An anthropometric study of distal tibiofibular syndesmosis (DTS) in a Chinese population

Similar documents
Reliability of the Clinical Tibiofibular Line Technique for Open Syndesmosis Reduction Assessment

1/27/2016. Background. Background. Seth R. Yarboro University of Virginia January 29, Distal tibio fibular joint

Clinical evaluation where no obvious fracture a. Squeeze test

The fibular incisura of the tibia with recurrent sprained ankle on magnetic resonance imaging

OTA Speciality Day New Orleans Subtle Syndesmotic Injuries: How I diagnose them and How to Fix. Kenneth A Egol MD

FIBULAR & SYNDESMOSIS MALUNIONS

The Syndesmosis. Syndesmosis: How to Reduce and How Perfect? Boston Medical Center. Indications. Technique 11/19/2018.

Fibular Malalignment in Subjects with Chronic Ankle Instability

Burwood Road, Concord Dora Street, Hurstville Lethbridge Street, Penrith 160 Belmore Road, Randwick

Competence of the Deltoid Ligament in Bimalleolar Ankle Fractures After Medial Malleolar Fixation *

PRONATION-ABDUCTION FRACTURES

X-Ray Rounds: (Plain) Radiographic Evaluation of the Ankle.

TECHNIQUE OF SYNDESMOTIC SCREW INSERTION IN WEBER TYPE C ANKLE FRACTURES

ROTATIONAL PILON FRACTURES

Deltoid and Syndesmosis Ligament Injury of the Ankle Without Fracture

Disclosures! The Syndesmosis. Syndesmosis: How and When to Reduce. Boston Medical Center. Indications. Technique.

Disclosures. Syndesmosis Injury. Syndesmosis Ligaments. Objectives. Mark M. Casillas, M.D.

Tibiofibular syndesmosis is an anatomical term that

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

Treatment of malunited fractures of the ankle

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

Syndesmotic Ankle Injuries: Diagnosis and Treatment

A reliable radiographic measurement for evaluation of normal distal tibiofibular syndesmosis: a multi-detector computed tomography study in adults

The syndesmosis is a complex of

CURRENT TREATMENT OPTIONS

Syndesmosis injuries in the pediatric and adolescent athlete: an analysis of risk factors related to operative intervention

Intramedullary Rodding of Distal Tibial Shaft Fractures with Intra Articular Extension

Open Reduction Internal Fixation of Posterior Malleolus Fractures and Iatrogenic Injuries: A Cadaveric Study

Surgical treatment of ankle fracture with or without deltoid ligament repair: a comparative study

High Ankle Sprains: Diagnosis & Treatment

Journal reading. Introduction. Introduction. Ottawa Ankle Rules. Method

UvA-DARE (Digital Academic Repository) Treatment of osteochondral defects of the talus van Bergen, C.J.A. Link to publication

SURGICAL AND APPLIED ANATOMY

Disclosures. OTA Resident Advanced Trauma Techniques Course: Ankle Fractures. No relevant disclosures. William H. Harvin, MD Dallas, TX

Pure Closed Posteromedial Dislocation of the Tibiotalar Joint without Fracture

Ankle Fracture: Tips and Tricks

Original Report. The Reverse Segond Fracture: Association with a Tear of the Posterior Cruciate Ligament and Medial Meniscus

BIOMECHANICS OF ANKLE FRACTURES

Ankle Fractures in the Elderly: How to Deal with Poor Bone Quality

Fractures of the Ankle Region in the Skeletally Immature Patient. The Salter Classification is Worthless!!

Posterolateral elbow dislocation with entrapment of the medial epicondyle in children: a case report Juan Rodríguez Martín* and Juan Pretell Mazzini

Surgical Technique. Foot and Ankle Technique Guide Ankle Syndesmosis Repair, Operative Technique

.org. Ankle Fractures (Broken Ankle) Anatomy

Inion FreedomScrew Syndesmosis Repair. Biodegradable Fixation System

JMSCR Vol 05 Issue 11 Page November 2017

The pilon tibiale fracture

Dynamic CT Assessment of Distal Radioulnar Instability

Objective. Reducing a displaced Syndesmosis 2/11/2016. Ankle Fractures Common Misconceptions. Common Myths in ankle fracture management

Isolated Syndesmotic Instability The High Ankle Sprain Robert B. Anderson, MD

Sequalae of Ankle Sprains: Peri Articular Fractures of the Ankle in Sports Medicine.

UvA-DARE (Digital Academic Repository) Treatment of osteochondral defects of the talus van Bergen, C.J.A. Link to publication

Correction of Traumatic Ankle Valgus and Procurvatum using the Taylor Spatial Frame: A Case Report

Donald Stewart, MD. Lateral ligament injuries Chronic lateral ligament instability Syndesmosis Injuries

Surgery-Ortho. Fractures of the tibia and fibula. Management. Treatment of low energy fractures. Fifth stage. Lec-6 د.

Revision Ankle Syndesmosis Fixation: Functional

Surgical Technique. Fibula Rod System

Ankle Ligament Injury: Don t Worry- It s Only a Sprain Wes Jackson MD Orthopaedic Foot & Ankle

Case Report The Utility and Limitations of the Transfibular Approach in Ankle Trauma Surgery

Ankle Sprains and Their Imitators

PROPHECY. Preoperative Navigation Guides ANKLE CT SCAN PROTOCOL

Ankle and Foot Orthopaedic Tests Orthopedics and Neurology DX 612

Radiographic assessment. Functional. Paul Tornetta III Professor 11/21/2016. Fracture not in coronal plane May need CT to evaluate

Radiographic Evaluation of Calcaneal Fractures. Kali Luker, PGY-1

Open versus minimally invasive fixation of a simulated syndesmotic injury in a cadaver model

radiologymasterclass.co.uk

Stability of Ankle Fracture dislocations following Successful Closed Reduction

The radiologist and the raiders of the lost image

Treatment Outcomes of Triplane and Tillaux Fractures of the Ankle in Adolescence

Influence of bone morphology and injured ligament of the ankle on ankle stress radiographs

Intramedullary fibular fixation in the operative management of fractures of the distal tibia and fibula

Ankle Valgus in Cerebral Palsy

Fibula Rod System. Lateral Malleolus Fracture Indications:

Standardization of the functional syndesmosis widening by dynamic U.S examination

Key Words: ankle injury, ligaments, lower-leg injury, sprains, tibiofibular diastasis

EVOS MINI with IM Nailing

Musculoskeletal Imaging What to order? Brian Cole, MD

No disclosures relevant to this topic Acknowledgement: some clinical pictures were obtained from the OTA fracture lecture series and AO fracture

LCP Anterior Ankle Arthrodesis Plates. Part of the Synthes Locking Compression Plate (LCP) System.

Entry points of nutrient arteries at risk during osteotomy of the lesser metatarsals: a fresh cadaveric study

Total Ankle Arthroplasty. Joseph P. McCormick, M.D. Affinity Orthopedics & Sports Medicine the original 2014

Patrick B Ebeling, MD Minnesota Sports Medicine & Twin Cities Orthopedics Adjunct Associate Professor, University of Minnesota, Minneapolis

RADIOGRAPHY OF THE ANKLE and LOWER LEG

Ankle fracture classification : an evaluation of three classification systems : Lauge-Hansen, A.O. and Broos-Bisschop

Arthroscopy Of the Ankle.

Ankle Syndesmotic Fixation Implants and Techniques. Ryan Harris, DO Orthopedic Resident, PGY-4 Pinnacle Health Hospital Harrisburg, PA

Three-Dimensional Analysis of Fibular Motion After Fixation of Syndesmotic Injuries With a Screw or Suture-Button Construct

Extraarticular Lateral Ankle Impingement

Posttraumatic subchondral bone contusions and fractures of the talotibial joint: Occurrence of kissing lesions

Commonly Missed Foot and Ankle Conditions. David Miller, DPM AMG Podiatry

CASE REPORT RARE CASE OF DELTOID LIGAMENT AVULSION WITH MEDIAL MALLEOLUS FRACTURE OF ANKLE JOINT: CASE REPORT

Duration of Follow-up (mo)

Sports Injuries of the Foot and Ankle. Mark McEleney, MD University of Iowa College of Medicine Refresher Course for the Family Physician 4/4/2018

Stability of Ankle Fracture-Dislocations following Successful Closed Reduction

RADIAL HEAD FRACTURES. It is far more common in adults than in children, (who more commonly fracture their neck of radius).

The value of weight-bearing functional CT scans

Increasing surgical freedom Restoring patient function

Weight bearing cone beam CT scan versus gravity stress radiography for analysis of supination external rotation injuries of the ankle

Combined Tibial and Fibular Measurement for the Classification of Supramalleolar Deformity D O U G B E A M A N, M D P A X T O N G E H L I N G, B M

pathologic feature of early ankle arthritis.

INVISION Total Ankle Replacement System with PROPHECY Preoperative Navigation Revision of a Failed Agility Total Ankle Replacement

Transcription:

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 https://doi.org/10.1186/s13018-018-0804-3 RESEARCH ARTICLE Open Access An anthropometric study of distal tibiofibular syndesmosis (DTS) in a Chinese population Mingyang Yu 1, Yao Zhang 2, Yun Su 1, Feng Wang 1 and Dewei Zhao 2* Abstract Background: To improve the diagnostic accuracy of distal tibiofibular syndesmoses (DTS), this study quantified the range in variations of the normal DTS in a Chinese population, based on CT scan images. Methods: The study population comprised 92 patients with unilateral ankle injury. CT scans included the non-injured contralateral DTS. The position of the fibula relative to the fibular notch (incisure) of the tibia was quantified by inclusion or separation indices, based on whether the fibula was within or outside the fibular incisure, respectively. The patients were apportioned accordingly to either a DTS contained- or separate-type group (average ages 45 and 42.1 years, respectively; 19 men/26 women and 24 men/23 women). Further variations in the position of the fibula relative to the tibia were quantified with length, anterior, and posterior indices. Results: Thebaselinecharacteristicsofthecontained-andseparate-typegroupswerestatisticallycomparable. The length, anterior, extra-anterior, posterior, and extra-posterior indices were successfully calculated. The anterior index of the contained group was significantly greater than that of the separated group, while the posterior index was significantly less. Conclusions: This study provides measurements of the normal tibiofibular syndesmosis in a Chinese population. In individuals whose fibula lay within the fibular incisure of the tibia, the fibula was likely to be more anterior than that of individuals whose fibula lay outside the incisure. Offered as a reference, these data should improve diagnosis of injury of the DTS. Keywords: Anthropometric, Distal tibiofibular syndesmosis, Chinese Background Ankle fracture commonly involves injury of the distal tibiofibular syndesmosis (DTS) [1 4], but syndesmosis diastasis is increasingly recognized in sprained ankle as well. Prompt diagnosis and reasonable treatment is important for improving functional outcomes and reducing the risk of early degenerative changes [5]. Injury to the DTS is mainly diagnosed through medical imaging, especially by initial anteroposterior and mortise radiographs. However, some scholars have noted that anatomic variability of the fibula and tibial tubercles can make diagnosis with radiographs difficult [6]. As early as 1985, * Correspondence: zhaodewei2016@163.com 2 Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Jiefang Street 6th, Dalian 116001, China Full list of author information is available at the end of the article Sclafani [7] reported that injuries to the ligamentous support of the ankle were subtle and could easily be overlooked on radiograph. Murphy et al. [8] found that medial clear space width on mortise radiographs of the ankle has variability based on the location chosen for measurement and gender. Contralateral radiographic comparison of MCS should be routinely used to identify pathologic widening versus normal anatomic variation. Harper and Keller [9] later measured the width of the tibiofibular clear space and the tibiofibular overlap, based on carefully positioned anterior-posterior and mortise radiographs of 12 fresh cadavers. They proposed that the width of the tibiofibular clear space, on both anteriorposterior and mortise views, was the most reliable parameter for detecting early syndesmotic widening. Similarly, Pneumaticos et al. [10] determined that the width of the The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 Page 2 of 7 tibiofibular clear space in the anterior-posterior view on plain radiographs was the most reliable parameter for detecting widening of the syndesmosis. However, due to variability among individuals, a view of the contralateral extremity was also warranted in cases of suspected syndesmosis disruption. Beumer et al. [11] added to the controversy, reporting that radiographic measurements of the DTS have limited application, because there was no standard radiographic parameter to assess syndesmotic integrity. Furthermore, DTS diastasis is often overlooked in cases that do not include an associated fibular fracture. Computed tomography (CT) is reportedly more sensitive than radiographs for detecting syndesmotic diastasis of 3mm[12 16]. However, the accuracy of CT measurements for diagnosis of injuries of the DTS can also be compromised by anatomic variations, and doctors should be aware of the possible differences. For example, Elgafy et al. [17] recently retrospectively reviewed the CT scans of 100 patients with normal DTS and discovered that the fibular incisure was deep or crescent-shaped in 67%, and shallow or rectangular in 33%. Thus, anatomical variations of the fibular borders and the depth of the fibular incisure may interfere in a diagnosis. To the best of our knowledge, there has been no quantitative study of CT imaging of the normal syndesmosis inthechinesepopulation.tothatend,inthepresentstudy, we used CT scans to document the anatomical variety of the normal DTS in a Chinese population. In addition, we argue for the application of inclusion and separation indices to evaluate the anthropometry of the DTS. Methods The Ethics Committee of Dalian University Affiliated Zhongshan Hospital approved this study. The patients provided individual consent. Study population Ninety-two consecutive patients (49 women and 43 men; average age 43.5 years [range, 18 to 82 years]) who attended our hospital between 2014 and 2016 were enrolled in this study. For inclusion, patients had CT scans of both the unilateral ankle injury and the healthy contralateral side. Patients with a history of trauma, inflammatory disease, fracture, or previous surgery on the uninjured side ankle were excluded. Materials A Siemens 64 scanner (Germany) was used to obtain the CT images, with the following parameters: 120 peak kilovoltage, field of view 24 cm, scanning slice thickness 1 mm with reconstruction at 0.625 mm intervals, and rotation time of the tube 0.5 s. An IMPAX/RIS system was used, with vision size 512 512 and pixel resolution 0.475 mm. The data of images was exported to a desktop computer in the Dicom format using a secure digital card. The axial CT image was used for index measurements with a RadiAnt Dicom Viewer. The DTS was measured on the CT scans ~ 1 cm proximal to the tibial plafond [18]; this section was 1 mm thick and 9 11 mm proximal to the tibial plafond. Measurements Definition and measurement of inclusion index and separation index The inclusion index is relevant to individuals in whom the fibula is situated within the fibular notch (incisure) of the tibia, while the separation index is a measure that is applicable to individuals in whom the most medial surface of the fibula lies lateral to the most lateral points of the anterior and posterior colliculi of the tibia. The measurement process consisted of drawing three parallel lines (A, B, and C) and measuring the distances between those lines (Fig. 1). Line A connects the most lateral aspects of the anterior and posterior colliculi of Fig. 1 Calculation of the inclusion and separation indices. In each subfigure (a and b) is shown illustrated cross-sections of the distal tibia (left) and fibula (right). Lines A, B, and C are parallel. Line A represents the tibia incisure plane, drawn tangential to the most lateral aspects of the anterior and posterior colliculi of the tibia. Line B is tangential to the most lateral point of the fibula. Line C is tangential to the most proximal point of the tibia incisure. a The inclusion index is the shortest (perpendicular) distance from line A to line B (a), divided by the shortest distance from line A to line C (b), that is, a/b. b The separation index is the shortest distance from line A to line B (a), divided by the shortest distance from line A to line C(b),thatis,a/b

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 Page 3 of 7 to line A. Lines E and F are tangential to the anterior and posterior borders of the fibula, respectively. The shortest (perpendicular) distance between lines E and F (a) is defined as the length of the fibula. Line D and line G are tangential to the anterior and posterior colliculi of the tibia; the shortest distance between lines D and G (b) represents the length of the tibia incisure. The length index is calculated as the length of the fibula (a) divided by the length of the tibia incisure (b). Fig. 2 Line A. Lines E and F are tangential to the anterior and posterior borders of the fibula, respectively. The shortest distance between lines E and F (a) is the length of the fibula. Lines D and G are tangential to the anterior and posterior colliculi of the tibia; the shortest distance between lines D and G (b) is the length of the tibia incisure. Finally, the length index is calculated as the length of the fibula (a) divided by the length of the tibia incisure (b), that is, a/b the tibia and represents the tibia incisure plane. Line B is drawn tangential to the most lateral part of the fibula, and line C is tangential to the bottom of the fibular incisure of the tibia. The inclusion index is taken to be the shortest (perpendicular) distance from line A to line B (a; Fig. 1a), divided by the shortest distance from line A to line C (b). The separation index is defined as the shortest distance from line A to line B(a; Fig. 1b), divided by the shortest distance from line A to line C (b). Definition and measurement of length index To determine the length index, again line A is drawn tangential to the two most lateral aspects of the anterior and posterior colliculi of the tibia and represents the tibia incisure plane (Fig. 2). Lines D G are perpendicular Definition and measurement of anterior and posterior indices The anterior, extra-anterior, posterior, and extra-posterior indices were calculated as follows (Figs. 3 and 4). Lines A and D G are defined as in the preceding sections. Here, the shortest (perpendicular) distance from line D to line E is defined as the forward length (fl), and the shortest distance from line G to line F is the backward length (bl). The anterior index is calculated as the forward length divided by the backward length, or fl/bl. The posterior index is the reciprocal of the anterior index, bl/fl. The extra-anterior index is defined as the negative forward length value ( fl) when the anterior border of the fibula is anterior to the colliculi of the tibia. The extraposterior index is defined as the negative backward length ( bl) value when the posterior border of the fibula is posterior to the colliculi of the tibia. Statistical analysis Statistical analyses were performed using an SPSS software package (version 21.0). Analysis of the data was performed by the t test. P < 0.05 was considered statistically significant. Results The 92 patients were apportioned to two groups, depending on the inclusion and separation indices (Table 1). The demographics of the groups were statistically comparable. Specifically, the patients with a DTS inclusion index were Fig. 3 Calculation of the anterior and extra-anterior indices in the centered and relatively anterior fibula. a The forward length is defined as the shortest (perpendicular) distance from line D to line E (fl). The backward length is the shortest distance from line F to line G (bl). The anterior index is calculated as the fl divided by the bl (fl/bl). b In cases in which the anterior border of the fibula is forward of the anterior colliculi of the tibia, the extra-anterior index is defined as the negative value of fl ( fl), divided by backward length ( fl/bl)

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 Page 4 of 7 Fig. 4 Calculation of the posterior and extra-posterior indices in the relatively posterior fibula. a The backward length is the distance from line G to line F (bl) and the forward length is the distance from line E to line D (fl). The posterior index was calculated as backward length divided by forward length (bl/fl). b The extra-posterior index was defined as the negative value of backward length ( bl) when the posterior border of the fibula across anterior colliculi of the tibia divided by forward length ( bl/fl) those whose fibula normally resided within the fibular incisure of the tibia. These patients were apportioned to the contained-type group (26 women, 19 men; age range, 18 to 75 years; inclusion index 0.31 ± 0.14). Patients with a DTS separation index were those whose fibula were not within the fibular incisure and were thus considered the separated-type group (23 women, 24 men; ages 19 to 82 years; separation index 0.74 ± 0.71). The length index of the contained group (0.80 ± 0.08) was comparable to that of the separated group (0.83 ± 0.17). Of the 45 patients in the contained-type group, 31 (69%) and 12 (27%) had an anterior index (0.53 ± 0.23) and an extra-anterior index ( 0.52 ± 0.59), respectively. Of the 47 patients in the separated-type group, 23 (49%) had an anterior index (0.38 ± 0.20) and 17 (36%) had an extra-anterior index ( 0.56 ± 0.39). The anterior index of the contained-type group was significantly greater than that of the separated-type group (P = 0.012), while the extra-forward indices of the two groups were similar. Of the 45 patients in the contained-type group, only two (4.4%) had a posterior index (0.52 ± 0.27) and none Table 1 Characteristics of patients with contained type and separate type Contained type a Separate type b Gender, M/F, n 19/26 24/23 Age, years 45 42.1 Inclusion index 0.31 ± 0.14 Separation index 0.74 ± 0.71 Length index 0.80 ± 0.08 0.83 ± 0.17 Anterior index 0.49 ± 0.25 0.38 ± 0.20 c Extra-anterior index 0.52 ± 0.59 0.56 ± 0.39 Posterior index 0.52 ± 0.27 0.69 ± 0.37 c Extra-posterior index 0.80 ± 0.34 a n =45 b n =47 c P < 0.05, contained-type group compared with the separate-type group had an extra-posterior index (Table 1). Of the 47 patients in the separated-type group, 3 (6.4%) and 4 (8.5%) had a posterior index (0.69 ± 0.37) and extra-posterior index ( 0.80 ± 0.34), respectively. Discussion In this study, we successfully characterized contained- and separate-type DTSs by length, anterior, extra-anterior, posterior, and extra-posterior indices in a Chinese population. We found that the anterior index of the contained group was significantly greater than that of the separate group, while the posterior index was significantly less. The tibiofibular overlap is an important measurement for the assessment of the syndesmosis on an AP radiograph. It was difficult to assess on the axial CT section, because the measurement changed with rotation of the foot [17]. In this study, the tibiofibular overlap 10 mm and talar subluxation have been used to diagnose syndesmosis disruption on radiographs [17]. However, a disadvantage of using X-ray for DTS diagnosis is the possibility of false positive or negative results. Our data suggested that healthy volunteers with rectangular shape of DTS have a relatively long distance of the mid-width of tibia and fibula and wide clear space. It is easy to misdiagnosis a DTS injury on ankle radiographs. These patients are actually normal even if the X-ray seems to indicate a separation (Fig. 5). Though the DTS may be wide in these patients, they do not need to be fixed. In addition, the contained-type DTS could be misdiagnosed when the degree of separation was less significant than the contained index and when tibiofibular was overlapped due to rotation while the DTS was separated. Thus, repeating measurements on multiple radiographs with different views or CT images are recommended. Recently, researchers found that CT scans hold the advantage over radiographs for the diagnosis of lesions in the DTS [13, 19] (Fig. 6). Elgafy et al. [17] retrospectively reviewed the shape and measurements of the normal

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 Page 5 of 7 Fig. 5 X-ray and CT scans of the DTS with a separated left ankle joint and b normal left ankle joint. The position indicated by the black tip show the lack of tibiofibular overlap DTS on CT scans of 100 patients and observed that 67% of the fibular incisure was deep, giving the syndesmosis a crescent shape, while 33% of the fibular incisure were shallow, giving the syndesmosis a rectangular shape. Shah et al. [16] found that a lack of overlap combined with a diminutive anterior tibial tubercle on mortise radiograph in some individuals was a normal anatomic variation. On cross-sectional CT imaging, these patients often have a rectangular-shaped syndesmosis as opposed to the more common crescent-shaped syndesmosis. This provides further evidence that individual anatomic variation can affect the diagnosis of DTS, despite the higher sensitivity of CT. Elgafy et al. [17] recommended using these two measurements described in this study as more reliable means to appreciate the degree of the syndesmotic diastasis than using the overlap measurement, which would not be reproducible and accurate if not measured on a precise AP or coronal radiographic view. Elgafy et al. [17] used CT scans to classify the shapes of the syndesmosis as crescent or rectangular. However, this classification can be subjective and influenced by individual differences, and there has been no standard measurement. In this study, we propose use of inclusion and separation indices, as described herein, for analyzing variation of the syndesmosis. The shape of the syndesmosis can be classified as either contained or separated, based on these indices. We found that 49% of the fibular incisure had an inclusion index of 0.31 ± 0.14, and 51% of the fibular incisure had a separation index of 0.74 ± 0.71. Accordingly, the DTS can be classified as the contained type or the separated type. Since this method is quantitative, it is highly repeatable and not easy to be affected subjectively. It would be helpful to analyze the degree of overlap in clinics. The diagnosis of a sagittal position shift of the fibula based on lateral and anterior-posterior views is more Fig. 6 CT scans of representative patients with a contained-type and b separated-type DTS. a The fibula was contained in the fibular incisure. b The X-ray can penetrate through the interspace between the fibula and the fibular incisure

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 Page 6 of 7 difficult and easier to be overlooked than that on the horizontal view. This is probably due to the complicated anatomical relationship between the fibular incisure and the fibula, which comprise the main structure of the tibiofibular syndesmosis. Therefore, if we want to use CT to analyze whether the fibula has the displacement of sagittal position, we should determine the change of the relative position between the fibula and the fibular incisure. First, we used the forward and backward indices to determine a sagittal position shift of the fibula. The extra-anterior index is inversed to anterior index, which makes it negative, and likewise for extra-posterior index and posterior index. Second, to analyze the fibula relative to the length of the fibular incisure, we determined the length index. In other words, the clinical doctors should first determine whether the patient is inclusive or dissociative when using the CT images of the horizontal position to analyze whether the fibula has a sagittal position. Additionally, since the location of the fibula is relative to the fibular incisure plane, the fibula maytendtoberelativelymoreanteriorofthefibular incisure in individuals with a contained-type DTS and more posterior in those with a separated type. However, when using the length index for diagnosis the sagittal position shift of the fibula, we found that five patients (5.4%) had a fibular length that was longer than the fibular incisure plane. That is to say, these patients used CT for examination, because the margin of the fibula is beyond the anterior and posterior colliculi of the tibia, which increases the difficulty for the diagnosis of sagittal detachment. One of the limitations of the study is that this study was only conducted in a Chinese population. We are not sure whether there could be a difference between different ethnic groups. Further studies with multi-center collaboration are warranted. Another limitation of CT scans in this clinical setting is an inability to evaluate bone marrow edema and injuries to the ligaments and adjacent soft tissues. Another limitation was there are many scholars who have analyzed the morphology of the syndesmosis; however, these parameters have not been included in our study. Conclusions In conclusion, our study for the first time used CT scans to quantitatively calculate indices that describe normal variations in the anatomical relationship between the fibula and fibular incisure in the Chinese population. This would be helpful for improving the diagnostic accuracy of distal tibiofibular syndesmoses and providing optimal treatment in order to improve functional outcomes and reduce the risk of early degenerative changes for the patients. Abbreviations bl: Backward length; -bl: Negative backward length; CT: Computed tomography; DTS: Distal tibiofibular syndesmoses; fl: Forward length; -fl: Negative forward length; SPSS: Statistic package for social science Availability of data and materials Please contact the author for data requests. Authors contributions MY designed the clinical studies and drafted the manuscript. YZ carried out the clinical studies. YS revised the manuscript. FW carried out the data acquisition and data analysis. DZ carried out the literature search and manuscript editing. All authors read and approved the final manuscript. Ethics approval and consent to participate This article does not contain any studies with human participants or animals performed by any of the authors. The experimental protocol was established according to the ethical guidelines of the Helsinki Declaration, and ethical approval for this study was provided by Dalian University Affiliated Zhongshan Hospital. All patients or guardians, after reading, filled in and signed the consent form and agreed to participate in the study. Competing interests The authors declare that they have no competing interests. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Department of Traumatic Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Jiefang Street 6th, Dalian 116001, China. 2 Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Jiefang Street 6th, Dalian 116001, China. Received: 2 November 2017 Accepted: 5 April 2018 References 1. Franke J, et al. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 2012;94(15):1386 90. 2. Davidovitch RI, et al. Intraoperative syndesmotic reduction: three-dimensional versus standard fluoroscopic imaging. J Bone Joint Surg Am. 2013; 95(20):1838 43. 3. Sagi HC, Shah AR, Sanders RW. The functional consequence of syndesmotic joint malreduction at a minimum 2-year follow-up. J Orthop Trauma. 2012;26(7):439 43. 4. Naqvi GA, et al. Fixation of ankle syndesmotic injuries: comparison of tightrope fixation and syndesmotic screw fixation for accuracy of syndesmotic reduction. Am J Sports Med. 2012;40(12):2828 35. 5. Kennedy JG, et al. Evaluation of the syndesmotic screw in low Weber C ankle fractures. J Orthop Trauma. 2000;14(5):359 66. 6. Vasarhelyi A, et al. Detection of fibular torsional deformities after surgery for ankle fractures with a novel CT method. Foot Ankle Int. 2006;27(12):1115 21. 7. Sclafani SJ. Ligamentous injury of the lower tibiofibular syndesmosis: radiographic evidence. Radiology. 1985;156(1):21 7. 8. Murphy JM, Kadakia AR, Irwin TA. Variability in radiographic medial clear space measurement of the normal weight-bearing ankle. Foot Ankle Int. 2012;33(11):956 63. 9. Harper MC, Keller TS. A radiographic evaluation of the tibiofibular syndesmosis. Foot Ankle. 1989;10(3):156 60. 10. Pneumaticos SG, et al. The effects of rotation on radiographic evaluation of the tibiofibular syndesmosis. Foot Ankle Int. 2002;23(2):107 11. 11. Beumer A, et al. Radiographic measurement of the distal tibiofibular syndesmosis has limited use. Clin Orthop Relat Res. 2004;423:227 34. 12. Marmor M, et al. Limitations of standard fluoroscopy in detecting rotational malreduction of the syndesmosis in an ankle fracture model. Foot Ankle Int. 2011;32(6):616 22. 13. Ebraheim NA, et al. Radiographic and CT evaluation of tibiofibular syndesmotic diastasis: a cadaver study. Foot Ankle Int. 1997;18(11):693 8.

Yu et al. Journal of Orthopaedic Surgery and Research (2018) 13:95 Page 7 of 7 14. Taser F, Shafiq Q, Ebraheim NA. Three-dimensional volume rendering of tibiofibular joint space and quantitative analysis of change in volume due to tibiofibular syndesmosis diastases. Skelet Radiol. 2006;35(12):935 41. 15. Mukhopadhyay S, et al. Malreduction of syndesmosis are we considering the anatomical variation? Injury. 2011;42(10):1073 6. 16. Shah AS, et al. Radiographic evaluation of the normal distal tibiofibular syndesmosis. Foot Ankle Int. 2012;33(10):870 6. 17. Elgafy H, et al. Computed tomography of normal distal tibiofibular syndesmosis. Skelet Radiol. 2010;39(6):559 64. 18. Wuest TK. Injuries to the distal lower extremity syndesmosis. J Am Acad Orthop Surg. 1997;5(3):172 81. 19. Kotwal R, et al. Targeted computerised tomography scanning of the ankle syndesmosis with low dose radiation exposure. Skelet Radiol. 2016;45(3):333 8.