun or to kill the birds by CO 2 exposure widely varied and caused discomfort reactions; however, meat traits were not influenced by the methods used in this experiment. INTRODUCTION Mail Address Corresponding author e-mail address Juliana Pampana Nicolau Rua Clóvis Pestana, 793, Araçatuba, São Paulo, Brazil. Zip code: 16050-680 Phone: 55 (14) 997150326 E-mail: julianapampana@yahoo.com.br Keywords Animal welfare, broiler, meat characteristic, slaughter, stunning. Submitted: June/2014 Approved: January/2015 Reducing the suffering of animals at slaughter is becoming an important quality attribute for an increasing share of the meat consumer market. Brazilian legislation requires the stunning of animals before bleeding (Brasil, 1998; Brasil, 2000). In Brazil, as well as in other countries where broiler slaughter is automated, birds are stunned in electrical water bath systems. In this method, the steps prior to electric stunning cause clear discomfort to the birds. During hanging, for instance, there must be maximum contact of the birds legs with the metal shackle to allow effective application of the electrical current, which means that, depending on broiler size, the feet must be forced into the hooks. Moreover, the upside down position can cause birds to flap their wings due to fear and discomfort, resulting in distress, suffering, and injuries (Ludtke et al., 2010). Other disadvantages are the difficulty to adjust the equipment to the size of the birds, the occurrence of preshocks, inadequate bird positioning, and ineffective stunning. Some research studies suggest the exposure to controlled atmosphere to replace the electrical systems, either to stun or kill broiler chickens (Raj & Gregory, 1990; Kang & Sams, 1999; Gerritzen et. al., 2000). According to those studies, the exposure of birds to air containing high levels of carbon dioxide caused anesthesia and showed good results. However, carbon dioxide is acidic and irritates mucous membranes during inhalation, causing birds to immediately 341

stop breathing before the loss of consciousness. Nevertheless, according to Raj & Gregory (1990) and Raj (1998), killing broiler chickens by exposure to controlled atmosphere may minimize their suffering at slaughter. This study investigated meat traits and weight loss due to bleeding when the birds were stunned or killed by either electrical water bath immersion or by CO 2 exposure. The time required to stun and to kill the broilers, as well as their behavior when submitted to CO 2 exposure were also evaluated. MATERIAL AND METHODS Forty 42-day-old male Cobb 500 broilers were divided into four groups of 10 birds each. Birds were individually identified, weighed and transported to the experimental pilot scale abattoir. Each group was submitted to one of the following treatments: 1) electrical stunning (electronarcosis); 2) electrical killing (electrocution); 3) CO 2 stunning, or 4) CO 2 killing. The experiment followed a completely randomized design in a 2 x 2 factorial arrangement (electrical or gas system x stunning or killing) with 10 replicates per treatment. Parameters were evaluated per individual bird, and therefore, each bird was considered as an experimental unit for the analysis of variance (Perret, 2012). The slaughter procedures were performed according to the Brazilian legislation (Brasil, 1998). Electrical method A pilot scale electrical equipment, consisting of overhead rails with metal shackles to hang the birds and an electrified water bath, with capacity to apply electric current to one bird at a time, was used. The electrical current parameters were fixed at 240 V AC, 60 Hz, and 120 ma. Therefore, the only parameter that was changed in order to cause electronarcosis or electrocution was the exposure time of the bird to electric current. The electrical stunning was performed by immersing the bird s head for 3 seconds in electrified water to produce effective unconsciousness. Birds were considered stunned when both nictitating membrane reflex and rhythmic breathing were absent. Rhythmic breathing was indicated by contraction of the abdominal muscles near the cloaca (Ludtke et al., 2010). In order to kill the broilers by the electrical method, the bird s head was immersed in electrified water for 8 to 10 seconds, until death, as confirmed by the observation of the complete respiratory arrest. CO2 exposure method The birds were exposed to CO 2 enriched atmosphere in a pilot scale stainless steel experimental chamber with acrylic ceiling, in order to allow the observation of birds behavior, attached to a CO 2 gas cylinder. CO 2 concentration was monitored by a Scenty GDZ 203 HTK Hamburg GMBH gas analysis system, equipped with a 760 GMF 0 to 100% CO 2 sensor inside the chamber. The Brazilian legislation determines a minimum CO 2 concentration of 30% for the stunning of chickens (Brasil, 2000). However, according to Bitencourt (2011), birds suddenly submitted to this CO 2 level may show agitation and/or convulsive reactions. Therefore, this experiment used an initial 10% CO 2 concentration, which was gradually increased until the bird was completely stunned, at approximately 13% CO 2. Birds were individually placed inside the chamber. Prior to each new stunning procedure, the gas concentration was set back to 10%. The broilers were considered stunned when they fell and did not present any rhythmic breathing movement or nictitating membrane reflex. The same procedures were carried out to kill the birds. In this case, however, the bird was maintained in the chamber until it died, as confirmed by complete respiratory arrest, which happened at a CO 2 concentration of approximately 15%. Behavior Evaluation of the Birds Exposed to CO 2 During the exposure to the CO 2 atmosphere, the behavior of the birds before they fell was classified as no reaction, when the bird presented only tachypnea; weak reaction, when the bird gasped and/or shook its head, intermediate reaction, when the bird presented weak and intermittent wing flapping; and strong reaction, when the bird presented continuous and strong wing flapping. Weight Loss after Bleeding All birds were individually weighed, bled immediately after stunning or killing by either electrical or gas treatment, and then weighed again to determine weight loss due to bleeding, expressed as a percentage of live weight. Meat ph Breast and thigh meat ph was determined 24 hours after slaughter using a phmeter (Mettler Toledo Model 1120-X) with a penetrating probe. 342

Meat Color Breast and thigh meat color was evaluated after the skin was removed and in triplicate, using Hunterlab Miniscan XE Plus with D65 illuminant and 10º observation angle. Color was expressed according to the CIELab color system, which attributes L* (lightness), ranging from zero (absolute black) to 100 (absolute white); a*, ranging from green (negative values) to red (positive values ); and b*, ranging from blue (negative values) to yellow (positive value) (Minolta, 2007). The equipment was positioned on the dorsal surface of the breast fillet and on the lateral surface of the thighs, avoiding hemorrhagic petechiae, discolored spots, and any other color interference. Statistical Analysis The results were submitted to analysis of variance and means were compared by Duncan s test at 5%significance level. Pearson s linear correlation coefficient among variables was determined (Zar, 2009). Statistical analyses were performed using the Statistical Analysis System (SAS, 2008). RESULTS AND DISCUSSION Broilers submitted to gas method presented lower and higher meat redness and lightness values, respectively, compared with those of broilers submitted to the electrical method (p <0.05), probably due to the smaller amount of residual blood in the muscles, as shown by the significantly lower weight loss due to bleeding of the birds submitted to the electrical method (Table 1). The birds killed by the electrical method presented higher thigh meat ph compared with those in the other treatments (Table 2). This may be explained by the longer time of exposure of the birds to electricity, causing muscle contraction and depletion of muscle energy reserves (Judge, 1989). As muscle glycogen stores are depleted, less lactic acid is produced, and consequently lower muscle ph decrease after slaughter. Weight loss due to bleeding was not different between broilers stunned and killed by either of the methods applied (electrical and gas). However, when both methods are compared, electrically killed broilers lost significantly less weight after bleeding than those Table 1 Weight loss due to bleeding and breast and thigh meat traits of broilers submitted to electrical or gas stunning or killing. Parameters Factors Weight loss due to bleeding (%) ph L *1 a *2 b* 3 Breast Thigh Breast Thigh Breast Thigh Breast Thigh Methods (M) Electrical 2.65 b 6.06 6.49 61.99 b 61.96 5.51 a 6.83 14.95 13.21 Gas 3.56 a 6.10 6.46 64.69ª 63.48 4.47 b 5.58 15.15 15.61 Procedures (P) Stunning 3.14 6.04 6.38 b 62.75 62.06 5.06 5.59 15.78 13.45 Killing 3.00 6.13 6.59 a 63.93 63.38 4.92 6.82 14.32 15.38 P value M 0.0002 0.4907 0.6131 0.0266 0.2835 0.0131 0.2199 0.8413 0.4097 P 0.9269 0.1052 0.0009 0.3207 0.3508 0.7406 0.2239 0.1487 0.5057 M x P 0.0111 0.5747 0.0216 0.0728 0.1224 0.0016 0.9849 0.4259 0.2267 CV (%) 4 21.62 2.80 2.54 5.84 7.07 25.18 50.95 20.79 63.04 a-c Means followed by different letters in the column are significantly different by Duncan s test (p<0.05). 1 = lightness; 2 = redness; 3 = yellowness; 4 = coefficient of variation 343

killed by gas exposure. This may be explained by the application of 120 ma electrical current, which can cause the rupture of intramuscular blood vessels and blood retention in muscle tissue (Gregory & Austin, 1992; Lambooij et. al., 1999). Table 2 Deployment of the interactions among treatments for weight loss due to bleeding, thigh meat ph, and breast meat redness. Methods Electric Gas Procedures Weight loss due to bleeding (%) Parameters Thigh ph a (breast redness) Killing 2.41 c 6.66 a 6.12 a Stunning 2.97 bc 6.33 c 4.90 b Killing 3.89 a 6.50 b 3.73 c Stunning 3.30 ab 6.43 bc 5.21 ab a-c Means followed by different letters in the same column are significantly different by Duncan s test (p<0.05). The influence of the amount of blood drained from the carcasses on meat redness is confirmed by Pearson s correlation results, shown in Tables 3 and 4. There was a negative correlation between these parameters, indicating that the greater the weight loss caused due to bleeding, the lower was the a value. A higher and more significant correlation was found for thigh meat, which redness is more intense due to a higher concentration of myoglobin and to a more developed vascular system compared with breast muscles (Varnam & Sutherland, 1995). A significant correlation between breast and thigh meat ph and b values was also observed. However, considering that the breast meat ph values were not different between treatments, it is not possible to associate these results with the method of stunning or killing. Table 4 Pearson s correlation coefficient for thigh meat parameters Weight loss due to bleeding ph L 1 a 2 b 3-0.2767 0.1072-0.6809-0.0926 p-value 0.2662 0.6721 0.0019 0.7147 ph -0.1226 0.4494-0.5230 p-value 0.6280 0.0613 0.0259 L -0.2865 0.2414 p-value 0.2490 0.3346 a 0.1037 p-value 0.6823 1 = lightness; 2 = redness; 3 = yellowness. According to Grandin (2010), there has been much controversy about the effect of different gases on bird discomfort during the induction of insensibility. This is why, in the present study, the initial CO 2 concentration used was 10%, and then was gradually increased after the birds were placed into the chamber. All birds reacted when exposed to CO 2, both during the killing and the stunning procedures: 35% presented weak reaction, 40% intermediate reaction, and 25% strong reaction (Figure 1). Table 3 Pearson s correlation coefficients for breast meat parameters Weight loss due to bleeding ph L* 1 a* 2 b *3 0.2259 0.0872-0.4580-0.1622 p-value 0.3673 0.7307 0.0560 0.5201 ph -0.1053-0.1986-0.4715 p-value 0.6775 0.4294 0.0482 L* -0.4086 0.0626 p-value 0.0923 0.8050 a* 0.2514 p-value 0.3142 1 = lightness; 2 = redness; 3 = yellowness. 344 Figure 1 Birds reaction, in percentage, on the exposure to CO 2. The time required to stun and to kill the birds by the gas exposure method presented a wide variation, ranging from 28 to 97 seconds for stunning and from 42 to 158 seconds for killing. Under experimental conditions, birds reactions to the gas may be different when compared with those observed in processing plants. Specific gas concentrations that can be easily maintained at laboratory scale may be difficult to maintain in commercial facilities (Grandin, 2010). Therefore, in practice, the adoption of gas stunning method presents some difficulties.

The results of the present study demonstrated that the gas exposure method did not prevent bird discomfort and resulted in a wide variation in individual broilers responses, precluding the standardization of the process parameters. Therefore, considering the high costs of installing and operating the method of gas exposure and the fact that most broiler processing plants operate with electrical equipment, it is suggested that investing in the optimization and standardization of the electrical equipment parameters is more feasible to reduce broiler suffering then implementing other stunning methods. Furthermore, electrical current parameters may be set to kill he birds, which would bring undeniable welfare benefits, reduce the occurrence of conscious birds at bleeding and the possibility of birds get drowned in water baths in the case of possible interruptions in the slaughter line. CONCLUSIONS It was demonstrated that the exposure of broilers to 10 to 15% CO 2 atmosphere is an inefficient technological alternative to reduce suffering. In addition, it is an unfeasible industrial application due to the wide variation in the time required to stun or to kill the birds. Killing poultry both by the methods of electrical water bath and exposure to CO 2, followed by immediate bleeding, did not cause any meat trait changes that may adversely affect product acceptance by the consumers. REFERENCES Bitencourt DA. Insensibilização de frangos de corte em atmosfera controlada na promoção do bem-estar animal [dissertação]. Araçatuba: Universidade Estadual Paulista Júlio de Mesquita Filho; 2011. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Portaria nº 210, de 10 de Novembro de 1998. Aprova o regulamento técnico de inspeção tecnológica e higiênico-sanitária de carne de aves. Diário Oficial da República Federativa do Brasil. Brasília, DF; 1998. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 3, de 17 de Janeiro de 2000. Aprova o regulamento técnico de métodos de insensibilização para o abate humanitário de animais de açougue. Diário Oficial da República Federativa do Brasil. Brasília, DF; 2000. Gerritzen MA, Lambooij E, Hillebrand SJW, Lankhaar JAC, Pieterse C. Behavioral responses of broilers to different gaseous atmospheres. Poultry Science 2000;79(6): 928-33. Grandin T. Animal welfare e evaluation of gas stunning (controlled atmosphere stunning) of chickens and other poultry [cited 2012]. Fort Collins: Colorado State University, Department of Animal Science; 2012. Available from: http://www.grandin.com/gas.stunning.poultry. eval.html. Gregory NG, Austin SD. Causes of trauma in broilers arriving dead at poultry processing plants. Veterinary Record 1992;131(22):501-3. Judge MD. Principles of meat science. Iowa: Kendall Hunt Publishing Company; 1989. Kang IS, Sams AR. A comparison of texture and quality of breast fillets from broilers stunned by electricity and carbon dioxide on a shackle-line or killed by carbon dioxide. Poultry Science 1999;78(9):1334-7. Konica Minolta Sensing, Inc. Precise color communication: color control from perception to instrumentation [cited 2013]. Chiyoda: Konica Minolta; 2007 Available from: http://www.konicaminolta.com/ instruments/knowledge/color/pdf/color_communication.pdf. Lambooij E, Pieterse C, Hillebrand SJ, Dijksterhuis GB. The effects of captive bolt and electrical stunning, and restraining methods on broiler meat quality. Poultry Science 1999;78(4):600-7. Ludtke CB, Ciocca JRP, Dandim T, Barbalho PC, Vilela JA. Abate humanitário de aves: steps melhorando o bem-estar animal no abate. Rio de Janeiro: WSPA; 2010. Perret JJ. A case study on teaching the topic experimental unit and how it is presented in advanced placement statistics textbooks. Journal of Statistics Educations 2012;20(2):1-14. Raj ABM, Gregory NG. Investigation into the batch stunning/killing of chickens using carbon-dioxide or argon induced hypoxia. Research Veterinary Science 1990;49(3):364-6. Raj M. Welfare during stunning and slaughter of poultry. Poultry Science 1997;77:1815-9. SAS Institute. SAS/STAT 9.2 user s huide. Cary; 2008. Varnam AH, Sutherland JP. Meat and meat products. London: Chapman & Hall; 1995. Zar JH. Biostatistical analysis. 5 th ed. New Jersey: Prentice-Hall; 2009. 345