M1 - Immunology, Winter 2008

Similar documents
Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Complement: History. Discovered in 1894 by Bordet. It represents lytic activity of fresh serum

History. Chapter 13. Complement Components. Complement Pathways

History. Chapter 13. Complement Components. Complement Pathways

THE COMPLEMENT SYSTEM OBJECTIVES:

Complement. History. Chapter 7. Complement Components. Complement Pathways. Pathways of complement activation

CD B T NK NKT!! 1

Inflammation. (4 of 5)

Target cell lysis Opsonization Activation of the inflammatory response (e.g. degranulation, extravasation) Clearance of immune complexes

Introduction. A system of soluble enzymes and proteins. Complement components: C1 to C9, B, D and P

The term complement refers to the ability of a system of some nonspecific proteins in normal human serum to complement, i.e., augment the effects of

Suvasini Modi Complement System Activation of Membrane attacking complex (MAC) and its effect and regulation

Complement. Definition : series of heat-labile serum proteins. : serum and all tissue fluids except urine and CSF

THE COMPLEMENT SYSTEM OBJECTIVES:

االستاذ المساعد الدكتور خالد ياسين الزاملي \مناعة \المرحلة الثانية \ التحليالت المرضية \ المعهد التقني كوت

Cellular & Molecular Immunology 2009

Basic Immunology. Lecture 16th. Complement system

Topic (6): The Complement System

M1 - Renal, Fall 2007

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

N Utilization of Nursing Research in Advanced Practice, Summer 2008

Complement pathways: Classical pathway Alternative pathway Lectin pathway

INFLAMMATION & REPAIR

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

The Biology of Fc γ Receptors and Complement

The Biology of Fc γ Receptors and Complement. Biology of Fc γ Receptors. Discovery consists of seeing what everybody

Complement deficiencies, diagnosis and management. Contents

Lecture 07. Complement

Biology of Fc γ Receptors. Selected Functions of Ig Isotypes

Innate vs Adaptive Response

For more information about how to cite these materials visit

Natural Defense Mechanisms

Catalog Number: A114 Sizes Available: 250 µg/vial Concentration: 1.0 mg/ml (see Certificate of Analysis for actual concentration)

Complement Elizabeth Repasky, PhD Fall, 2015

Complement disorders and hereditary angioedema

Pathogenetic mechanisms in atypical HUS

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

For more information about how to cite these materials visit

Cutaneous Immunology: Innate Immune Responses. Skin Biology Lecture Series

Complement System. Jil Schrader 16 th of May 2018 Immunology Lecture

Lecture 17: Attack by Complement and Counterattack by Microbes

10. Which of the following immune cell is unable to phagocytose (a) neutrophils (b) eosinophils (c) macrophages (d) T-cells (e) monocytes

The Immune Response 2/21/2006 1

For more information about how to cite these materials visit

Disease causing organisms Resistance Immunity

Understanding the Complement Cascade and Its Role in Cold Agglutinin Disease. 1 M-CAgD-US-3006 February 2018

INFLAMMATION. 5. Which are the main phases of inflammation in their "sequence": 1. Initiation, promotion, progression.

New Phase III Clinical Trial Enrolling Now

Macrophage Activation & Cytokine Release. Dendritic Cells & Antigen Presentation. Neutrophils & Innate Defense

16 Innate Immunity: M I C R O B I O L O G Y. Nonspecific Defenses of the Host. a n i n t r o d u c t i o n

For more information about how to cite these materials visit

Hashem Al-Dujaily Abdul Aziz ALShamali Abdul Aziz ALShamali Mousa Al-Abbadi

Immunology Part II. Innate Immunity. 18. April 2018, Ruhr-Universität Bochum Marcus Peters,

Innate Immunity: Nonspecific Defenses of the Host

Introduction to the immune system Innate humoral immunity

For more information about how to cite these materials visit

How the Innate Immune System Profiles Pathogens

Lymphatic System. Where s your immunity idol?

Anaphylactic response in rabbit Part II

Anaphylaxis: The Atypical Varieties

Immunity. Chapter 38 Part 1

IMMUNITY AND ANTIBODIES

1) Mononuclear phagocytes : 2) Regarding acute inflammation : 3) The epithelioid cells of follicular granulomas are :

Name: C3 Protein Concentrated Catalog Number: A113c Sizes Available: Concentration: Form: Activity: Purity: Buffer: Extinction Coeff.

For more information about how to cite these materials visit

For more information about how to cite these materials visit

Cell-Derived Inflammatory Mediators

For more information about how to cite these materials visit

Module 10 Innate Immunity

For more information about how to cite these materials visit

Paroxysmal Nocturnal Hemoglobinuria

Resisting infection. Cellular Defenses: Leukocytes. Chapter 16: Innate host defenses Phagocytosis Lymph Inflammation Complement

For more information about how to cite these materials visit

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A

Independent Study Guide The Innate Immune Response (Chapter 15)

Hths 2231 Laboratory 7 Infection

Immunology. Lecture- 8

1. Overview of Innate Immunity

Anastasios E. Germenis

For more information about how to cite these materials visit

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

بسم هللا الرحمن الرحيم. Immunology lecture 7

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6

DENT Advanced Topics in Removable Prosthodontics, Winter 2008

What is PNH? PNH: What it is Not 9/11/2015. What is Paroxysmal Nocturnal Hemoglobinuria?

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES

For more information about how to cite these materials visit

ANATOMY OF THE IMMUNE SYSTEM

The Complement System

1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50%

For more information about how to cite these materials visit

Overview of the Lymphoid System

Nonspecific Host Resistance. Counter attack (Specific Host Resistance) A. Nonspecific (Innate) Resistance (Page 362)

Immunodermatology. Danielle Tartar, MD, PhD Assistant Clinical Professor Interim Director of Inpatient Dermatology University of California - Davis

INNATE IMMUNITY Non-Specific Immune Response. Physiology Unit 3

Innate Immunity: Nonspecific Defenses of the Host

Transcription:

University of Michigan Deep Blue deepblue.lib.umich.edu 2008-09 M1 - Immunology, Winter 2008 Fantone, J.; Pietropaolo, M. T. Fantone, J., Pietropaolo, M. T. (2008, August 13). Immunology. Retrieved from Open.Michigan - Educational Resources Web site: https://open.umich.edu/education/med/m1immuno-winter2008. <http://hdl.handle.net/2027.42/64939> http://hdl.handle.net/2027.42/64939

Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution - Non-Commercial - Share Alike 3.0 License. Copyright 2008, Joseph Fantone. The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. Viewer discretion advised: Material may contain medical images that may be disturbing to some viewers.

THE COMPLEMENT SYSTEM IN HUMAN DISEASE Source: www.wikimedia.org J. Fantone, M.D. 2/12/08

THE COMPLEMENT SYSTEM IN HUMAN DISEASE I. LEARNING OUTCOMES: To Understand the role of complement in inflammation and the effects of specific complement deficiencies on patients. mechanisms by which the complement system is activated and regulated. effector molecules of complement activation and their biologic function. role of complement in bacterial clearance and lysis. use of plasma CH50 levels in the assessment of disease processes.

COMPLEMENT SYSTEM The learning outcomes for this topic will be attained by viewing a self-directed learning module supplemented by the syllabus. http://www.umich.edu/~projbnb/imm/complement.swf It is expected that the student will view the video prior to the lecture presentation on phagocytic cells (2/12: 9-10:00am). Any questions will be addressed by Dr. Fantone prior to and after the Phagocytic Cell lecture

II. Why study the complement system? Innate & Adaptive Immunity Infection Inflammation Cell lysis Immune complex disease Autoimmune disease

III. Definition: Complement consists of more than 20 proteins present in plasma and on cell surfaces that interact with each other to produce biologically active inflammatory mediators that promote cell and tissue injury Nomenclature: a. the first component of complement is named C1 (etc.) other components are designated by capital letters and names: Factor B, Properidin b. when cleaved: fragments of complement components are designated by small letters (e.g. C3a and C3b)

C3 C3a C3b Factor B Ba + Bb Factor H Factor I

IV. Summary of Complement Pathways 3 pathways for activation: 1. classical: most specific (antibody dependent activation, binds C1) 2. lectin binding: some specificity (mannose binding protein, binds C4) 3. alternative: most primitive (non-specific, auto-activation of C3)

Complement System Activation Regulation Amplification Biologic Function

Classical Complement Pathway antibody C1qrs C4b C4 C2 C3 C5 C4a Bacteria

Classical Complement Pathway antibody C1qrs C4b Bacteria C2b C4 C2 C3 C5 C4a C2a

Classical Complement Pathway antibody C1qrs C4b Bacteria C2b C3b C4 C2 C3 C5 C4a C2a C3a

Classical Complement Pathway antibody C1qrs C4b Bacteria C4 C2b C3b C5b C2 C3 C5 C4a C2a C3a C5a Animation complete

Classical Complement Pathway antibody C1qrs Bacteria C4b C2b C3b C5b C6 C7 C8 C6 C7 C8 Animation complete

V. Amplification: C3 convertase: binds and cleaves multiple C3 molecules on surface to form C3b +C3a - classical: C4b2b - alternative: C3bBb

Lectin Binding Complement Pathway MBP C4b C4 C2 C3 C5 C4a Bacteria

Lectin Binding Complement Pathway MBP C4b Bacteria C2b C4 C2 C3 C5 C4a C2a

Lectin Binding Complement Pathway MBP C4b Bacteria C2b C3b C4 C2 C3 C5 C4a C2a C3a

Lectin Binding Complement Pathway MBP C4b Bacteria C4 C2b C3b C5b C2 C3 C5 C4a C2a C3a C5a Animation complete

Lectin Binding Complement Pathway MBP Bacteria C4b C2b C3b C5b C6 C7 C8 C6 C7 C8 Animation complete

Alternative Complement Pathway C3 C3b Bacteria B C5 C3a

Alternative Complement Pathway C3 C3b Bacteria B Bb C5 C3a

Alternative Complement Pathway C3 C3b Bacteria B Bb C5b C5 C3a C5a Animation complete

Alternative Complement Pathway C3b Bacteria C6 Bb C5b C6 C7 C8 C7 C8 Animation complete

VI. Biologic Function: anaphylatoxins: C3a and C5a: mast cell degranulation smooth muscle contraction mast cell degranulation mediator release (histamine, leukotrienes) vascular changes: dilation, increased permeability (edema) C5a also leukocyte adhesion and chemotaxis (recruitment) opsonization: C3b, C3bi, C3d: (binding to complement receptors and enhanced phagocytosis by neutrophils and macrophages) clearance of circulating immune complexes membrane attack complex: C5b- (cell lysis)

MAC PORES Source: undetermined Source: undetermined Source: www.wikimedia.org

SUMMARY OF COMPLEMENT ACTIVATION Classical Pathway Lectin-Binding Pathway Alternative Pathway C1q MBP C3 [C4b2b] [C3bBbP] C3 Convertase C3a anaphylatoxins C3b C3b, C3bi (opsonlzation) C5a C5b C5b-C 9 (membrane attack complex) Cell Injury

VII. Regulation: Inhibit activation: classical pathway C1 inhibitor (C1INA): plasma protein spontaneous decay (hydrolysis) of C3 convertases: inhibit C3 convertase: Plasma proteins: Factor I Cell membrane proteins: - decay accelerating factor (DAF): - membrane co-factor protein (MCP):

VII. Regulation Inactivate anaphylatoxins: cleave C3a and C5a serum carboxypeptidase N (SCPN): Inhibit MAC: Protectin (CD59): cell associated protein

SUMMARY OF COMPLEMENT ACTIVATION Classical Pathway Lectin-Binding Pathway Alternative Pathway C1q MBP C3 C1INA [C4b2b] [C3bBbP] C3 Convertase Hydrolysis DAF-cell C3a C3b Factor I MCP-cell SCPN C5a C5b C5b-C 9 (membrane attack complex) Protectin-cell Cell Injury

VIII. Complement Deficiencies: early components: auto-immune disease middle and late components: pyogenic bacterial and nisseria infections most common congenital deficiency: C2 C1INA deficiency: hereditary angioedema DAF deficiency: paroxysmal nocturnal hemoglobinuria

IX. Clinical Laboratory Testing A. Serum complement hemolytic activity: CH50 (serum dilution at which 50% hemolysis occurs) if low = complement deficiency: - acquired vs. congenital - classical vs. alternative pathway defect B. Individual Components

RBC + AB + SERUM HEMOLYSIS 100 % HEMOLYSIS N P 50 1/500 1/250 1/50 1/10 SERUM DILUTION

Case A: A 23yo man complains of fever (102 o F), headache, neck stiffness and fatigue of 2 days duration. Lumbar puncture shows increased pressure with cloudy cerebrospinal fluid containing large numbers of neutrophils, increased protein, decreased glucose and gram negative diplococci. Laboratory studies show C5 (5th component of complement) levels at 18% normal and normal levels of C2, C3 and C7. The patient recovers after institution of intravenous antibiotic therapy.

Case A: Why would this patient be at increased risk for developing bacterial meningitis? What is the relationship among the three pathways of complement activation and bacterial clearance? Would a defect in C2 alone place a patient at increased risk of developing bacterial meningitis? Explain.

Case B: A 14yo girl has a long history of excessive swelling after mild traumatic injury. During the past 2 years she has complained of 7 episodes of intermittent abdominal pain sometimes accompanied with watery diarrhea. Laboratory tests show decreased levels of C4 and normal C3 levels. C1 inhibitor levels are 20% of normal.

What pathologic changes would explain this patients symptoms? What is the effect of defective C1 esterase levels on complement system regulation? What other inflammatory mediator systems are effected by C1esterase inhibitor? Why are these patients not at significant risk for bacterial infection?

Complement Cases Case A: Diagnosis: acute bacterial meningitis secondary to deficiency of C5 All three pathways can be activated and the bacteria can be opsonized with C3b and its derivatives: however, the deficiency in C5 results in an inability to generate the chemotactic peptide C5a and assemble the membrane attack complex (MAC) and cause target cell injury Defects in the early complement components are more frequently associated with the development of autoimmune syndromes (e.g. systemic lupus erythematosus, SLE) In C2 deficiency, the alternative complement pathway remains functional, target cells can still be opsonized with C3b and the MAC formed.

CaseB: The patient s symptoms are the result of increased vascular permeability changes leading to soft tissue swelling and diarrhea. In the absence if C1 inhibitor there is spontaneous activation of the classical complement pathway with cleavage of C4 and C2. Since there is no target cell surface for complement binding, C3 cleavage does not occur to any significant degree and if some C3b is formed, it undergoes spontaneous hydrolysis The C2a and its subsequent products can cause vascular permeability changes. Also, C1 inhibitor interacts with the kallikrien-kinin mediator system. A deficiency in this inhibitor also results in increased kinin formation (e.g. bradykinin), which also promotes vascular permeability changes. These patients (even if C2 and C4 are depleted) have an intact alternative complement pathway.

Additional References: Phagocytic Cells: Kumar, Abas, and Fausto: Pathologic Basis of Disease (7th ed.) pages 64-66.