IABP to prevent pulmonary edema under VA-ECMO

Similar documents
NE refractoriness: From Definition To Treatment... Prof. Alain Combes

ECMO for Refractory Septic Shock Prof. Alain Combes

Which mechanical assistance for cardiogenic shock?

Severe Myocarditis: A 2012 update

AllinaHealthSystem 1

Management of Acute Shock and Right Ventricular Failure

ECMO/ECCO 2 R in Acute Respiratory Failure

Index. K Knobology, TTE artifact, image resolution, ultrasound, 14

ECMO as a bridge to durable LVAD therapy. Jonathan Haft, MD Department of Cardiac Surgery University of Michigan

Experience with Low Flow ECCO2R device on a CRRT platform : CO2 removal

Extra Corporeal Life Support for Acute Heart failure

Bridging With Percutaneous Devices: Tandem Heart and Impella

Acute heart failure: ECMO Cardiology & Vascular Medicine 2012

Percutaneous Mechanical Circulatory Support for Cardiogenic Shock. 24 th Annual San Diego Heart Failure Symposium Ryan R Reeves, MD FSCAI

ICU Volume 14 - Issue 1 - Spring Matrix

Acute heart failure, beyond conventional treatment: persisting low output

Vasopressors in septic shock

Rationale for Prophylactic Support During Percutaneous Coronary Intervention

Andrew Civitello MD, FACC

The Role of Mechanical Circulatory Support in Cardiogenic Shock: When to Utilize

Disclosures. Objectives 10/11/17. Short Term Mechanical Circulatory Support for Advanced Cardiogenic Shock. I have no disclosures to report

Disclosure Information : No conflict of interest

Echo assessment of patients with an ECMO device

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Acute Mechanical Circulatory Support Right Ventricular Support Devices

Cardiogenic Shock Protocol

Case scenario V AV ECMO. Dr Pranay Oza

Mechanical circulatory support in cardiogenic shock The Cardiologist s view ACCA Masterclass 2017

Recognizing the Need to Support A Failing Right Ventricular Role of Mechanical Support

Management of Cardiogenic Shock. Dr Stephen Pettit, Consultant Cardiologist

LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital

Mechanics of Cath Lab Support Devices

Introduction to Acute Mechanical Circulatory Support

Acute peri-operative. Alexandre Mebazaa, Hôpital Lariboisière, Université Paris 7 U942 Inserm

The Pathophysiology of Cardiogenic Shock Knowledge Gaps & Opportunities

MANAGEMENT OF CARDIOGENIC SHOCK

Percutaneous Mechanical Circulatory Support Devices

Impact of Nicorandil on Renal Function in Patients With Acute Heart Failure and Pre-Existing Renal Dysfunction

DECLARATION OF CONFLICT OF INTEREST

Mechanics of Cath Lab Support Devices

Mechanical Cardiac Support in Acute Heart Failure. Michael Felker, MD, MHS Associate Professor of Medicine Director of Heart Failure Research

Cardiogenic shock: Current management

Assist Devices in STEMI- Intra-aortic Balloon Pump

LV Distension and ECLS Lungs

Adult Extracorporeal Life Support (ECLS)

Cardiogenic Shock. Carlos Cafri,, MD

CARDIOGENIC SHOCK. Antonio Pesenti. Università degli Studi di Milano Bicocca Azienda Ospedaliera San Gerardo Monza (MI)

Ejection across stenotic aortic valve requires a systolic pressure gradient between the LV and aorta. This places a pressure load on the LV.

Cath Lab Essentials : LV Assist Devices for Hemodynamic Support (IABP, Impella, Tandem Heart, ECMO)

Ejection across stenotic aortic valve requires a systolic pressure gradient between the LV and aorta. This places a pressure load on the LV.

Ventricular Assisting Devices in the Cathlab. Unrestricted

A Validated Practical Risk Score to Predict the Need for RVAD after Continuous-flow LVAD

Καθετηριασμός δεξιάς κοιλίας. Σ. Χατζημιλτιάδης Καθηγητής Καρδιολογίας ΑΠΘ

Hemodynamic monitoring beyond cardiac output

HEMODYNAMIC ASSESSMENT

Appendix II: ECHOCARDIOGRAPHY ANALYSIS

Treatment of patients after cardiac surgery. Training program Intensive Care Radboud University Nijmegen Medical Centre

Intraaortic Balloon Counterpulsation- Supportive Data for a Role in Cardiogenic Shock ( Be Still My Friend )

Review of Cardiac Mechanics & Pharmacology 10/23/2016. Brent Dunworth, CRNA, MSN, MBA 1. Learning Objectives

4/22/2016 Updated. AllinaHealthSystem. Cardiogenic Shock: Definition. No Disclosures. Cardiogenic Shock: Declining (But Still High) Case Fatality Rate

Ted Feldman, M.D., MSCAI FACC FESC

Relax and Learn At the Farm 2012

Echocardiography as a diagnostic and management tool in medical emergencies

(Peripheral) Temperature and microcirculation

AATS/Cardiothoracic Critical Care Symposium

A Future for the IABP in Cardiogenic Shock? Holger Thiele Medical Clinic II (Cardiology/Angiology/Intensive Care) University of Lübeck, Germany

Guideline compliance, utilization trends

Section 6 Intra Aortic Balloon Pump

Μαρία Μπόνου Διευθύντρια ΕΣΥ, ΓΝΑ Λαϊκό

Understanding the Pediatric Ventricular Assist Device

Ray Matthews MD Professor of Clinical Medicine Chief of Cardiology University of Southern California

ECLS. The Basics. Jeannine Hermens Intensive Care Center UMC Utrecht

To ECMO Or Not To ECMO Challenges of venous arterial ECMO. Dr Emily Granger St Vincent s Hospital Darlinghurst NSW

Effects of mechanical ventilation on organ function. Masterclass ICU nurses

Cardiovascular Management of Septic Shock

Hemodynamic Monitoring and Circulatory Assist Devices

10/16/2017. Review the indications for ECMO in patients with. Respiratory failure Cardiac failure Cardiorespiratory failure

ECMO BASICS CHLOE STEINSHOUER, MD PULMONARY AND SLEEP CONSULTANTS OF KANSAS

A case of post myocardial infarction ventricular septal rupture CHRISTOFOROS KOBOROZOS, MD

ST-Elevation Myocardial Infarction & Cardiogenic Shock. - What Should We Do?

Low cardiac output & Mechanical Support นายแพทย อรรถภ ม ส ศ ภอรรถ ศ ลยศาสตร ห วใจและทรวงอก โรงพยาบาล ราชว ถ

Rhondalyn C. McLean. 2 ND YEAR RESEARCH ELECTIVE RESIDENT S JOURNAL Volume VII, A. Study Purpose and Rationale

Management of Severe Heart Failure Exacerbation

IABP Timing & Fidelity. Pocket Reference Guide

Patrick C. Cullinan, DO, NBPNS, FCCM, FACOEP, FACOI Associate Clinical Professor, UIWSOM, San Antonio, Texas Adjunct Assistant Professor, University

Diastology State of The Art Assessment

Circulatory Support: From IABP to LVAD

Update on Mechanical Circulatory Support. AATS May 5, 2010 Toronto, ON Canada

Epidemiology of Heart Failure in Adults

Recovering Hearts. Saving Lives.

Fluid responsiveness and extravascular lung water

Planned, Short-Term RVAD During Durable LVAD Implant: Indications and Management

Cardiogenic Shock in Acute MI

Hemodynamic Monitoring

Counterpulsation. John N. Nanas, MD, PhD. Professor and Head, 3 rd Cardiology Dept, University of Athens, Athens, Greece

Mechanical ventilation induced or exacerbated right ventricular failure

Hemodynamic improvement upon levosimendan treatment in low cardiac output patients following coronary artery bypass graft

Modern Left Ventricular Assist Devices (LVAD) : An Intro, Complications, and Emergencies

Extracorporeal Membrane Oxygenation in Cardiac Intensive Care Unit

Prof. Dr. Iman Riad Mohamed Abdel Aal

Transcription:

IABP to prevent pulmonary edema under VA-ECMO Alain Combes Service de Réanimation ican, Institute of Cardiometabolism and Nutrition Hôpital Pitié-Salpêtrière, AP-HP, Paris Université Pierre et Marie Curie, Paris 6 www.reamedpitie.com

Conflict of interest Principal Investigator: HEROICS trial HVHF after complicated heart surgery NCT01077349 Sponsored by GAMBRO Principal Investigator: EOLIA trial VV ECMO in ARDS NCT01470703 Sponsored MAQUET, Getinge Group Received honoraria from MAQUET, Getinge Group Gambro

Pulmonary edema under VA ECMO

Pulmonary edema Due to an increase in LV afterload created by the backward ECMO flow More frequent With peripheral ECMO If no residual LV ejection Increase in LV afterload Aortic/Mitral regurgitation, LV dilation LV end-diastolic pressure, PCWP Pulmonary edema Laminar flow Alteration of microcirculation?

Pulmonary edema under VA-ECMO

Hemodynamic impact of the IABP Diastolic inflation coronary blood flow myocardial O2 supply myocardial ischemia Systolic deflation afterload et cardiac output myocardial O2 consumption LV work et LV volume Pulsatile blood flow Improvement of microcirculation?

Retrospective study

December 2007 to December 2012 457 peripheral VA-ECMO 90 patients with laminar flow LVEF <15% ITV < 8 cm Δ SBP-DBP <15mmHg

2007-2012 457 PVA ECMO Post-cardiotomy 117 Refractory MOF<48h 96 Chronic pulmonary disease 26 Massive mitral regurgitation 21 Refractory septic shock 14 Femoro-axillary cannulation 10 ARDS 8 Isolate RV dysfunction 8 Prior impella implantation 5 Pulse pressure 15 mmhg 48 or TVI 8 cm IABP for APO 5 APO after IABP explantation 5 ECMO centralisation for other reasons than APO 4 90 patients No-IABP 56 IABP 34

Patients s characteristics Parameter No-IABP IABP Median (25 th -75 th ) n=56 n=34 p Age, y 46,5 (32-54) 51,5 (43-59,5) * 0,02 Male, % 57 % 73 % 0,12 BMI 24,6 (20,6-27,8) 26,6 (24,8-30,7) * 0,02 Charlson score 2 (1-3) 2 (1-3) 0,14 Year 2009 (2008-2010) 2011 (2010-2012) ***p<0,0001 Saps-II score 65 (56-72,5) 75 (54-81) 0,11 SOFA score 11 (6,5-13) 11 (8-14,5) 0,39 Etiology, % Cardiac arrest AMI Myocarditis DCM 28,5% 35,7% 32,1% 32,1% 41,1% 64,7% 11,7% 23,5% 0,22 ** 0,007 *0,03 0,38 Inotrope score, g/kg/min 76,5 (41-127,5) 49 (30-77) *0,03 LVEF, % 10 (7-10) 10 (6-11) 0,73 TVI, cm 4 (2-5) 4 (2-5) 0,38 Mechanical ventilation, % 87,5 % 94,1 % 0,42 PaO2/FiO2 ratio 270 (155-326) 296 (170-376) 0,69 PEEP, cmh2o 4 (2-5) 4 (4-6) 0,14 ph 7,25 (7,18-7,35) 7,25 (7,12-7,32) 0,40 Lactatemia, mmoles/l 8,0 (5,7-10,9) 7,3 (5,0-11,5) 0,98 Q ECMO, L/min 3,97 (3,33-4,45) 4,22 (3,73-4,61) 0,09

Radiologic component of the LIS Radiologic score 4 3 IABP No IABP 2 1 *** *** *** *** 0 D0 D1 D2 D3 D7 D15 Time from ECMO implantation

Percent survival free from Pulmonary edema 110 100 90 80 70 60 50 40 30 20 10 0 P<0,0001 by Logrank test 0 5 10 15 IABP No-IABP Time (days)

Impact of IABP use 75 50 IABP switch for central ECMO Major pulmonary edema 25 0 2006 2007 2008 2009 2010 2011 2012 2013

Need for central ECMO 100 44.6% vs 5.9% 75 ***, p=0.0001 50 25 0 - + IABP

Independent predictors of pulmonary edema occurrence Variables OR IC 95% P No IABP 18.87 4.3-90.97 <0.0001 ph <7.25 at ECMO initiation Inotropic Score >66 at ECMO initiation 4.47 1.19-16.80 0.027 5.0 1.43-18.87 0.013

Outcomes Parameter Median (25 th -75 th ) No-IABP n=56 IABP n=34 IABP duration, d - 5,5 (3,5-7,5) ECMO duration, d 5 (2,5-7,5) 6 (4-10) 0,06 p Follow-up, % Death under peripheral ECMO Death under central ECMO Death under temporary assistance Myocardial recovery Cardiac transplant Bridge to long term assistance 12,5 14,2 32,1 35,7 17,9 14,3 26,5 0 26,5 35,3 5,9 32,3 0,09-0,57 0,97 0,10 0,04* Weaning from MV under ECMO, % 30,4 38,2 0,44 Time on MV under ECMO, % 100 (66,3-100) 100 (40,4-100) 0,52 ICU mortality, % 35,7 29,4 0,54 ICU duration, d 14 (6-30) 10 (6-21) 0,24 Temporary circulatory assistance duration, d 9 (5,5-13) 6 (4-10) 0,13 Mechanical ventilation duration, d 6 (3-15) 5 (3-12,5) 0,29 RRT duration, d 5,5 (1-42) 2 (0-6) 0,69

Prospective study

Study objectives Evaluate the impact of the combination of Peripheral veno-arterial ECMO Counterpulsation with IABP On general hemodynamics and microcirculation In patients with refractory cardiogenic shock

Methods Prospective monocenter crossover study 12 months-study period 12 patients Admitted for refractory cardiogenic shock requiring emergent peripheral veno-arterial ECMO Low or non-ejecting heart : laminar blood flow Evaluation Evaluation under IABP support, after 30 min interruption and 30 min after restarting the IABP

Evaluation of macrocirculation Clinical parameters Arterial blood pressure Echocardiographic parameters Aortic VTI, LVEF, LVEDD, LVESD E/A and E/Ea ratios, mitral annulus S wave CO, CI Pulmonary artery catheter: PAPs, PAPd, PAPm, PAOP Blood gases

Evaluation of microcirculation Sidestream Dark Field imaging SDF Sublingual videomicroscopy sequences Semi-quantitative and dynamic evaluation of microcirculation

Thenar eminence microcirculation InSpectra StO 2 - NIRS Early indicator of tissular hypoperfusion? Models : arteriopathy, septic shock Parameters : Baseline StO2 Vascular occlusion test VOT : T1, T2 Hyperemia (StO2 overshoot)

Brain microcirculation Equanox Nonin Early indicator of brain hypoperfusion Models : cardiac surgery Parameters : Left and right rso2

Patients characteristics Variable Value Range Age, yr 57 ± 14 28 75 Men, n (%) 9 (75%) SAPS2 79 ± 16 65 106 Before inclusion Days of ECMO 6.3 ± 5.9 1 21 Days of IABP 4.7 ± 4.4 1 17 Diagnosis, n (%) Acute myocardial infarction 8 (67%) Acute valvular dysfunction 2 (17%) Dilated cardiomyopathy 1 (8%) Fulminant myocarditis 1 (8%) During study protocol ECMO flow, L/min 4.3 ± 0.9 3 5.5 Catecholamines Dobutamine (n = 4), µg/kg/min 7.5 ± 3.0 5 10 Norepinephrine (n = 1), mg/h 0,6 Epinephrine (n = 5), mg/h 3.0 ± 4.0 0.35 10 Patients on mechanical ventilation, n (%) 12 (100%)

Hemodynamic data Parameter IABP on IABP off IABP restart P Heart rate 99 ± 21 101 ± 17 103 ± 20 0.07 SBP (mmhg) 103 ± 20 102 ± 20 100 ± 22 0.75 DBP (mmhg) 74 ± 17 88 ± 16 72 ± 16 0.02 MBP (mmhg) 87 ± 14 92 ± 16 84 ± 16 0.06 Pulse pressure (mmhg) 29 ± 22 15 ± 13 29 ± 24 0.02 DBP increase (mmhg) 134 ± 40 125 ± 26

Pulmonary artery catheter Parameter IABP on IABP off IABP restart P SBP, mmhg 24 ± 9 29 ± 11 23 ± 10 0.01 DBP, mmhg 16 ± 7 19 ± 10 16 ± 9 0.04 MBP, mmhg 19 ± 8 24 ± 10 19 ± 9 0.02 PAOP, mmhg 15 ± 8 19 ± 10 15 ± 8 0.01 Central venous oxygen saturation, % 73 ± 11 73 ± 15 75 ± 12 0.43

Pulmonary Artery Occlusion Pressure IABP to prevent pulmonary edema under peripheral ECMO

Echocardiographic data Parameter IABP on IABP off IABP restart P LVEDD (mm) 52 ± 14 55 ± 13 47 ± 13* 0.003 $ LVESD (mm) 50 ± 14 51 ± 13 42 ± 13* 0.05 $ Velocity time integral (mm) 25 ± 13 25 ± 14 26 ± 15 0.85 Cardiac output (l/min) 0.79 ± 0.46 0.77 ± 0.78 0.81 ± 0.74 0.85 Diastolic velocity Transmitral early peak (E) (cm/s) 49 ± 19 61 ± 25 51 ± 26 0.07 Transmitral late (A) (cm/s) 32 ± 13 31 ± 9 31 ± 12 0.10 E/A 1.26 ± 0.38 1.95 ± 0.66 1.33 ± 0.36 0.003 Lateral mitral early annular (Ea) (cm/s) 6.4 ± 2.8 6.4 ± 2.5 5.8 ± 1.9 0.44 E/Ea 8.6 ± 4.0 9.8 ± 2.6 9.2 ± 4.3 0.31 S (cm/s) 4.9 ± 2.5 5.0 ± 2.9 4.9 ± 2.3 0.90

NIRS data Near-infrared spectroscopy IABP on IABP off Thenar IABP restart P Baseline StO 2, % 82 ± 6 79 ± 8 82 ± 6 0.41 Tissue desaturation during VOT, (%/s) 0.13 ± 0.06 0.13 ± 0.06 0.14 ± 0.08 0.56 Range 0.04; 0.23 0.02; 0.24 0.03; 0.28 Tissue resaturation after VOT (%/s) 1.26 ± 0.76 1.28 ± 0.70 1.28 ± 0.58 0.21 Range 0.56; 3.20 0.67;2.55 0.57;2.95 Cerebral hemisphere rso 2 Right, % 69.1 ± 5.3 69.4 ± 5.1 69.9 ± 5.3 0.76 Left, % 67.4 ± 5.5 68.6 ± 4.0 68.9 ± 5.3 0.24

PV (%) neity index MFI Heterogeneity index PPV (%) FCD (cm/cm² PPV (%) MFI 300 50 200 0 SDF sublingual imaging 50 0 100 50 0 100 IABP on IABP off IABP on again IABP on IABP off IABP on again 50

If Pulmonary edema occurs

Impella 5.0

Conclusion For cardiogenic shock patients with little/no residual LV ejection while on peripheral VA-ECMO Restoring pulsatility and decreasing LV afterload with IABP Associated with smaller LV dimensions and lower pulmonary artery pressures But no impact on microcirculation parameters IABP might prevent severe hydrostatic pulmonary edema in this context

May 21-24 2014