ORIGINAL CONTRIBUTION. New Mutations, Prenatal Diagnosis, and Founder Effect

Similar documents
Muscular Dystrophy. Biol 405 Molecular Medicine

variant led to a premature stop codon p.k316* which resulted in nonsense-mediated mrna decay. Although the exact function of the C19L1 is still

Congenital muscular dystrophy due to laminin α2 (merosin) deficiency (MDC1A) in an ethnic Malay girl

READ ORPHA.NET WEBSITE ABOUT BETA-SARCOGLYOCANOPATHY LIMB-GIRDLE MUSCULAR DYSTROPHIES

Genetic test for Bilateral frontoparietal polymicrogyria

SALSA MLPA KIT P060-B2 SMA

Merosin-Deficient Congenital Muscular Dystrophy with Polymicrogyria and Subcortical Heterotopia: A Case Report

Hutterite brothers both affected with two forms of limb girdle muscular dystrophy: LGMD2H and LGMD2I

Congenital muscular dystrophies: New aspects of an expanding group of disorders

Iowa Wellstone Center Muscle Tissue and Cell Culture Repository

Advances in genetic diagnosis of neurological disorders

Peripheral neuropathy in merosin-negative congenital muscular dystrophy

Congenital Muscular Dystrophy: Hospital Based Study in Egyptian Pediatric Patients

MRC-Holland MLPA. Description version 19;

Section Chapter 14. Go to Section:

Immunohistochemical Study of Dystrophin Associated Glycoproteins in Limb-girdle Muscular Dystrophies

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome

Mutations. A2 Biology For WJEC

DSS-1. No financial disclosures

Evaluation of the Hypotonic Infant and Child

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois

Bio 111 Study Guide Chapter 17 From Gene to Protein

SEX-LINKED INHERITANCE. Dr Rasime Kalkan

MRC-Holland MLPA. Description version 08; 30 March 2015

Supplemental Data: Detailed Characteristics of Patients with MKRN3. Patient 1 was born after an uneventful pregnancy. She presented in our

Prevalence of congenital muscular dystrophy in Italy A population study

Basic Definitions. Dr. Mohammed Hussein Assi MBChB MSc DCH (UK) MRCPCH

Genetic diagnosis of limb girdle muscular dystrophy type 2A, A Case Report

Index. derm.theclinics.com. Note: Page numbers of article titles are in boldface type.

The Floppy Baby. Clare Betteridge

The congenital muscular dystrophies in 2004: a century of exciting progress

Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by β sarcoglycan mutations

Corporate Medical Policy

MRC-Holland MLPA. Description version 14; 28 September 2016

Phenylketonuria (PKU) the Biochemical Basis. Biol 405 Molecular Medicine

DMD Genetics: complicated, complex and critical to understand

A CASE OF GIANT AXONAL NEUROPATHY HEMANANTH T SECOND YEAR POST GRADUATE IN PAEDIATRICS INSTITUTE OF SOCIAL PAEDIATRICS GOVERNMENT STANLEY HOSPITAL

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Tel: , Fax: ,

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG)

Investigating Seven Recently Identified Genes in 100 Iranian Families with Autosomal Recessive Non-syndromic Hearing Loss

Cover Page. The handle holds various files of this Leiden University dissertation.

Proteins. Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids

Understanding genetics, mutation and other details. Stanley F. Nelson, MD 6/29/18

Silent mutations in the phenylalanine hydroxylase

Neonatal Hypotonia. Encephalopathy acute No encephalopathy. Neurology Chapter of IAP

18 (2), DOI: /bjmg

SMA IS A SEVERE NEUROLOGICAL DISORDER [1]

Psych 3102 Lecture 3. Mendelian Genetics

JULY 21, Genetics 101: SCN1A. Katie Angione, MS CGC Certified Genetic Counselor CHCO Neurology

Corporate Medical Policy

Genetic Assessment and Counseling

A rare case of muscular dystrophy with POMT2 and FKRP gene mutation. Present by : Ghasem Khazaei Supervisor :Dr Mina Mohammadi Sarband

Clinical Spectrum and Genetic Mechanism of GLUT1-DS. Yasushi ITO (Tokyo Women s Medical University, Japan)

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE. Proposed Highly Specialised Technology Evaluation

A novel POMT2 mutation causes mild congenital muscular dystrophy with normal brain MRI

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Objectives. Genetics and Rett syndrome: As easy as apple pie! Chromosome to gene to protein

Gene therapy and genome editing technologies for the study and potential treatment of :

The New England Journal of Medicine MUTATIONS IN THE SARCOGLYCAN GENES IN PATIENTS WITH MYOPATHY

Introduction to Genetics

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Human inherited diseases

SALSA MLPA probemix P241-D2 MODY mix 1 Lot D As compared to version D1 (lot D1-0911), one reference probe has been replaced.

Non-Mendelian inheritance

Original Policy Date

Human Genetic Mutations

Learn the steps to identify pediatric muscle weakness and signs of neuromuscular disease.

Corporate Medical Policy

CANCER GENETICS PROVIDER SURVEY

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK

Muscular Dystrophies. Pinki Munot Consultant Paediatric Neurologist Great Ormond Street Hospital Practical Neurology Study days April 2018

Identification of a novel in-frame de novo mutation in SPTAN1 in intellectual disability and pontocerebellar atrophy

Corporate Medical Policy

Reporting TP53 gene analysis results in CLL

Differentiation-induced Changes of Mediterranean Fever Gene (MEFV) Expression in HL-60 Cell

Abstract. Introduction. RBMOnline - Vol 8. No Reproductive BioMedicine Online; on web 10 December 2003

1" 7I'?? 1" : t"i"i"itf

MRC-Holland MLPA. Description version 30; 06 June 2017

SALSA MLPA KIT P050-B2 CAH

SALSA MLPA probemix P241-D2 MODY mix 1 Lot D2-0716, D As compared to version D1 (lot D1-0911), one reference probe has been replaced.

Next-generation sequencing-based molecular diagnosis of neonatal hypotonia in Chinese

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Beta Thalassemia Case Study Introduction to Bioinformatics

Clinical features, particularly those of the central nervous system, of patients with Becker s muscular dystrophy, including autopsied cases

MRC-Holland MLPA. Description version 29; 31 July 2015

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

The Meaning of Genetic Variation

Nature Genetics: doi: /ng Supplementary Figure 1. Brain magnetic resonance imaging in patient 9 at age 3.6 years.

The Biology and Genetics of Cells and Organisms The Biology of Cancer

NGS panels in clinical diagnostics: Utrecht experience. Van Gijn ME PhD Genome Diagnostics UMCUtrecht

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Genetics and Genomics in Medicine Chapter 8 Questions

MODULE NO.14: Y-Chromosome Testing

MULTIPLE CHOICE QUESTIONS

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Molecular Characterization of the NF2 Gene in Korean Patients with Neurofibromatosis Type 2: A Report of Four Novel Mutations

George R. Honig Junius G. Adams III. Human Hemoglobin. Genetics. Springer-Verlag Wien New York

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Transcription:

ORIGINAL CONTRIBUTION LAMA2 Gene Analysis in Congenital Muscular Dystrophy New Mutations, Prenatal Diagnosis, and Founder Effect Claudia Di Blasi, PhD; Daniela Piga, PhD; Paolo Brioschi, PhD; Isabella Moroni, MD; Antonella Pini, MD; Alessandra Ruggieri, PhD; Simona Zanotti, PhD; Graziella Uziel, MD; Laura Jarre, MD; Elvio Della Giustina, MD; Carmela Scuderi, MD; Christoffer Jonsrud, MD; Renato Mantegazza, MD; Lucia Morandi, MD; Marina Mora, PhD Objective: To determine if laminin- 2 deficiency is due to mutations in the LAMA2 gene or secondary to mutations in other congenital muscular dystrophy genes. Methods: We performed molecular analysis of LAMA2, by single-strand conformation polymorphism and sequencing, in 15 patients undetectable or greatly reduced laminin- 2 expression. We also performed 4 prenatal diagnoses and investigated a founder effect. Results: We found 1 known and 9 previously undescribed LAMA2 mutations spanning all protein domains. These were nonsense or frameshifts causing laminin- 2 absence or, in 1 case, a homozygous missense mutation producing partial protein expression and milder phenotype. LAMA2 mutations were undetected in 5 patients, in 2 of whom FKRP mutations explained the phenotype. In 3 prenatal cases, the fetus was heterozygous for the mutation of interest and pregnancy continued; in 1 case, the fetus was affected and aborted. In 2 patients, the Cys967Stop mutation and identical haplotypes flanking the LAMA2 gene indicated a founder effect. Conclusions: The clinical phenotype was severe in most patients LAMA2 mutations and associated undetectable protein expression. One case no protein and another partial expression had milder phenotypes. Typical white matter alterations on magnetic resonance imaging were found in all patients LAMA2 mutations, ing the utility of magnetic resonance imaging in differential diagnosis. The founder mutation (Cys967Stop) probably originated in Albania. Genetic characterization of affected families is mainly of use for prenatal diagnosis. Arch Neurol. 2005;62:1582-1586 Author Affiliations: Divisions of Neuromuscular Diseases (Drs Di Blasi, Piga, Brioschi, Ruggieri, Zanotti, Mantegazza, Morandi, and Mora) and Child Neurology (Drs Moroni and Uziel), Istituto Nazionale Neurologico C. Besta, Milano, Italy; Division of Child Neurology, Ospedale Maggiore, Bologna, Italy (Dr Pini); Division of Child Neurology, Ospedale Martini, Torino, Italy (Dr Jarre); Division of Child Neurology, Arcispedale S. Maria Nuova, Reggio Emilia, Italy (Drs Della Giustina and Jonsrud); Istituto Oasi Maria SS, Troina, Enna, Italy (Dr Scuderi); Department of Medical Genetics, University Hospital of North Norway, Tromsø (Drs Giustina and Jonsrud). THE CONGENITAL MUSCULAR dystrophies (CMDs) are early-onset, recessively inherited, and clinically and genetically heterogeneous disorders. At least 11 genes and 1 locus have been associated the 12 clinically recognized CMD forms 1 that are variably characterized by muscle involvement, mental retardation, and brain structure alterations. Patients CMD may have normal or reduced expression of the laminin- 2 chain, a protein present in the heterotrimeric complexes laminin-2 and laminin-4 2 expressed in the basal lamina of skeletal muscle fibers. Laminin- 2, also expressed in Schwann cells, epidermis, and fetal trophoblastic tissue, 3 is encoded by the LAMA2 gene. 4 Defects in this gene are responsible for merosindeficient CMD, autosomal recessive (MDC1A), 5 the most frequent western form of CMD. 1 All patients primary laminin- 2 deficiency have abnormalities of the central white matter on magnetic resonance imaging (MRI) that, however, are usually asymptomatic. 1 While clinically severe phenotypes are always associated total lack of the protein, 1 milder, though heterogeneous, phenotypes are usually associated partial protein deficiency. 6,7 Secondary reduction of laminin- 2 occurs in several CMD forms associated reduced -dystroglycan glycosylation 1 and also in other variants atypical phenotypes not linked to the LAMA2 locus. 8,9 It is therefore important to determine the primary defect in the LAMA2 gene, particularly for prenatal diagnosis. In this study, we sought LAMA2 mutations in patients partial or complete laminin- 2 deficiency and related protein defect to clinical phenotype. We detected several previously undescribed mutations, performed prenatal diagnoses, and investigated the founder effect of a specific mutation. 1582

Table 1. Clinical Findings in 15 Patients With Congenital Muscular Dystrophy Patient/ Sex Highest Creatine Kinase Level, U/L Laminin- 2 Chain Expression Age Last Seen Maximum Motor Ability Brain MRI Results Epilepsy Neuropathy (Age at Examination) 1/F Absent 24 mo Sitting 1000 Not done No Not checked No 2/M Absent 22 mo Sitting 1000 Abnormal-classic No Not checked No Not checked No 3/F Absent 4.6 y* Walking 1000 Abnormal-classic No, pathological EEG results Sitting 1000 Abnormal-classic No Not checked No Mental Retardation 4/M Absent 9 y; died at 12 y 5/M Absent 30 mo Sitting 1000 Abnormal-classic No Absent (12 mo) Language delay 6/M Absent 18 mo; died Poor 1000 Normal at 4 mo; No Not checked Moderate at about head abnormal-classic 20 mo control at 18 mo 7/F Absent 7 y Walking 1000 Abnormal-classic No Not checked No 8/F Absent 9 y* Sitting 1000 Abnormal-classic No Absent (3 mo) No 9/M Absent 5 y* Sitting 1000 Abnormal-classic No Absent (8 mo) No and cortical dysplasia 10/M Reduced 10 y Walking 1000 Abnormal-classic Yes Absent (16 mo and 4 y); Moderate motor nerve demyelinization (8 y) 11/F Absent 24 mo Sitting 1000 Abnormal-classic No Absent (12 mo) No 12/M Absent 3 mo Sitting 1000 Abnormal-classic, No Not checked Moderate occipital agyria, and focal lissencephaly 13/M Reduced 6 y Walking 1000 Normal 1 seizure Absent (3 y) Moderate 14/M Absent 6 y Sitting 1000 Abnormal-classic No Mildly reduced No motor nerve conduction velocity (5 y) 15/F Reduced 9 y Standing 1000 Normal No Absent (18 mo) No Abbreviations: Abnormal-classic, white matter changes; EEG, electroencephalography; MRI, magnetic resonance imaging. *Age at time of publication. METHODS PATIENTS Fifteen patients clinical and pathological findings typical of CMD were included. All except patient 15 ( symptom onset at 9 months) had generalized hypotonia and severe weakness from birth. Multiple contractures were present at birth or became evident early in all patients except patients 10 and 13. In all muscle biopsy specimens, laminin- 2 expression was undetected or greatly reduced. Clinical features are summarized in Table 1. IMMUNOHISTOCHEMISTRY Muscle or skin biopsy specimens, obtained after parental informed consent, were frozen and stored in isopentane cooled in liquid nitrogen. Laminin- 2 was analyzed on 6-µm thick cryosections using 2 commercially available monoclonal antibodies. 6 MOLECULAR ANALYSIS Genomic DNA was extracted from blood and analyzed by the polymerase chain reaction (PCR) touchdown method using oligonucleotide primers flanking the intron-exon junctions of each of the 65 LAMA2 exons. Single-strand conformation polymorphism (SSCP) analysis was performed as described elsewhere 10 ; both strands of all aberrant conformers were sequenced using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, Calif) and an ABI Prism 3100 Genetic Analyzer (Applied Biosystems). Exon numbering according to the Leiden muscular dystrophy database 11 differs from that reported by Zhang et al, 12 whose exon 5 includes 2 exons (now exons 5 and 6). New primers were synthesized to amplify exons 5 and 6: 5F, GCTCGCTATATTCGCCTGAG; 5R, GTGGGATATCATTTGTAGGCTCT; 6F, CTCTGGATTGCTTTTTGCAG; 6R, CAGGGCTTCATTTTGCCTAA (5 to 3 direction). Each new missense mutation was verified in more than 100 normal, unrelated controls by SSCP. To determine the individual mutations in heterozygous cases, purified PCR 1583

A B C D E F G H I Figure. Serial muscle sections from a normal control (A, D, and G) and patients 5 (B, E, and H) and 10 (C, F, and I) showing immunolocalization of dystrophin (A-C) and laminin- 2 monoclonal antibodies 300 kda (D-F) and 80 kda (G-I) (original magnification 200). products were subcloned into a pmosblue vector (Amersham Pharmacia Biotech, Rainham, Essex, England) and the DNA sequenced using the T7 promoter and U19 primers. RNA ISOLATION AND COMPLEMENTARY DNA AMPLIFICATION To detect alternative transcripts in cases splice-site mutations, total RNA was prepared from muscle or myoblasts using RNAWIZ (Ambion, Austin, Tex) and reverse transcribed using the First-Strand cdna (complementary DNA) Synthesis kit (Amersham Pharmacia Biotech). The resulting complementary DNA was amplified by reverse transcriptase PCR and sequenced. GENOTYPING The region including the LAMA2 gene was analyzed for the microsatellite markers D6S407, D6S1620, and D6S1705 (Généthon genetic linkage maps). The genomic DNA PCR products were generated fluorescent primer sets, pooled, and separated electrophoretically along PCR products from a reference individual (CEPH 1347 02). Fractionation and data collection used an ABI Prism 377 (Applied Biosystems). The markers were typed GeneScan 3.1.2 software (Applied Biosystems). PRENATAL DIAGNOSIS DNA from chorionic villus or amniocytes of at-risk pregnancies was tested for placental contamination by analysis of polymorphic regions. In 1 fetus, we first analyzed the 3 microsatellite markers bordering the LAMA2 locus and 5 intragenic polymorphisms 10 ; subsequent confirmation was by direct mutation detection, following our identification of the LAMA2 mutation in the family. In the 3 other fetuses, the previously identified mutation was investigated directly. RESULTS By immunohistochemistry, laminin- 2 expression was undetectable or greatly reduced in all 15 patients (Figure) (Table 1). The 2 antibodies provided closely similar results. LAMA2 mutations were found in 10 patients from 9 families (Table 2). The mutations in patients 1, 2, and 3, from different consanguineous families, were homozygous nonsense mutations in exons 2, 12, and 21, respectively. Those in patients 1 and 2 were novel; affected domains VI and IVb of the protein, respectively; and resulted in undetectable protein expression. The mutation in patients 3 and 4 (Cys967Stop) has been described previously in 2 Italian families originating from the southern Adriatic coast. 10 Analyzed members of the families of patients 3 and 4 had the same Cys967Stop-associated haplotype. 10 Investigation of the microsatellite markers flanking the LAMA2 gene in these 2 families indicated that both had an identical mutation-associated haplotype between the more widely spaced markers D6S407 and D6S1620, suggesting remote consanguinity and a founder effect. Cys967Stop truncates laminin- 2 in domain IIIb and the protein expression is undetectable. 1584

Table 2. Molecular Data in Patients With LAMA2 Mutation* Patient Exon Genomic Variation Effect on Coding Sequence Protein Domain Origin 1 2 283C T Gln95X VI Tunisia 2 12 1669C T Gln557X IVb Norway 3 21 2901C A Cys967X IIIb Italy 4 6, 21 825delC, 2901C A Tyr275fsX62, Cys967X V, IIIb Albania 5 34 4861delC His1621fsX20 I and II Senegal 6 57 8007delT Phe2669fsX59 G Tunisia 7 30 4375delG, not found Val1459fsX15 IIIa Italy 8, 9 25, 32 3630delT, 4695_4698dupTGCA Ile1210fsX14, His1564fsX12 IVa, IIIa Italy 10 4 500A C Gln167Pro VI Italy *The first base of the Met-codon is counted as position 1. The second mutation in patient 4 was a deletion in exon 6 (825delC) affecting domain V, causing a frameshift and subsequent stop codon. We detected novel homozygous deletions in exons 34 (4861delC) and 57 (8007delT) in patients 5 and 6, respectively (Table 2). Both resulted in a frameshift, subsequent stop codon, and undetectable protein expression (Figure). A novel heterozygous deletion in exon 30 (4375delG) was found in patient 7; the mutation on the second allele was not found. The protein expression was undetectable; however, at 7 years of age, she retained the ability to walk unaided. Two novel mutations were found in patients 8 and 9 (siblings) from a nonconsanguineous family: a deletion in exon 25 (3630delT) and a duplication in exon 32 (4695-4698dupTGCA), resulting in undetectable protein expression. A homozygous substitution (500A C) in exon 4 was found in patient 10 from a consanguineous family, resulting in the substitution Gln167Pro. The SSCP indicated this change was absent in more than 100 normal, unrelated subjects. Sequence homology analysis has shown the glutamine to be highly conserved in the human, mouse, rat, and Drosophila and Caenorhabditis proteins. The substitution is therefore a novel missense mutation, consistent the partial laminin- 2 deficiency found in patient 10 (Figure) and the milder clinical manifestations. A new silent LAMA2 polymorphism, C156T (Ile52Ile), was found in exon 2 in 19% of subjects (patients and controls) investigated. Three families (of patients 3, 5, and 6) had prenatal diagnosis. In 3 cases, the fetus was heterozygous for the mutation of interest and the pregnancy continued; the parents report the children are healthy. The fourth fetus (second in patient 5 s family) was affected. The mutations in exon 2 (patient 1, C-T transition changing glutamine to stop) and in exon 34 (patient 5, 1 base pair deletion resulting in a frameshift and premature stop) occurred at splicing consensus sequences. Transcription analysis did not reveal alternative splicing due to these mutations. In patients 11 through 15, all absent or greatly reduced laminin- 2 expression, a LAMA2 mutation was not found; in patients 13 and 15, missense mutations were found in the FKRP gene. COMMENT We have identified 1 known and 9 new LAMA2 mutations, all resulting in primary laminin- 2 deficiency and responsible for the MCD1A form of CMD. The Leiden muscular dystrophy database shows that mutations occur in most of the 65 exons and affect all protein domains. We identified nonsense, missense, and frameshift mutations affecting all domains. Since the second mutation in patient 4 was present in one of the 2 exons previously included in exon 5, 12 we recommend analyzing both these exons separately or reanalyzing them in patients in whom a mutation has not been found. Most children LAMA2 mutation only manage uned sitting but may achieve standing or, more rarely, walking ; however, these abilities are lost as scoliosis progresses. 1 The phenotype was similarly severe in most of our patients LAMA2 mutation. However, patient 7 was less affected; she achieved independent walking and was still walking at 7 years of age. She is similar to another case a homozygous out-of-frame deletion and almost undetectable protein expression. 13 Patient 10, partial protein expression, also has a somewhat milder phenotype, as reported by others. 6,7 He achieved independent walking and was still walking at 12 years of age. He has a homozygous missense mutation changing the conserved glutamine-167 (domain VI) to proline. The whole N-terminal domain VI is in fact highly conserved in numerous human and nonhuman laminin isoforms and participates in calcium ion dependent intermolecular interactions and integrin binding. 14 In the spontaneous mutant dy 2J /dy 2J mouse, the LAMA2 mutation results in deletion of a section of domain VI concerned laminin trimer polymerization but nearly normal expression of laminin- 2; the phenotype is severe 15 but less so than in other laminin- 2-deficient models. Our data confirm the importance of MRI in patients laminin- 2 deficiency. The classic white matter abnormalities associated the clinical picture and laminin- 2 deficiency should direct attention to the LAMA2 gene. By contrast, normal brain MRI findings should direct attention to the clinically similar MDC1C, due to mutations in the FKRP gene, secondary laminin- 2 deficiency. 1 However, patients MDC1C mental 1585

retardation and cerebellar cysts or atrophy, or out white matter alterations, have been described recently. 16 Furthermore, structural changes (including occipital polymicrogyria/agyria and hypoplastic pons or cerebellum) may be present in some patients complete or mutation-proven partial laminin- 2 deficiency. 1 Motor and sensory nerve conduction velocities were mostly normal in our patients (Table 1). This contrasts altered motor nerve conduction reported elsewhere 1 and is probably due to the young age at examination. Among patients 11 through 15, no detected LAMA2 mutation (Table 2), FKRP mutations were found in patients 13 and 15, both normal MRI findings and reduced -dystroglycan glycosylation. In patient 12, MRI findings were complex, features similar to MDC1A (white matter abnormality, occipital agyria) and also lissencephaly, as often observed in other forms of CMD; -dystroglycan was absent suggesting a glycosylation defect. Patients 11 and 14 had undetectable laminin- 2 expression and white matter changes suggesting MDC1A. In patient 11, -dystroglycan glycosylation was normal; in patient 14, muscle was no longer available. We suspect patients 11 and 14 had primary LAMA2 defects not picked up by SSCP. Complete laminin- 2 deficiency is usually associated primary LAMA2 mutations; however, cases undetectable protein expression but no mutations have been reported previously. 1 Our results a founder effect for the Cys967Stop mutation in the families of patients 3 and 4, as previously proposed for other families. 10 Our families originated from the southern Adriatic, but patient 4 s family is from the Albanian side. Since there are several enclaves of Albanian migrants in southern Italy but migration in the other direction practically nonexistent, the mutation probably originated in Albania. MDC1A can be diagnosed prenatally by linkage analysis, 10,17 protein testing of fetal tissue, 18 or direct mutation analysis. 17 Laminin- 2 is expressed in normal trophoblasts from 9 weeks, 18 allowing immunohistochemical detection in chorionic villus. However, in cases of partial laminin- 2 deficiency or small sample size, protein detection is not reliable; furthermore, placental contamination may occur. Linkage analysis can also be problematic because it is based on the proximity and informativeness of genetic markers. Both methods together are usually necessary (provided the family is genetically informative) for reliable prenatal diagnosis. However, direct mutation detection is more reliable and is at present the only practical application of molecular diagnosis in the absence of effective treatment. Accepted for Publication: May 4, 2005. Correspondence: Marina Mora, PhD, Division of Neuromuscular Diseases, Istituto Nazionale Neurologico C Besta, Bicocca Laboratories, Via Temolo 4, 20126 Milano, Italy (mmora@istituto-besta.it). Author Contributions: Study concept and design: Di Blasi, Morandi, and Mora. Acquisition of data: Di Blasi, Piga, Brioschi, Moroni, Pini, Ruggieri, Zanotti, Uziel, Jarre, Della Giustina, Scuderi, Jonsrud, Mantegazza, Morandi, and Mora. Analysis and interpretation of data: Di Blasi, Piga, Moroni, Pini, Ruggieri, Jarre, Morandi, and Mora. Drafting of the manuscript: Di Blasi, Moroni, Pini, Morandi, and Mora. Critical revision of the manuscript for important intellectual content: Di Blasi, Moroni, Pini, Morandi, and Mora. Obtained funding: Mantegazza and Mora. Study supervision: Di Blasi, Morandi, and Mora. Funding/Support: The Italian Ministry of Health and Italian Telethon, Rome, and the European Community, Brussels, Belgium, provided financial. Acknowledgment: We thank Don Ward, BSc, for help English. REFERENCES 1. Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord. 2004;14:635-649. 2. Burgeson RE, Chiquet M, Deutzmann R, et al. A new nomenclature for the laminins. Matrix Biol. 1994;14:209-211. 3. Leivo I, Engvall E. Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development. Proc Natl Acad Sci U S A. 1988;85:1544-1548. 4. Vuolteenaho R, Nissinen M, Sainio K, et al. Human laminin M chain (merosin): complete primary structure, chromosomal assignment, and expression of the M and A chain in human fetal tissues. J Cell Biol. 1994;124:381-394. 5. Helbling-Leclerc A, Zhang X, Topaloglu H, et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995;11:216-218. 6. Di Blasi C, Mora M, Pareyson D, et al. Partial laminin alpha2 chain deficiency in a patient myopathy resembling inclusion body myositis. Ann Neurol. 2000; 47:811-816. 7. Tezak Z, Prandini P, Boscaro M, et al. Clinical and molecular study in congenital muscular dystrophy partial laminin alpha 2 (LAMA2) deficiency. Hum Mutat. 2003;21:103-111. 8. Brockington M, Sewry CA, Herrmann R, et al. Assignment of a form of congenital muscular dystrophy secondary merosin deficiency to chromosome 1q42. Am J Hum Genet. 2000;66:428-435. 9. Talim B, Ferreiro A, Cormand B, et al. Merosin-deficient congenital muscular dystrophy mental retardation and cerebellar cysts unlinked to the LAMA2, FCMD and MEB loci. Neuromuscul Disord. 2000;10:548-552. 10. Guicheney P, Vignier N, Zhang X, et al. PCR based mutation screening of the lamininalpha2chaingene(lama2):applicationtoprenataldiagnosisandsearchforfounder effects in congenital muscular dystrophy. J Med Genet. 1998;35:211-217. 11. Leiden muscular dystrophy pages: allelic variations in laminin-alpha 2 (merosin) (MDC-1A). Available at: http://www.dmd.nl/lama2_seqvar.html. Accessed April 20, 2005. 12. Zhang X, Vuolteenaho R, Tryggvason K. Structure of the human laminin alpha2- chain gene (LAMA2), which is affected in congenital muscular dystrophy. J Biol Chem. 1996;271:27664-27669. 13. Prandini P, Berardinelli A, Fanin M, et al. LAMA2 loss-of-function mutation in a girl a mild congenital muscular dystrophy. Neurology. 2004;63:1118-1121. 14. Engvall E, Wewer UM. Domains of laminin. J Cell Biochem. 1996;61:493-501. 15. Xu H, Wu XR, Wewer UM, Engvall E. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (LAMA2) gene. Nat Genet. 1994;8:297-302. 16. Topaloglu H, Brockington M, Yuva Y, et al. FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts. Neurology. 2003; 60:988-992. 17. Guicheney P, Vignier N, Helbling-Leclerc A, et al. Genetics of laminin alpha 2 chain (or merosin) deficient congenital muscular dystrophy: from identification of mutations to prenatal diagnosis. Neuromuscul Disord. 1997;7:180-186. 18. Muntoni F, Sewry C, Wilson L, et al. Prenatal diagnosis in congenital muscular dystrophy. Lancet. 1995;345:591. 1586