Pressure acid leaching of zinc sulfide concentrate

Similar documents
Chlorination Behaviors of Zinc Phases by Calcium Chloride in High Temperature Oxidizing-chloridizing Roasting

Recovery of Cu and Zn from Complex Sulphide Ore

ASIAN JOURNAL OF CHEMISTRY

Available online at ScienceDirect. Procedia Environmental Sciences 31 (2016 )

Oxidative Roasting of Low Grade Zinc Sulfide Concentrate from Gagok Mine in Korea

Rapid Detection of Milk Protein based on Proteolysis Catalyzed by Trypsinase

Researches on Fermentation Engineering of Polysaccharide of

Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54

Effects of enhanced pyrite on the Galvanox process

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors

Cationic guar gum as a depressor for gangue in froth flotation of pyritic-zinc ore from Rajpura Dariba Mines, Udaipur, India

PREPARATION OF POLYSTYRENE HOLLOW MICROSPHERES FROM WASTE FOAMED POLYSTYRENE PLASTICS BY MICROENCAPSULATION METHOD

Zinc Sulfide Concentrates and Optimization of their Roasting in Fluidezed Bed Reactor

EMPEROR'S COLLEGE MTOM COURSE SYLLABUS HERB FORMULAE I

EMPEROR'S COLLEGE MTOM COURSE SYLLABUS HERB FORMULAE II

Study on Ultrasonic-assisted Extraction of Polysaccharide of Atractylis Macroceohala Koidz of Experiment 1

PRESSURE ACID LEACHING OF SPHALERITE CONCENTRATE. MODELING AND OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

Seasonal Changes in Leaf Magnesium and Boron Contents and Their Relationships to Leaf Yellowing of Navel Orange Citrus sinensis Osbeck

Long-term acid generation containing heavy metals from the tailings of a closed mine and its countermeasures

EFFECT OF COMPRESSED CO 2 ON THE PROPERTIES OF AOT IN ISOOCTANE REVERSE MICELLAR SOLUTION AND ITS APPLICATION TO RECOVER NANOPARTICLES

Canqiu Yu 1, Jinwei Chen 2, Li Huang 3*

Analysis on nutritional components of the fruits in three population of Sichuan Pyracantha fortunaeana

X-Ray, DTA and TGA analysis of zinc sulfide concentrates and study of their charging for roasting in fluidized bed furnace

Research on Extraction Process of Gallic Acid from Penthorum chinense Pursh by Aqueous Ethanol

Phase IV clinical trial of Shufeng Jiedu Capsule in the treatment of cases of acute upper espiratory infection of wind-heat syndrome

Stress and Displacement Analysis of Dental Implant Threads Using Three-Dimensional Finite Element Analysis

Thermodynamic analysis of hydrogen production via zinc hydrolysis process

Research Article Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate

Preliminary Agenda. 9:55-10:20 How to overcome TKI resistance? James Chih-Hsin Yang 10:20-10:40 Discussion All 10:40-10:55 Coffee break

Fe-doped ZnO synthesized by parallel flow precipitation process for improving photocatalytic activity

Open Access Fuzzy Analytic Hierarchy Process-based Chinese Resident Best Fitness Behavior Method Research

New Materials for Removal of Trace Impurities from Environmental Waters

Bottom Ash Data Week 49

Cadmium and Chromium Accumulation in the Tissues of the Chinese Rice Grasshopper, Oxya chinensis

Economic recovery of zinc from Mining Influenced Water (MIW)

The Development of Nonchromium Catalyst for Fatty Alcohol Production

Animal, Plant & Soil Science. D3-7 Characteristics and Sources of Secondary Nutrients and Micronutrients

HYDROMETALLURGICAL TREATMENT OF NON-SULFIDE ZINC ORE FOR PRECIPITATION OF ZINC OXIDE NANOPARTICLES

An excessive increase in glutamate contributes to glucose-toxicity in. β-cells via activation of pancreatic NMDA receptors in rodent diabetes

Bottom Ash Data Week 38

Seasonal and geographical dispersal regularity of airborne pollens in China LI Quan-sheng, JIANG Sheng-xue, LI Xin-ze, ZHU Xiao-ming, WEI Qing-yu *

Rb 1. Results of variance analysis REFERENCES Chin J Mod Appl Pharm, 2014 September, Vol.31 No

ZORBAX Eclipse XDB-C 18 (100 mm 4.6 mm 3.5 µm) Lichrospher-C 18 (200 mm 4.6 mm 5 µm) Megres5-C 18 (250 mm 4.6 mm 5 µm)

Bottom Ash Data Week 30

Bottom Ash Data Week 8

Understanding a Soil Report

Basic Consideration on EAF Dust Treatment Using Hydrometallurgical Processes

Supporting Information

Effects of Soil Copper Concentration on Growth, Development and Yield Formation of Rice (Oryza sativa)

4th Annual International Conference on Material Science and Engineering (ICMSE 2016)

Effect of Particle Gradation on Properties of Phosphogypsum based Cement Paste Backfill Suya He, Ying Shi and Qiyue Li

Production of Zn powder by alkaline treatment of smithsonite Zn Pb ores

Study on Lubrication Properties of Modified Nano ZnO in Base Oil

Structural Properties of ZnO Nanowires Grown by Chemical Vapor Deposition on GaN/sapphire (0001)

Megasporogenesis and Megagametogenesis in Autotetraploid Indica/ Japonica Rice Hybrid

Liu Jing and Liu Jing Diagnosis System in Classical TCM Discussions of Six Divisions or Six Confirmations Diagnosis System in Classical TCM Texts

USER SPECIFICATIONS FOR QUINTOLUBRIC 888 Series DESCRIPTION OF THE MOST IMPORTANT PROPERTIES AND THE POSSIBLE VARIATIONS AND TOLERANCES

Influence of Starch-inorganic Salt Surface Sizing on the Application Properties of Corrugating Medium

4-1 Dyspnea (Chuan, 喘 )

Construction of the Vesselcollateral. Guidance for Prevention and Treatment of Vasculopathy. Section 1. China. Clinical Trials.

Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms

Study on the Mechanism of Zn 2 SiO 4 Formation in S Zorb Sorbents and Its Inhibition Methods

0620 CHEMISTRY. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Alumina stabilized ZnO-graphene anode for lithium ion

Bottom Ash Data Week 12

Optimization of Galena Flotation Process of Irankouh Complex Ore using a Statistical Design of Experiments

Analysis. Methods of. of Soils, Plants, Waters, Fertilisers & Organic Manures. Edited by HLS Tandon

instrument. When 13C-UBT positive value is greater than or equal to / - 0.4, the the subject can be 1. Data and methods details are as follows:

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Preparation and Properties of Cornstarch Adhesives

Discuss the importance of healthy soils Soil properties, physical, chemical and biological that one can manage for soil health How organics play a

Arch. Metall. Mater. 62 (2017), 2,

Optimization of Enzyme-assisted Ultrasonic Extraction of Total Ginsenosides from Ginseng Roots Guangna LIU, Yulin ZUO, Jing ZHANG

ELECTROWINNING OF ZINC FROM AMMONIA AND GLYCEROL BATH AND STUDY OF THE MORPHOLOGY OF ZINC DEPOSIT. S.G. Viswanath *, Sajimol George

Normal Reference Value of Hemoglobin of Middleaged Women and Altitude

Highly selective colorimetric schiff base chemosensor for detection of Cu 2+

EXTRACTION AND SPECTROSCOPY ANALYSIS OF BASIC NITROGEN AND PHENOLIC COMPOUNDS OF THE SHALE OIL OF BAOMING OIL SHALE, CHINA

MULTI-COMPONENT ANALYSIS OF HEAVY METALS

Plant Nutrients in Mineral Soils

HYDROTHERMAL SYNTHESIS OF NANO ZnO STRUCTURES FROM CTAB

Year 8 Assessment. Autumn Term Remember!

Journal of Chemical and Pharmaceutical Research, 2014, 6(2): Research Article

Rong Zhou 1,a, Mingxia Yang 1,b and Haixia Zhang 1,c 1

Arabia Kingdom. G. B.Mohamed 1, S. Arab 2 and A. Alshikh 3

High Grade Phosphate from Syrian Phosphate at Eastern Mines

Low toxicity and accumulation of zinc oxide nanoparticles in mice

Plasmonic blood glucose monitor based on enzymatic. etching of gold nanorods

Supplementary Information

Root & Branch Bulk Formula List

The effect of humic acid and fulvic acid on adsorption-desorption behavior of copper and zinc in the yellow soil

Journal of Chemical and Pharmaceutical Research, 2015, 7(8): Research Article

Pollution characteristics and influencing factors of atmospheric particulate matter (PM2.5) in Chang-Zhu-Tan area

Enzyme properties and thermal stability of horseradish peroxidase (HRP-DL)

MOF-Derived Zn-Mn Mixed Hollow Disks. with Robust Hierarchical Structure for High-Performance. Lithium-Ion Batteries

Research on Microscopic Pore Structure and Permeability of Air-Entrained Fly Ash Concrete Subjected to Freezing and Thawing Action

Supplementary Information

Application note. Determination of metals in soil by microwave plasma - atomic emission spectrometry (MP-AES) using DTPA extraction.

Upgrading of Egyptian Nonsulfide Zinc Ore by Gravity Separation Techniques

Welcome Message. We look forward to seeing you in Nanjing in Welcome to Nanjing! Sincerely yours,

Transcription:

Pressure acid leaching of zinc sulfide concentrate GU Yan( ), ZHANG Ting-an( ), LIU Yan( ), MU Wang-zhong( ), ZHANG Wei-guang( ) DOU Zhi-he( ), JIANG Xiao-li( ) Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of Education, School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China Received 6 July 2009; accepted 30 December 2009 Abstract: Effects of particle size of the zinc sulfide concentrate, leaching temperature, solid-to-liquid ratio and additive amount on pressure acid leaching process of the zinc sulfide concentrate were studied. The results indicate that the additive can improve the reaction kinetics and the conversion rate. And sulfur can be successfully separated from the zinc sulfide concentrate as elemental sulfur. The reasonable experiment parameters are obtained as follows: the leaching temperature 150, oxygen partial pressure 1 MPa, additive amount 1%, solid-to-liquid ratio 1:4, leaching time 2 h, initial sulfuric acid concentration 15%, and particle size less than 44 µm. Under the optimum conditions, the leaching rate of the zinc can reach 95% and the reduction rate of the sulfur can reach 90%. Key words: zinc sulfide concentrate; pressure acid leaching; zinc; sulfur 1 Introduction Zinc exists in the earth crust predominantly as sulfides, and sphalerite is its most important ore. There are 89 million tons recoverable deposits and 33 million tons industrial reserves in China[1 4]. China owns the most zinc ore in the world[2, 5 8]. Zinc sulfide concentrate is the main raw material for extracting zinc. Many investigations have been reported for the beneficiation of zinc ore to prepare concentrate from which zinc metal is produced by hydrometallurgical process. These processes involve a roasting step, which evolves toxic SO 2 gas and requires a sulfuric acid plant to be set up in the smelter. Direct pressure leaching has several problems associated with maintenance of autoclave[9 13]. Among the alternative processes to treat the sphalerite, the hydrometallurgical route without pretreatment, such as direct oxidative leaching, is considered to be quite attractive[6, 14 15]. The pressure leaching has been commercially used in the metal ores and concentrates. It offers the advantages of more precise control, higher mineral utilization, and increased flexibility[16]. The present work reports such a study carried out on zinc sulfide concentrate, with high metal impurities. The process is based on a direct leaching with oxygen of bulk flotation concentrate. 2 Experimental 2.1 Materials The feed for this study was zinc sulfide concentrate. The bulk concentrate from this ore was produced at Huludao Zinc Plant, Liaoning Province, China. Tables 1 and 2 show the chemical compositions of the feed and the mineralogical analysis results of bulk concentrate, respectively. The major minerals present in the concentrate were sphalerite (ZnS), marmatite (ZnFeS), quartz (SiO 2 ), and other minerals including Pb and Ti. Fig.1 shows the XRD pattern of the zinc sulfide concentrate. Representative samples were used in all experiments. All chemicals used were of analytical grade and all solutions were made with distilled water. Metal content was analyzed by atomic absorption spectrometry (Perkin-Elmer). 2.2 Equipment The leaching was carried out on laboratory scale. Foundation item: Project(20050145029) supported by the Research Fund for the Doctoral Program of Higher Education of China; Project(2005221012) supported by Science and Technology Talents Fund for Excellent Youth of Liaoning Province, China Corresponding authors: ZHANG Ting-an; Tel: +86-24-83687732; E-mail: zta2000@163.net; GU Yan; Tel: +86-13604054825; E-mail: 18512019@ qq.com

GU Yan, et al/trans. Nonferrous Met. Soc. China 20(2010) s136 s140 this effect: s137 ZnS+H 2 SO 4 +1/2O 2 =ZnSO 4 +S 0 +H 2 O (low-iron A/C leaching) (1) ZnS+H 2 SO 4 =ZnSO 4 +H 2 S (2) H 2 S+Fe 2 (SO 4 ) 3 =2FeSO 4 +H 2 SO 4 +S 0 (3) ZnS+Fe 2 (SO 4 ) 3 =2FeSO 4 +ZnSO 4 +S 0 (4) 2FeSO 4 +H 2 SO 4 +1/2O 2 =Fe 2 (SO 4 ) 3 +H 2 O (5) Fig.1 XRD pattern of zinc sulfide concentrate Leaching was done in a pressure reactor called autoclave. Table 3 shows the leaching experiment equipments, and Table 4 shows the major technical parameters of the autoclave. 3 Results and discussion 3.1 Leaching mechanism In this leaching system, ZnS and sulfate inter-reacted and generated S, ZnSO 4, H 2 O, etc. In the absence of oxygen, the partial pressure of H 2 S formed slows down the kinetics of the leaching reaction. The addition of oxygen in the system reduces 3.2 Effect of leaching temperature The leaching temperature is an important thermodynamic parameter. The effect of leaching temperature on the leaching of zinc concentrate was studied at constant initial sulfuric acid concentration (15%), leaching temperature (150 ), solid-to-liquid ratio (1:4), particle size ( 53 µm), leaching time (1.5 h), oxygen partial pressure (0.8 MPa), stirring speed (480 r/min) and additive amount (1%). Fig.2 shows increase in zinc and sulfur recovery with the increase in leaching temperature. When the leaching temperature was above 120, the slope of the curve was decreased. It could be conducted that 150 was the suitable leaching temperature. 3.3 Effect of oxygen partial pressure In the process of pressure leaching, oxygen was an important reactive substance introduced into reacting system. The effect of oxygen partial pressure on the Table 1 Chemical composition of ZnS concentrate (mass fraction, %) Zn S Fe Si C Pb Ti Cu Al 51.7 32.7 3.16 4.85 2.52 1.56 0.95 0.22 0.151 Table 2 Mineralogical composition of head sample (mass fraction, %) Sphalerite Marmatite Quartz Galena Pyrite Chalcopyrite 78.4 2.05 4.85 1.56 1.11 0.45 Table 3 Experimental equipments Experimental equipment WHFS 2T type reactor ICP emission spectroscope JA2103 electronic balance 101type electric blast-drying oven Electro-thermal distiller PW3040/60 Type X-Pert Pro MPD Mini three-phase induction motor Manufacturer Weihai Automatic Reactor Ltd. American Leeman Ltd. Shanghai Minqiao Precision Scientific Instruments Ltd. Beijing Medical Instrument Factory Tianjin Instrument Ltd. Holland PANALYTICAL B.V Shenyang Micro-motor Factory Table 4 Related technical parameters of WHFS 2T high pressure reactor Pressure/ Agitation speed/ Temperature control Heating Heating way Body volume/l Temperature/ MPa (r min 1 ) accuracy/ power/kw Electric 2 25 300 20.0 20 750 ±0.5 2

s138 Fig.2 Effect of leaching temperature GU Yan, et al/trans. Nonferrous Met. Soc. China 20(2010) s136 s140 leaching of zinc concentrate was studied at constant initial sulfuric acid concentration (15%), leaching temperature (150 ), solid-to-liquid ratio (1:4), particle size ( 53 µm), leaching time (1.5 h), stirring speed (480 r/min) and additive amount (1%). Fig.3 shows that the higher pressure made the higher leaching rate of zinc and conversion of sulfur, but in the range of high oxygen partial pressure, the increasing trend was slow. So, it could be constructed that 1 MPa was the best pressure for leaching of zinc sulfide concentrate. solid-to-liquid ratio (1:4), particle size ( 53 µm), leaching time (1.5 h), stirring speed (480 r/min) and oxygen particle pressure (1 MPa). Fig.4 shows that at 150, the leaching rate of zinc was 74.5%, while the conversion of sulfur was 29.8%, when there was no additive. For the surface hydrophobicity of the sulfide concentrate, it was unease to be wetted by water but by defreezed sulfur, and the non-oxidative sulfides were wetted and encapsulated in priority by sulfur in the process of pressure leaching. This increased the diffusion resistance and hindered the leaching of zinc sulfide concentrate seriously. With increasing the amount of additive, the surface tension of fluid sulfur was decreased, and the sulfur dropped from the surface of sulfide while stirring. However, when the amount of additive was over 0.8%, the leaching rate changed slowly. So, it could be concluded that 1% was the suitable additive amount. Fig.4 Effect of additive amount on leaching Fig.3 Effect of oxygen partial pressure on leaching 3.4 Effect of additive amount The defreezed sulfur had strong wetting function, and it could be encapsulated over the surface of the concentrate, so as to hinder the contact between the concentrate and reaction medium. To prevent the concentrate particles to be encapsulated, the lignosulfonate as active agent was added into the leaching system. The effect of additive amount on the leaching of zinc concentrate was studied at constant initial sulfuric acid concentration (15%), leaching temperature (150 ), 3.5 Effect of solid-to-liquid ratio The effect of solid-to-liquid ratio on the leaching of zinc concentrate was studied at constant initial sulfuric acid concentration (15%), leaching temperature (150 ), additive amount (1%), particle size ( 53 µm), leaching time (1.5 h), stirring speed (480 r/min) and oxygen particle pressure (1 MPa). Fig.5 shows that, with increasing the amount of sulfate, the leaching rate of zinc and the conversion of sulfur were increased. When the solid-to-liquid ratio was over 1:4, the curve changed to be steady. However, solid-to-liquid ratio was small, the amount of acid was too small, and the leaching rate was low. There was no significance for leaching when the amount of sulfate increased. So, the suitable condition of solid-to-liquid ratio was 1:4. 3.6 Effect of leaching time The effect of leaching time on the leaching of zinc concentrate was studied at constant initial sulfuric acid

GU Yan, et al/trans. Nonferrous Met. Soc. China 20(2010) s136 s140 s139 Fig.5 Effect of solid-to-liquid ratio on leaching concentration (15%), additive amount (1%), particle size ( 53 µm), solid-to-liquid ratio (1:4), leaching temperate (150 ), stirring speed (480 r/min) and oxygen particle pressure (1 MPa). Fig.6 shows that with increasing the leaching time, leaching rate increased; but when the leaching time was over 1.5 h, the curve of leaching rate was changed to be steady. So, the suitable leaching time is 2 h. Fig.7 Effect of concentrate particle size on leaching 2 S 4πr 16 a = = = (6) m 3 3 3ρ r ρ r ZnS ZnS π 4 where S is the total surface area of the particles; m is the total mass of the particles; r is the radius of the particles; and ρ is the density of the particles. The specific surface area and single particle size are in inverse relation. The pressure leaching of zinc sulfide concentrate is a liquid-solid reaction in autoclave. With decreasing the particle radius in unit volume, the probability of contract between the particle of concentrate and reaction medium is increased, which can improve the kinetic condition and increase the leaching rate of the reaction correspondingly. 4 Conclusions Fig.6 Effect of leaching time on leaching 3.7 Effect of particle size The effect of leaching time on the leaching of zinc concentrate was studied at constant initial sulfuric acid concentration (15%), additive amount (1%), leaching time (2 h), solid-to-liquid ratio (1:4), leaching temperature (150 ), stirring speed (480 r/min) and oxygen particle pressure (1 MPa). Fig.7 shows that the effect of the particle size on leaching process was serious. With decreasing the particle size, the leaching rate of zinc and conversion of sulfur were increased. The curve changed to be steady when the particle size was smaller than 44 µm. The definition formula of specific surface area is 1) This laboratory-scale investigation demonstrated the feasibility of using pressure leaching process to extract zinc and elemental sulfur from zinc sulfide concentrate. However, there are some areas that need further exploration to determine the relative merits of this process as compared with those methods already in place or put forward. 2) The reasonable experiment parameters are: leaching temperature 150, oxygen partial pressure 1 MPa, additive amount 1%, solid-to-liquid ratio 1:4, leaching time 2 h, initial sulfuric acid concentration 15%, and particle size smaller than 44 µm. The leaching rate of the zinc can reach 95% and the reduction rate of the sulfur can reach 90% at this condition. 3) Adding the additive can further enhance the leaching kinetics. Autoclave leaching of the concentrate allows for high zinc extraction with greatly decreased reaction time. The laboratory process shows sufficient promise for a detailed process development.

s140 GU Yan, et al/trans. Nonferrous Met. Soc. China 20(2010) s136 s140 References [1] WANG Hai-bei, JIANG Kai-xi. Study on the new process of pressure leaching of zinc confide concentrate [J]. Non-ferrous Metallurgical (Smelting Part), 2004(5): 2 4. (in Chinese) [2] ÇOPER M, ÖZMETIN C, ELIF Ö, KOCAKERIM M M. Optimization study of the leaching of roasted zinc sulphide concentrate with sulphuric acid solutions [J]. Chemical Engineering and Process, 2004, 43: 1007 1014. [3] SAHU S K, SAHU K K, PANDEY B D. Leaching of zinc sulfide concentrate from the Ganesh-Himal deposit of Nepal [J]. Metallurgical and Materials Transactions, 2006, 37B: 541 549. [4] FRANAY J. Leaching of oxidized zinc ores in various media [J]. Hydrometallurgy, 1985, 15(2): 243 248. [5] DONG Qiao-long. Comparison between zinc concentrate normal pressure leaching and high-pressure leaching [J]. China Non-ferrous Metallurgical, 2007, 8(4): 24 26. (in Chinese) [6] HU Jian-dong, XU Ming, JIANG Jun-yang. Study on the leaching of zinc sulfide concentrate by catalyst and oxidation [J]. Non-ferrous Metal (Smelting Part), 2003(5): 21 23. (in Chinese) [7] AKCIL A, CIFTCL H. Metals recovery from multi metal sulphide concentrates (CuFeS 2 -PbS-ZnS): Combination of thermal process and pressure leaching [J]. Int J Miner Process, 2003, 71: 233 246. [8] AKCIL A. A preliminary research of acid pressure leaching of pyretic copper ore in Kure Copper Mine, Turkey [J]. Miner Eng, 2002, 15(12): 1193 1197. [9] AKCIL A, CILTCL H. A study of the selective leaching of complex sulfides from the Eastern Black Sea region, Turkey [J]. Miner Eng, 2002, 15(6): 457 459. [10] WANG Ji-kun, LI Cun-xiong, LI Yong, ZHANG Hong-yao, HUANG Pen, YAN Jiang-feng, LIU Lu, WEI Chang. The ε-ph figure of ZnS-FeS-H 2 O system during acid leaching under pressure of high-iron sphalerite [J]. Non-ferrous Metallurgy (Smelting Part), 2006(2): 2 5. (in Chinese) [11] WANG Ji-kun, ZHOU Yan-xi, WU Ji-mei. Study on high iron containing sphslerite concentrate by acid leaching under pressure [J]. Non-ferrous Metallurgy (Smelting Part), 2004(1): 5 8. (in Chinese) [12] GAO Liang-bin, HE Ji-cheng, HONG Hong-jiang. The technology of zinc sulphide concentrate in high-temperature and high-pressure leaching [J]. Non-ferrous Mining and Metallurgy, 2007, 23(4): 33 36. (in Chinese) [13] WEERT G V, BOERING M. Selective pressure leaching of zinc and manganese from natural and man-made spinels using nitric acid [J]. Hydrometallurgy, 1995, 39: 201 213. [14] PARKER E G. Oxidative pressure leaching of zinc concentrates [J]. CIM Bull, 1987, 74(829): 145 150. [15] XU Zhi-feng, QIU Ding-fan, LU Hui-min, WANG Hai-bei. Review on research of oxidic-acidic pressure leaching of zinc concentrates [J]. Nonferrous Metals, 2005, 57(2): 101 105. (in Chinese) [16] YANG Zhong-ping, JIN Xiao-zhu, HUANG Jian-hui. Extraction of zinc concentrates under oxygen stressing and acid leaching [J]. Mineral Resources and Geology, 2005, 8: 449 451. (in Chinese) (Edited by YANG Bing)