Outline. Positron Emission Tomography for Oncologic Imaging and Treatment. Radionuclide. Physics of PET and PET-CT

Similar documents
Outline. Positron Emission Tomography for Oncologic Imaging and Treatment. Positron Annihilation. Physics of PET and PET-CT

Use of imaging systems for patient modeling - PET and SPECT

Intensity-Modulated and Image- Guided Radiation Treatment. Outline. Conformal Radiation Treatment

PET-CT for radiotherapy planning in lung cancer: current recommendations and future directions

POSITRON EMISSION TOMOGRAPHY PHANTOM STUDIES FOR RADIATION THERAPY TARGET DELINEATION MICHAEL VINTSON LAWRENCE

Positron Emission Tomography in Lung Cancer

IAEA RTC. PET/CT and Planning of Radiation Therapy 20/08/2014. Sarajevo (Bosnia & Hercegovina) Tuesday, June :40-12:20 a.

Pitfalls and Remedies in PET/CT imaging for RT planning

Everything else being equal, thinner slices produce better images Balance between large amounts of data and image quality. 1.2 mm Slices.

Molecular Imaging and Cancer

Use of molecular and functional imaging for treatment planning The Good, The Bad and The Ugly

4D PET: promises and limitations

45 Hr PET Registry Review Course

PET/CT Frequently Asked Questions

Principles of nuclear metabolic imaging. Prof. Dr. Alex Maes AZ Groeninge Kortrijk and KULeuven Belgium

The Role of PET / CT in Lung Cancer Staging

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

Los Angeles Radiological Society 62 nd Annual Midwinter Radiology Conference January 31, 2010

POSITRON EMISSION TOMOGRAPHY (PET)

Title: TC simulation versus TC/PET simulation for radiotherapy in lung cancer: volumes comparison in two cases.

PET is Underutilized in Oncology. Brent D. Murphy, MS, DABR

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

Appendix 1: Regional Lymph Node Stations for Staging Esophageal Cancer

A. DeWerd. Michael Kissick. Larry. Editors. The Phantoms of Medical. and Health Physics. Devices for Research and Development.

ASTRO econtouring for Lymphoma. Stephanie Terezakis, MD

8/10/2016. PET/CT for Tumor Response. Staging and restaging Early treatment response evaluation Guiding biopsy

An Introduction to PET Imaging in Oncology

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor

Typical PET Image. Elevated uptake of FDG (related to metabolism) Lung cancer example: But where exactly is it located?

Biases affecting tumor uptake measurements in FDG-PET

New Visions in PET: Surgical Decision Making and PET/CT

Breast Cancer PET/CT Imaging Protocol

PET IMAGING (POSITRON EMISSION TOMOGRAPY) FACT SHEET

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

PET in Radiation Therapy. Outline. Tumor Segmentation in PET and in Multimodality Images for Radiation Therapy. 1. Tumor segmentation in PET

F NaF PET/CT in the Evaluation of Skeletal Malignancy

Defining Target Volumes and Organs at Risk: a common language

Nuclear Medicine and PET. D. J. McMahon rev cewood

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Corporate Medical Policy

MEDICAL MANAGEMENT POLICY

Role of radiotherapy in the treatment of lymphoma in Lena Specht MD DMSc Professor of Oncology Rigshospitalet, University of Copenhagen Denmark

Lung Cancer Imaging. Terence Z. Wong, MD,PhD. Department of Radiology Duke University Medical Center Durham, NC 9/9/09

Breast Cancer. What is breast cancer?

MRI to fit your planning. Philips Panorama HFO Oncology Configuration

Image Fusion, Contouring, and Margins in SRS

Radiology Codes Requiring Authorization*

PET Guidance of Therapy for BNCT and in vivo B-10 imaging

Indications of PET/CT in oncology

Herlev radiation oncology team explains what MRI can bring

Utilisation du PET-FDG pour la définition des volumes cibles en radiothérapie des tumeurs de la sphère cervico-maxillo-faciale: mythe et réalité

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

21 st Century Radiotherapy: State-of-the-art and predicting the future. Clinical applications of PET. PET Imaging

PET/CT in oncology. Positron emission tomography

Radiation treatment planning in lung cancer

MRI Applications in Radiation Oncology:

Index. Surg Oncol Clin N Am 16 (2007) Note: Page numbers of article titles are in boldface type.

Head and Neck Cancer. What is head and neck cancer?

High Tech Imaging Quick Reference Guide

Quantitative Molecular Imaging Using PET/CT to Assess Response to Therapy

This house believes that the use of Functional Imaging for treatment planning of head and neck tumors needs to be carefully considered.

Nuclear Medicine in Oncology

Breast Cancer. What is breast cancer?

Integrated PET/CT systems State of the art and Clinical Applications

An Overview of Clinical PET/CT

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate)

Risk of a second cancer after radiotherapy

Radiotherapy Planning (Contouring Lung Cancer for Radiotherapy dose prescription) Dr Raj K Shrimali

Oncologic Applications of PET Scanning

THE EFFECT OF USING PET-CT FUSION ON TARGET VOLUME DELINEATION AND DOSE TO ORGANS AT RISK IN 3D RADIOTHERAPY PLANNING OF PATIENTS WITH NSSLC

PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING

Changing Paradigms in Radiotherapy

Chapter 7 General conclusions and suggestions for future work

Dosimetry, see MAGIC; Polymer gel dosimetry. Fiducial tracking, see CyberKnife radiosurgery

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

objectives Pitfalls and Pearls in PET/CT imaging Kevin Robinson, DO Assistant Professor Department of Radiology Michigan State University

Image Guided Stereotactic Radiotherapy of the Lung

MEASUREMENT OF EFFECT SOLID TUMOR EXAMPLES

Molecular Imaging and Breast Cancer

Cardiac Imaging Tests

TUMOR HYPOXIA BENCH TO BEDSIDE

What is head and neck cancer? How is head and neck cancer diagnosed and evaluated? How is head and neck cancer treated?

BlueAdvantage SM. & BlueChoice SM Radiology Prior Authorization Program Code List CPT /HCPS

Citation Key for more information see:

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Corporate Medical Policy

Anthem Blue Cross and Blue Shield Virginia Advanced Imaging Procedures Requiring Precertification Revised 02/13/2013

Subject: Image-Guided Radiation Therapy

Learning Objectives. 1. Identify which patients meet criteria for annual lung cancer screening

PINPOINTING RADIATION THERAPY WITH THE PRECISION OF MR.

Patient-Specific QA & QA Process. Sasa Mutic, Ph.D. Washington University School of Medicine

Future upcoming technologies and what audit needs to address

Combined Anatomical and Functional Imaging with Revolution * CT

The Physics of Oesophageal Cancer Radiotherapy

Clinical Implications Of Dose Summation And Adaptation

X-Ray & CT Physics / Clinical CT

Page: 1 of 29. For this policy, PET scanning is discussed for the following 4 applications in oncology:

Transcription:

Positron Emission Tomography for Oncologic Imaging and Treatment J. Daniel Bourland, PhD Department of Radiation Oncology Bioanatomic Imaging and Treatment Program Wake Forest University School of Medicine Winston-Salem, North Carolina, USA bourland@wfubmc.edu Images of cited authors or corporations Outline Physics of PET and PET-CT Oncology Imaging with FDG PET PET and Radiation Treatment Planning Non-FDG PET Oncology Imaging Bioanatomic Imaging and Treatment Summary Work supported in part by research grants from North Carolina Baptist Hospital, Varian Medical Systems, and GE Healthcare Physics of PET and PET-CT PET Radionuclides Coincidence detection of two 0.511 MeV photons Annihilation radiation from positron-electron pair Photon directions at 180 o at annihilation point - different from decay point range of positron Positron emitters with biological compatibility Low Z (typically), proton rich, short half-lives Local production with a cyclotron Radionuclide Fluorine 18 ( 18 F) Carbon 11 ( 11 C) Nitrogen 13 ( 13 N) Oxygen 15 ( 15 O) Rubidium 82 ( 82 Ru) (cardiac) Half-Life 110 min 20 min 10 min 122 sec 75 sec

Coincidences: Detected Events True Scattered Random Adapted from Rohren, Turkington, Coleman, Radiology 2004; 231:305-332 Detectors Subject PET Device Parameters Resolving time detector material Spatial resolution nominally, detector size 4 to 6 mm (voxel side) Temporal resolution acquisition time, gating (?) Number of detectors SNR, spatial resolution Aperture size 70 cm max large bore? 2D or 3D acquisition modes both are volumes Several others, inter-related With Attenuation Correction Correction for attenuation along ray path Methods volume image of patient Nuclide scan or CT-based Without From Rohren, Turkington, Coleman: Radiology 2004; 231:305-332 Oncology Imaging with FDG PET Diagnosis less common Staging - yes Target Definition - developing Radiation treatment Other targeted therapy Re-staging yes Treatment Evaluation developing

Why PET Oncology Imaging? Distribution of activity is imaged Physiology, function, biology Complementary to (~anatomic) CT and MR Increased sensitivity compared to CT alone Indications approved for reimbursement Most approved indications are for oncology Devices available (market saturated?) Image handling toolsets maturing, available (?) MR Radiograph PET-avid tumor registered with CT obtained at the same time Why PET? A Picture of the Patient CT-PET Hybrid Imaging for Tumor Diagnosis and Treatment Planning: (Courtesy General Electric Healthcare) MR Radiograph with bone added - the MR is changed into a CT-like radiograph JD Bourland Example: Non-Small Cell Lung Cancer Diagnosis Staging Re-Staging Example: Colon Cancer Initial Staging Initial Staging Re-Staging From Rohren, Turkington, Coleman: Radiology 2004; 231:305-332 From Rohren, Turkington, Coleman: Radiology 2004; 231:305-332

Example: Head & Neck Cancer Diagnosis Staging Re-Staging From Rohren, Turkington, Coleman: Radiology 2004; 231:305-332 Approved Indications: Oncology FDG PET Cancer Lung Solitary Node Colorectal Lymphoma Esophageal Head/Neck Breast + mets, recur Thyroid Cervical, + mets? Brain Ovarian Diagnosis (Char) Staging Re-Staging Caveat: A summary: Restrictions and latest information on: http://cms.hhs.gov/manuals/103_cov_determ/ncd103c1_part4.pdf Monitoring (Clin Trial) Clinical Imaging (FDG) with PET 18 F-Fluorodeoxyglucose (FDG) only Imaging of tumor glucose metabolism: glycolysis Non-specific imaging agent metabolically active sites Staging, re-staging of lung, breast, colon, cervical, head/neck, melanoma, lymphoma. Some diagnosis. Difficulties with small tumors (< 3 10 mm diameter) Use increasing 200 PET-CT scanners in 2 years* (?) PET-CT hybrid scanners: registration solved *From Bradley, Thorstad, Mutic, et al., IJROBP 59(1):78-86, 2004. PET and Radiation Treatment Planning Main contribution Staging, aka, Target Localization Very important: stage determines treatment approach Binary results: presence/absence of disease, metastasis Dramatic differences binary (?) Treatment mode: reamo, chemo, beamo (EG Shaw) none, one, all three? 10-30% NSCLC patients stage changes Radiation treatment fields: ie, inclusion of nodes Estimation better coverage of target with PET in 30 60% of patients receiving definitive radiation treatment* *From Bradley, Thorstad, Mutic, et al., IJROBP 59(1):78-86, 2004.

Colon Cancer: Possible Treatment Fields Initial Staging Initial Staging Re-Staging Colon Cancer: Possible Treatment Fields Initial Staging Initial Staging Re-Staging Simple Field No Treatment Simple Field Simple Field No Treatment Field Includes Nodal Region Adapted from Rohren, Turkington, Coleman: Radiology 2004; 231:305-332 Adapted from Rohren, Turkington, Coleman: Radiology 2004; 231:305-332 FDG PET and Staging, Localization Change in stage before and after PET-CT From Koshy, Paulino, Howell et al., Head & Neck, 27:6 494-502, 2005. PET and Radiation Treatment Planning Secondary contribution Target Definition Image-based target extent, shape quantitative Important topic Subject of investigation: concepts, methods, tools Secondary contribution Treatment Monitoring Image-based response and evaluation of treatment Important topic Subject of investigation: concepts, methods, tools Secondary to become Primary?

Target Definition FDG PET and Radiation Treatment Change in PTV and prescribed dose Qualitative: Expert clinical review Visual, inclusion of clinical history and data Above background Quantitative: Voxel intensity values 40-50% of peak intensity (above background?) Standardized Uptake Value (SUV) of ROI ie, SUV > 2.5 indicates positive for cancer Region determined by PET, extent by CT From Koshy, Paulino, Howell et al., Head & Neck, 27:6 494-502, 2005. GTV: CT v PET-CT Use of PET-CT may reduce GTV/CTV GTV-CT GTV-PET-CT Process: PET in Radiation Treatment Cancer diagnosis biopsy, imaging Treatment position, immobilization PET imaging in treatment position Expert image review Image transfer DICOM, other? Image registration (if needed) Target localization and definition method TBA? Treatment planning From Schwartz, Ford, Rajendran, et al., Head & Neck 27(6): 478-487, 2005.

Radiation Treatment Planning with PET CT 4 Patient Positioning And Immobilization 1 3 PET 1 These can be separate units or a combined PET-CT 2 Setup reproducibility the primary concern Poor setup reproducibility may require deformable image registration Flat Tabletop Immobilization Device 3-Mode Fiducial Markers 3-Mode Fiducial Markers For face mask patients, markers are attached to the mask For body mould patients, markers are attached to the skin PET CT

PET-CT Image Registration Hybrid PET-CT Scanner Combined helical, multislice CT scanner mated to a PET scanner Possibly three scans acquired during procedure Attenuation correction CT PET: 2D or 3D acquisition Treatment planning CT, with contrast if necessary Return To Target Definition Radiation Treatment Planning with PET Target Definition Quantitative: Voxel intensity values 40-50% of peak intensity (above background?) Standardized Uptake Value (SUV) of ROI ie, SUV > 2.5 indicates positive for cancer Region determined by PET, extent by CT Calibrated method for scanner? Depending on image window and level setting, target volume can change by 50% SUV not a part of DICOM data SUV utility unclear

Standardized Uptake Value (SUV) Semi-quantitative measure of glucose metabolism Essentially: Average voxel value within an ROI normalized by activity and body weight Relative to an individual patient Malignancy v benign Tumor grade Treatment response Prognosis (?) biological models In part from Rohren, Turkington, Coleman: Radiology 2004; 231:305-332 SUV Limitations Semi-quantitative measure of glucose metabolism Definition of the ROI (CT? self-referencing), and its location over time (ie, scan to scan) Tumor heterogeneity: necrosis, variable grade Tumor volume changes with time Small tumors difficult to image (size resolution) Glucose load? Consensus? Quantification of FDG uptake? In part from Greven: Sem Rad Onc 14:2, 2004. SUV Phantom Investigation Threshold SUV-function can be determined via measurement to enable definition of an FDG PET-GTV Depends on mean target SUV May be better than constant-valued SUV (ie, 2.5 or 50% FWHM) Difficult for low SUVs (SUV < 2.0) Tested in patient population From Black, Grills, Kestin, et al., IJROBP 60(4):1272-1282, 2004 Approaches to PET-Target Definition 40-50% of peak intensity (above background?) Standardized Uptake Value (SUV) of ROI ie, SUV > 2.5 indicates positive for cancer Region determined by PET, extent by CT Calibrated method for scanner? In common digital image with voxel intensities

The Digital Contour A Threshold Process The Digital Contour A Threshold Process Peak Peak Threshold Value Target Width Threshold Value Target Width Bkg Bkg FDG PET and CT Image Registration FDG PET and CT Image Registration Original CT defined PTV Paraesophageal node seen on PET, but not CT Courtesy of A Kirov, MSKCC Courtesy of A Kirov, MSKCC

Patient Tumor Volume PET/CT Volume Irradiated PET/CT Lung V20 PET/CT Comments 1 3.25 1.25 1.11 unsuspected chest wall disease on PET 2 5.52 1.52 1.45 unsuspected supraclavicular node on PET 3 5.05 1.5 1.18 more extensive mediastinal disease on PET than CT 4 1.19 1 0.86 good correlation between CT and PET 5 0.48 0.83 0.66 atalectasis identified in area suspicious for tumor on CT 6 1.75 1.2 1.37 larger tumor mass on PET than identified on CT 7 1.5 1.6 1.25 larger tumor mass on PET than identified on CT 8 3.83 1.8 1.5 unsuspected superior mediastinal disease on PET 9 1.34 1.29 1 slightly larger tumor mass on PET than identified on CT 10 4.49 1.25 1.48 more extensive nodal involvement/ bone involvement on PET 11 2.55 1.03 1.03 unsuspected superior mediastinal disease on PET 12 2.33 1.13 1.19 larger tumor mass on PET than identified on CT 13 0.92 1 1 atalectasis identified in area suspicious for tumor on CT 14 9.57 1.08 1.31 extensive mediastinal disease, additional parenchymal nodule on 15 1.65 1 1 fairly good correlation between CT and PET mean 3.03 1.23 1.16 stdev 1.13 0.18 0.08 sem 0.29 0.05 0.02 12 10 8 6 4 2 0 Tumor Volume PET/CT Volume Irradiated PET/CT Lung V20 PET/CT Target Volume Differences - New target area not previously covered - Change in target volume - Union of CT + PET GTV-CT and GTV-PET Other Issue: Inter-observer Variation PET CT Tomlinson, Russo, Bourland: ASTRO 2000 From Caldwell, Mah, Ung, et al., IJROBP 51(4):923-931, 2001 Other Issue: PET Artifact Near a Cavity PET in Brachytherapy Applicators, critical structures and tumor contoured Software places sources at predefined positions with respect to applicator tips Source strengths and treatments times optimized Alternatively, deliver conventional dose distributions Tilted Coronal View 65 cgy/hr Target Tandem RT planning contours displayed on registered CT (left) and PET (right) images from a PET/CT scan, showing PET signal appearing to originate from a ~1 cm wide air cavity inside the trachea. Courtesy of A Kirov, MSKCC 18 cgy/hr

Non-FDG PET Oncology Imaging Biological and Molecular Imaging Hypoxia: F-misonidazole (U Wash) Hypoxia: Cu-ATSM (Wash U) Proliferation: C-Thymidine (U Wash) Blood flow: Water Others: permeability, DNA synthesis, tumor receptors, chemotherapy drugs Radiopharmaceutical development important Does It Matter? Indicators of Cancer Diagnosis, Treatment, and Evaluation can be Molecularly Imaged Hypoxia and indicators/results of hypoxia Cell proliferation and cell cycle sensitivity Apopotosis Growth factors, stroma and vascular environments Radiosensitivity and radioresistance Molecular Signature IMT (Thymidine)-SPECT/MRI: GBM Proliferation (from Grosu, Weber et al, Technical University of Munich) Methionine PET: Anaplastic Astro From Weber, Grosu* et al, Technical University of Munich MRT (T2) FDG-PET Methionine-PET * Grosu et al, ASTRO 2002: MET PET delivered additional information in 79% patients with resected gliomas

Bioanatomic Imaging and Treatment BAIT Wake Forest University Can tumor biology be imaged? MR, MRs, PET, SPECT, fmr Can image-based tumor biology direct biologically correct cancer therapy RTP has been/is anatomically based What will molecular images contribute? Paradigm Shift for Radiation Oncology a shift to Biological and Molecular Target Volumes Bio-physical Modeling Custom Dose Coverage of Target Volumes made possible by Quantitative Use of Bio-molecular Images Hi-Tech Radiation Treatment, called: Intensity Modulated Radiation Treatment JD Bourland Bioanatomic Brain Tumor Protocol Goal: Measure Spatial Distribution of Hypoxia IRB approved protocol 5 patients, 1 o CNS (GBM) CT + MR + PET PET Perfusion: O-15 H 2 O PET Hypoxia: F-18 F- Misonidazole PET Scan Sequence Attenuation, ring source Timing; 50 mci O-15 H 2 O Perf; 2 x 50 mci O-15 H 2 O Hypox 1; 10 mci F-18 miso Hypox 2; 10 mci F-18 miso MR1 Patient 3: Bioanatomic Imaging F18 Misonidazole PET and MRI Spectroscopy MR2 Tumor region Applications 3D RTP (IMRT) Biologically targeted therapy Response assessment MR3 MR Spectroscopy PET Hypoxia Hypoxic region Spectroscopic sample region Ch/Cr NAA Lact JD Bourland

Conformal Radiation Treatment conventional treatment (rectangular dose distribution) conformal (dose matches target shape) The Ideal Dose Distribution? A New Model The target model is wrong! 100 Dose Non-homogeneous dose distribution Higher Dose bioanatomic IMRT (dose matches target shape and biology) Is the target model wrong? 0 Position Lower Dose JD Bourland, Wake Forest University PET Imaging and Biological Models Mathematical Representations of Effect Model Generation Theoretical models: bio-physio-molecular principles Micro models: fit of bio-molecular observations Macro models: fit of clinical observations Model Application Predictive models: guidance of therapeutic decisions Predictive models: estimation of prognosis Image-Based: what does voxel intensity mean? JD Bourland, Wake Forest University Biological Modeling: Dose Function Histogram SPECT Lung Perfusion, Normal Tissue Injury pre-treatment post-treatment JD Bourland, Wake Forest University (Munley/Marks, Duke/WFU) Anatomic Percent Function 100 90 80 70 60 50 40 30 20 10 0 objective Normal lung sparing 0 10 20 29 39 49 59 Dose (Gy) Bioanatomic anatomic bioanatomic

11C-Methionine PET Regional Salivary Gland Function 11C-Methionine PET Regional Salivary Gland Function Right side: mean dose 30Gy Left side: mean dose 57 Gy a) Volume of distribution of 11C-methionine b) K, the net metabolic clearance of 11C-methionine Buus et al, Radiotherapy and Oncology 73:289-296, (2004). Buus et al, Radiotherapy and Oncology 73:289-296, (2004). The Digital Imaging Process Acquisition Mode/Device Post Acquisition Processing Manipulation/Application Secondary Image Generation Display MR (MR MRs, pmr, fmr); PET (FDG, hypoxia, perfusion, proliferation); SPECT; Optical (in vivo microscopy, tomography) Reconstruction, Transfer Classification, Localization, Registration, Segmentation, Measurement [spatial, intensity], Physical and Biological Models DRRs, Composite Images Observation, Evaluation Digital Imaging and RTP Image Content and Pixel Meaning Images provide 3D and 4D information. The challenge is to extract the morphologic, pathologic, biologic, physiologic, or metabolic meaning of the image numbers. Imaging Science Tasks Classification/Estimation Hypothesis of data, (tumor, kidney) Sample object image: SNR, contrast, CT: electron density (attenuation, dose) MR: proton density, magnetic moment (?) PET: radionuclide distribution (physiology?) SPECT: radionuclide distribution (physiology?) Other: What does a pixel mean? Imaging Science Tasks Four outcomes True positive (TP); Sensitivity (TPF) False positive (FP); Specificity (1 - FPF) True negative (TN) False negative (FN)

Limitations and Opportunities PET Oncology Imaging And Treatment Image resolution, SNR, specificity, sensitivity Scan speed, effects of motion, gating FDG and radiopharmaceutical development Image registration/image processing tools Kinetic modeling SUVs, equivalent reference values Patient positioning RTP target delineation RTP dose compartments and resolution Why Image Patients? A Picture of the Patient The patient is his own best representation An image set is only an approximation Do we know what the numbers mean? A picture tells A collage showing where tumor has regressed, stayed the same, or grown. JD Bourland Summary Physics of PET and PET-CT Oncology Imaging with FDG PET PET and Radiation Treatment Planning Target definition Non-FDG PET Oncology Imaging Limitations and opportunities with PET Paradigm shift for Radiation Oncology Molecular and Bioanatomical targets/volumes; digital images Biologically optimized dose distributions; biological models Growth of PET, PET-CT in the RadOnc clinic Acknowledgements Work supported in part by research grants from North Carolina Baptist Hospital, Varian Medical Systems, and GE Healthcare Sasa Mutic, Washington University in St. Louis Assen Kirov, Memorial Sloan Kettering, NY, NY