Prethymic Cytoplasmic CD3 Negative Acute Lymphoblastic Leukemia or Acute Undifferentiated Leukemia: A Case Report

Similar documents
Mixed Phenotype Acute Leukemias

CME/SAM. Mixed Phenotype Acute Leukemia

Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation

Extramedullary precursor T-lymphoblastic transformation of CML at presentation

T-Cell Prolymphocytic Leukemia, Small Cell Variant, Possibly at the Stage of Intracytoplasmic Expression of CD3

Bumps on the Neck and Groin of a 2-Year-Old Male. Laboratory Findings: Table 1, Table 2; Figure 1; Image 1, Image 2, Image 3

Chapter. Both authors contributed equally to this paper. Department of Hematology, CCA-V-ICI, VU University Medical Center, Amsterdam, The Netherlands

ADx Bone Marrow Report. Patient Information Referring Physician Specimen Information

Correspondence should be addressed to Eric X. Wei;

Hematology Unit Lab 2 Review Material

The spectrum of flow cytometry of the bone marrow

Group of malignant disorders of the hematopoietic tissues characteristically associated with increased numbers of white cells in the bone marrow and

Acute lymphoblastic leukemia (ALL) represents approximately

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD

Pathology. #11 Acute Leukemias. Farah Banyhany. Dr. Sohaib Al- Khatib 23/2/16

Case 3. Ann T. Moriarty,MD

PRECURSOR LYMHPOID NEOPLASMS. B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma

ABERRANT EXPRESSION OF CD19 AND CD43

CME/SAM. Flow Cytometric Immunophenotyping of Cerebrospinal Fluid Specimens

Granular lymphoblast in a case of acute lymphoblastic leukemia: A rare morphology

Bone marrow aspiration as the initial diagnostic tool in the diagnosis of leukemia - A case study

Differential diagnosis of hematolymphoid tumors composed of medium-sized cells. Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital

Standard immunophenotyping of leukemia cells in acute myeloid leukemia (AML)

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017

An adequate diagnosis is the first goal towards

Hematology MUHAMMAD M. KHURRAM* SAGHIR A. JAFRI* ABDUL MANNAN** AFTAB NADEEM*** ASIF JAMAL*

Leukocytosis - Some Learning Points

Diagnostic Criteria for Minimally Differentiated Acute Myeloid Leukemia (AML-M0) Evaluation and a Proposal

7 Omar Abu Reesh. Dr. Ahmad Mansour Dr. Ahmad Mansour

2007 Workshop of Society for Hematopathology & European Association for Hematopathology Indianapolis, IN, USA Case # 228

Classification of Hematologic Malignancies. Patricia Aoun MD MPH

Development of B and T lymphocytes

Mast Cell Disease Case 054 Session 7

Case Workshop of Society for Hematopathology and European Association for Haematopathology

Lymphoid Blast Crisis in a Case of Paediatric Chronic Myeloid Leukaemia: An Unusual Presentation of An Uncommon Malignancy

Acute myeloid leukemia. M. Kaźmierczak 2016

BCR-ABL1 positive Myeloid Sarcoma Nicola Austin

THE IMMUNOPHENOTYPE OF ADULT T ACUTE LYMPHOBLASTIC LEUKEMIA IN MOROCCO

Case Report Precursor B Lymphoblastic Lymphoma Involving the Stomach

Myeloproliferative Disorders - D Savage - 9 Jan 2002

Research Article Myeloid Sarcoma: Clinicopathologic, Cytogenetic, and Outcome Analysis of 21 Adult Patients

CLINICAL USE OF CELLULAR SUBPOPULATION ANALYSIS IN BM

Cleveland Clinic Laboratories Hematology Diagnostic Services. Trust in us for everything you need in a reference lab.

Relapsed acute lymphoblastic leukemia. Lymphoma Tumor Board. July 21, 2017

Case Report A case of EBV positive diffuse large B-cell lymphoma of the adolescent

Case Presentation No. 075

BD Flow Cytometry Reagents Multicolor Panels Designed for Optimal Resolution with the BD LSRFortessa X-20 Cell Analyzer

Citation International Journal of Hematology, 2013, v. 98 n. 4, p The original publication is available at

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED

Normal Blood and Bone Marrow Populations

CASE REPORT. Abstract. Introduction. Case Reports

NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia

Immunophenotypic study of acute leukemia by flow cytometry at BPKMCH.

WBCs Disorders. Dr. Nabila Hamdi MD, PhD

V. Acute leukemia. Flow cytometry in evaluation of hematopoietic neoplasms: A case-based approach

Myelodysplastic Syndrome Case 158

The Adaptive Immune Response. T-cells

Blastic Plasmacytoid Dendritic Cell Neoplasm; A Report of Three Cases

ACCME/Disclosures 4/13/2016. Clinical History

Immunophenotyping of lymphoproliferative disorders: state of the art

MS.4/ Acute Leukemia: AML. Abdallah Al Abbadi.MD.FRCP.FRCPath Feras Fararjeh MD

Immunopathology of Lymphoma

Bone Marrow Pathology. Part 1. R.S. Riley, M.D., Ph.D.

Welcome. Welcome. Emerging Technologies in Flow Cytometry

Original Article Acute Leukemias And Aberrant Markers Expression Pak Armed Forces Med J 2018; 68 (3):

Significant CD5 Expression on Normal Stage 3 Hematogones and Mature B Lymphocytes in Bone Marrow

Instructions for Chronic Lymphocytic Leukemia Post-HSCT Data (Form 2113)

Acute Lymphoblastic Leukemia in Elderly Patients The Philadelphia Chromosome May Not Be a Significant Adverse Prognostic Factor

Hematopathology Case Study

Hematopathology Specialty Conference Case #1

Case Report Mixed phenotype acute leukemia, B/myeloid, NOS with near-tetraploidy: a case report

Clinicohematological Evaluation of Leukemias in a Tertiary Care Hospital

77R (REPEAT) Flow Cytometry: Basic Principles and Case Analysis. Charles Goolsby PhD Kristy Wolniak MD, PhD

Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation

Disclosures. Myeloproliferative Neoplasms: A Case-Based Approach. Objectives. Myeloproliferative Neoplasms. Myeloproliferative Neoplasms

FLOW CYTOMETRY PRINCIPLES AND PRACTICE. Toby Eyre Consultant Haematologist Oxford University Hospitals NHS Foundation Trust June 2018

Monocytic sarcoma, involvement of an extramedullary

Clinical question. Screening tube. Diagnostic panel MRD. Clinical question

Correspondence should be addressed to Anas Khanfar;

NUMERATOR: Patients who had baseline cytogenetic testing performed on bone marrow

AML: WHO classification, biology and prognosis. Dimitri Breems, MD, PhD Internist-Hematoloog Ziekenhuis Netwerk Antwerpen

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC

Acute Lymphoblastic and Myeloid Leukemia

Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure

2013 AAIM Pathology Workshop

The development of clonality testing for lymphomas in the Bristol Genetics Laboratory. Dr Paula Waits Bristol Genetics Laboratory

FLOCK Cluster Analysis of Mast Cell Event Clustering by High-Sensitivity Flow Cytometry Predicts Systemic Mastocytosis

Tel: Fax: Received: 25, Jul, 2014 Accepted: 16, Dec, 2014

LEUKAEMIA and LYMPHOMA. Dr Mubarak Abdelrahman Assistant Professor Jazan University

Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data

B-Lymphoblastic Leukemia in Patients With Chronic Lymphocytic Leukemia. A Report of Four Cases

FLOW CYTOMETRIC ANALYSIS OF NORMAL BONE MARROW

Case Report Clonal Hypereosinophilia with ETV6 Rearrangement Evolving to T-Cell Lymphoblastic Lymphoma: A Case Report and Review of the Literature

CME/SAM. Abstract. Hematopathology / CD103 and CD123 in B-Cell Neoplasia

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

T CELL LYMPHOMA ANALYSIS

Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute leukemia

Evaluation of Bone Marrow Biopsies and Aspirates ANNA PORWIT DEPARTMENT OF PATHOLOGY, LUND UNIVERSITY

Reactive and Neoplastic Lymphocytosis

Transcription:

Prethymic Cytoplasmic CD3 Negative Acute Lymphoblastic Leukemia or Acute Undifferentiated Leukemia: A Case Report The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version Accessed Citable Link Terms of Use Cannizzo, Elisa, Giovanni Carulli, Luigi Del Vecchio, Antonio Azzarà, Sara Galimberti, Virginia Ottaviano, Frederic Preffer, and Mario Petrini. 211. Prethymic cytoplasmic CD3 negative acute lymphoblastic leukemia or acute undifferentiated leukemia: a case report. Case Reports in Hematology 211:23568. doi:1.1155/211/23568 May 14, 218 12:55:32 PM EDT http://nrs.harvard.edu/urn-3:hul.instrepos:73943 This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:hul.instrepos:dash.current.termsof-use#laa (Article begins on next page)

Hindawi Publishing Corporation Case Reports in Hematology Volume 211, Article ID 23568, 4 pages doi:1.1155/211/23568 Case Report Prethymic Cytoplasmic CD3 Negative Acute Lymphoblastic Leukemia or Acute Undifferentiated Leukemia: A Case Report Elisa Cannizzo, 1 Giovanni Carulli, 1 Luigi Del Vecchio, 2 Antonio Azzarà, 1 Sara Galimberti, 1 Virginia Ottaviano, 1 Frederic Preffer, 3 and Mario Petrini 1 1 Division of Hematology, Department of Oncology, Transplants and Advances in Medicine, University of Pisa, 56126 Pisa, Italy 2 Department of Biochemistry and Medical Biotechnology, CEINGE Institute, Federico II University, 8145 Naples, Italy 3 Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 2114, USA Correspondence should be addressed to Elisa Cannizzo, elisacannizzo@libero.it Received 5 May 211; Accepted 26 May 211 Academic Editors: L.-M. Benjamin, K. Goetze, K. Konstantopoulos, and M. Singh Copyright 211 Elisa Cannizzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acute undiffentiated leukemia (AUL) is an acute leukemia with no more than one membrane marker of any given lineage. Blasts often express HLA-DR, CD34, and/or CD38 and may be positive for terminal deoxynucleotidyl transferase (TdT). The expression of CD34, HLA-DR, and CD38 has been shown in pro-t-all, although in this case, blasts should also express CD7 and cycd3. However, some cases of T-ALL without CD3 in the cytoplasm and all TCR chain genes in germ line configuration are reported, features that fit well with a very early hematopoietic cell. We report a case of acute leukemia CD34+/ HLADR+CD7+CD38+cyCD3 in which a diagnosis of AUL was considered. However the blasts were also positive for CD99 and TCR delta gene rearrangement which was found on molecular studies. Therefore a differential diagnosis between AUL and an early cycd3 negative T-ALL was debated. 1. Introduction The distinction between Acute Undifferentiated Leukemia (AUL) and early Acute Lymphoblastic Leukemia (ALL) is complex and affects patient management options. AUL is an acute leukemia with no more than one membrane marker of any given lineage. It specifically lacks the T or myeloid lineage specific markers cycd3 and MPO, respectively, and doesnotexpressb-lineagespecificmarkerssuchascycd22, cycd79a, or CD19. The tumor also lacks specific features of other hematopoietic lineages such as megakaryocytes or plasmacytoid dendritic cells. Blasts often express HLA-DR, CD34, and/or CD38 and may be positive for terminal deoxynucleotidyl transferase (TdT). The blasts are negative for myeloperoxidase and esterase [1]. The expression of CD34, HLA-DR, and CD38 has been shown in pro-t-all, although in this case, blasts should also express CD7 and cycd3 (Table 1)[2]. However, some cases of T-ALL without CD3 in the cytoplasm and all TCR chain genes in germ line configuration are reported, features that fit well with a very early hematopoietic cell [3, 4]. We report a case of acute leukemia where a differential diagnosis between an early cycd3-t-all and an AUL was debated. 2. Case Presentation A 65-year-old man was admitted to the hospital in November 28 with a few weeks history of dyspnea and purpura with edema of the lower left limb. A complete blood count revealed: White Blood Count 1, 8 1 9 /l, Hemoglobin 9g/dL, and Platelet Count 1 1 9 /l. Manual differential showed 6% neutrophils, 66% lymphocytes, and 28% undifferentiated blasts with nucleoli and intensely basophilic cytoplasm. Splenomegaly and lymphadenopathy were present. Increased values of lactic dehydrogenase (LDH) (4.48 IU/l, n.v. 25 45) were registered. The bone marrow aspirate was hypercellular with blasts of medium-large size, with nucleoli, without cytoplasmic granules, and with occasional hand mirror forms (Figure 1). Cytochemical assays showed negativity for myeloperoxidase and α-naphthyl-acetate esterase and 2 3% of blasts to be PAS positive. Immunohistochemistry performed on the biopsy core showed that the tumor cells

2 Case Reports in Hematology MARKERS Table 1: T-ALL EGIL classification of T lineage acute lymphoblastic leukemia (T-ALL) modified by Szczepanski et al. [2]. Pro-T-ALL (EGIL T-I) Immature thymocyte (EGIL T-II) Common thymocytic T-ALL mcd3-(cortical T-ALL, EGIL T-III) Common thymocytic T-ALL mcd3+ (Cortical T-ALL, EGIL T-III) Mature T-ALL (EGIL T-IV) TdT ++ ++ ++ ++ ++ HLA-DR + CD34 + CD1a ++ ++ CD2 + ++ ++ ++ ++ cycd3 ++ ++ ++ ++ ++ CD5 ++ ++ ++ ++ CD7 ++ ++ ++ ++ ++ CD4 CD8 ++ + CD4+CD8 +/ +/ +/ + CD4 CD8+ +/ +/ +/ +/ CD4+CD8+ + + +/ mcd3 ++ ++ TcRαβ 6 7% 6 7% TcRγδ 3 4% 3 4% <1% of the leukaemias are positive; +/ : 1 25% of the leukaemias are positive; +: 25 75% of the leukaemias are positive; ++: >75% of the leukaemias are positive. were CD79a-PAX5-CD68-MPO-CD3-CD7+CD34. These results supported the diagnosis of leukocytosis of uncertain histologic origin. Flow cytometry was carried out by means of a FacsCanto II cytometer (Becton Dickinson) and samples were stained with fluorochrome-conjugated monoclonal antibodies (FITC, PE, PerCP, PE-Cy7, APC, and APC- Cy7) to the following antigens: CD3, cycd3, CD2, CD7, CD1a,CD4,CD8,CD5,CD16-56,TCRαβ, TCRγδ, CD19, CD2, CD22, CD23, FMC7, CD1, CD38, CD45, K and λ immunoglobulin light chains, cycd22, cycd79a, CD34, CD99, HLA-DR, CD117, CD33, CD13, MPO, CD45RA, and CD45RO. Data were collected and analyzed by FacsDiva software (Becton Dickinson). The blasts were positive for CD34+/ HLA-DR, CD7, CD99, CD38 (Figure 2), CD45RA, CD1+/, and CD4 (not shown). Conventional cytogenetics performed on the bone marrow revealed a 47, XY karyotype with trisomy of chromosome 8 (47, XY, +8). T-cell receptor (TCR) delta gene rearrangements studies by polymerase chain reaction (PCR) showed the presence of a clonal TCR rearrangement and therefore a clonal T-cell population. 3. Discussion The expression of CD34, HLA-DR, and CD7 has been shown in pro-t-all, although in this case, blasts should also express cycd3 (Table 1)[2]. In AUL, blasts often express HLA-DR, CD34, and/or CD38 (1). In this case report the blasts were CD34+/ HLA-DR+CD7+CD38+cyCD3 such that a diagnosis of AUL was considered. However the blasts were also positive for CD99 and a TCR delta gene rearrangement, which was obtained from molecular studies. Figure 1: Blasts appear of medium large size, with nucleoli, without cytoplasmic granules. Thus, a differential diagnosis between an AUL and early cycd3 negative T-ALL was considered. Nishi et al. reported some cases of c-kit+ T-ALL without CD3 in the cytoplasm, and all TCR chain genes in germ line configuration, features that fit well with a very early hematopoietic cell [3]. Quintanilla-Martinez et al. also reported three cases of prethymic lymphoblastic lymphoma which resulted TdT+, HLA-DR+, CD34+, CD71+, CD38+, and CD7+, most resembling the normal prothymocyte. The prethymic T-cell character was further supported by germline T-cell receptor and chain genes [4]. In our case the blasts expressed CD99, which was reported as the most useful antigen to indicate the precursor nature of T lymphoblasts [5]. CD99 is intensely expressed in the earliest maturational

Case Reports in Hematology 3 Q1 Q2 2 38 PE-Cy7-A SSC-A ( 1.) 25 15 1 12 Lymphocytes 12 5 blast Q3 218 165 Q4 12 45 PerCP-A (a) CD45 PerCP-A CD3 FITC-A Q1 Q2 Q3 Q4 271 23 Q1-1 Q2-1 Q3-1 Q4-1 12 12 CD99 PE-A 256 58 12 (c) CD 2 PerCP-Cy5-5-A CD34 PE-Cy7-A Q1 Q2 Q3 Q4 43 675 HLA-DR PerCP-A (e) Q2 Q1 855 (d) cycd3 PE-A 12 (b) 7 PE-A 322 Q3 12 Q4 12 CD 19 PE-Cy7-A (f) Figure 2: Blasts are shown in blue, lymphocytes in violet. Blasts are CD34+/ CD7+HLA DR+CD38+CD99+CD3 cycd3 CD19 CD2. stages of the myeloid and the lymphoid lineages. Dworzak et al. speculated that normal and leukemic cells could be distinguished in bone marrow and peripheral blood based on CD99, since maturation-related CD99 overexpression should be nonexistent or extremely rare on T cells outside the thymus [5]. Considering that normal bone marrow and/or early thymic cells are CD34+CD7+cyCD3 and are able to differentiate into myeloid and lymphoid cells [6, 7], the expression of CD7 and CD99 together on blasts negative for cycd3 might be indicative of an earlier T-ALL than that of prot-all. To support this hypothesis, Kawamoto et al. proposed a new model of hemopoiesis where, a common myeloidlymphoid precursor was recognized [8]. Cytogenetic and molecular studies could be helpful in conjunction with immunophenotype to confirm the T lineage of such leukemia. In this regard, our patient showed a TCR delta gene

4 Case Reports in Hematology rearrangement. As reported in literature, CD7+ early T- cell acute lymphoblastic leukemia (T-ALL) shows a delta gene rearrangement, which occurs earlier than expression of cycd3 epsilon protein products [9, 1]. Kimura et al. observed that DDJ delta rearrangements have never been observed in non-t-cell malignancies, such as precursor- B-ALL or acute myeloid leukemia [1]. Thus, TCR delta gene rearrangements studies represent a useful tool to establish lineage and clonality of leukemic cells in the most immature stages of T-cell development [1]. While anecdotal experience generally considers AUL to have a poor prognosis, information is too scanty to make any definitive statements about clinical features or outcome. T-ALL often presents with a large mediastinal mass or other tissue mass. Lymphadenopathy and hepatosplenomegaly are common. Our patient presented at diagnosis with lymphadenopathy and splenomegaly. Patients with ALL should have a lumbar puncture to exclude or confirm an involvement of the CNS with leukemia. All treatment protocols for ALL include a prophylaxis to the CNS by administrating drugs (e.g., methotrexate) to the intrathecal space [11]. Our patient did not have CNS involvement but achieved complete remission following an ALL type treatment, thus supporting our diagnostic hypothesis. In conclusion, the immunophenotypic study of a large number of T-ALL cases, in conjunction with associated clinical features, cytogenetic and molecular studies, would be helpful in differential diagnosis with AUL and might contribute to the choice of the most appropriate treatment and management for these patients. CD3-CD4-CD8- (triple-negative) thymocytes, Experimental Hematology, vol. 22, no. 1, pp. 125 3, 1994. [7] E.S.Jaffe, N. L. Harris, H. Stein, E. Campo, S. A. Pileri, and S. H. Swerdlow, Introduction and overview of the classification of the lymphoid neoplasms, in WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues, S.H.Swerdlow,E. Campo, N. L. Harris et al., Eds., p. 162, International Agency for Research on Cancer, Lyon, France, 4th edition, 28. [8] H. Kawamoto, H. Wada, and Y. Katsura, A revised scheme for developmental pathways of hematopoietic cells: the myeloidbased model, International Immunology, vol. 22, no. 2, pp. 65 7, 21. [9]M.Nagano,N.Kimura,T.Akiyoshietal., T-stemcellleukemia/lymphoma with both myeloid lineage conversion and T-specific δ recombination, Leukemia Research, vol. 21, no. 8, pp. 763 773, 1997. [1] N. Kimura, T. Akiyoshi, T. Uchida et al., High prevalence of T cell receptor Dδ2(Dδ)Jδ rearrangement in CD7-positive early T cell acute lymphoblastic leukemia, Leukemia,vol.1,no.4, pp. 65 657, 1996. [11] R. Munker and V. Sakhalkar, Acute lymphoblastic leukemia, in Modern Hematology: Biology and Clinical Management, R. Munker, E. Hiller, J. Glass, and R. Paquette, Eds., p. 182, Humana Press, Totowa, NJ, USA, 27. Acknowledgments The authors thank Professor Brunangelo Falini for performing the histologic analysis of bone marrow trephine biopsy and Stefano Giuntini for technical assistance. References [1]M.J.Borowitz,M.C.Bene,N.L.Harris,A.Porwit,andE. Matutes, Acute Leukaemias of ambiguous lineage, in WHO Classification of Tumors of Haematopoietic and Lymphoid Tissue, S. H. Swerdlow, E. Campo, N. L. Harris et al., Eds., p. 151, International Agency for Research on cancer, 4th edition, 28. [2] T. Szczepanski, V. H. van der Velden, and J. J. van Dongen, Classification systems for acute and chronic leukaemias, Best Practice & Research, vol. 16, no. 4, pp. 561 582, 23. [3] K. Nishii, K. Kita, H. Miwa et al., C-kit gene expression in CD7-positive acute lymphoblastic leukemia: close correlation with expression of myeloid-associated antigen CD13, Leukemia, vol. 6, no. 7, pp. 662 668, 1992. [4] L. Quintanilla-Martinez, L. R. Zukerberg, and N. L. Harris, Prethymic adult lymphoblastic lymphoma: a clinicopathologic and immunohistochemical analysis, American Journal of Surgical Pathology, vol. 16, no. 11, pp. 175 184, 1992. [5] M. N. Dworzak, G. Fröschl, D. Printz et al., CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease, Leukemia, vol. 18, no. 4, pp. 73 78, 24. [6] C. M. decastro, S. M. Denning, S. Langdon et al., The c-kit proto-oncogene receptor is expressed on a subset of human