Comparative Study for the Efficacy of Small Bore Catheter in the Patients with Iatrogenic Pneumothorax

Similar documents
The diagnosis and management of pneumothorax

Pneumothorax Management in John Foote MD CCFP(EM) Chair of CFPC Community of Practice Emergency Medicine

Cerebral Air Embolism Following Pigtail Catheter Insertion for Pleural Fluid Drainage

What is cpt code for chest tube placement

The Pigtail Catheter for Pleural Drainage: A Less Invasive Alternative to Tube Thoracostomy

The Pigtail Catheter for Pleural Drainage: A Less Invasive Alternative to Tube Thoracostomy

Easwaramangalath Venugopal Krishnakumar*, Muhammed Anas, Davis Kizhakkepeedika Rennis, Vadakken Devassy Thomas, Babu Vinod

Pneumothorax and Chest Tube Problems

Pneumothorax. Defined as air in the pleural space which can occur through a number of mechanisms

British Thoracic Society guidelines for the management of spontaneous pneumothorax: do

Identification of Factors Affecting Complications of Chest Drains in Menoufiya University Hospital

S and secondary spontaneous pneumothorax. Primary

Thoraxdrainage SGP Jahresversammlung 2016, Lausanne

A comparison between two types of indwelling pleural catheters for management of malignant pleural effusions

North West London Trauma Network. Management of Chest Drains

Effectiveness of Ambulatory Tru-Close Thoracic Vent for the Outpatient Management of Pneumothorax: A Prospective Pilot Study

BTS GUIDELINES FOR THE MANAGEMENT OF SPONTANEOUS PNEUMOTHRAX 2003

Ultrasound-guided Aspiration of the Iatrogenic Pneumothorax Caused by Paravertebral Block

Risk of Pneumothorax in Post Lung Biopsy Patients: Is Short-Term Monitoring Necessary?

Influence of old pulmonary tuberculosis on the management of secondary spontaneous pneumothorax in patients over the age of 70 years

Manual aspiration in the biopsy-side down position to deal with delayed pneumothorax after lung biopsy

Factors Affecting Pneumonia Occurring to Patients with Multiple Rib Fractures

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

Is severe re-expansion pulmonary edema still a lethal complication of closed thoracostomy or thoracic surgery?

Bilateral Simultaneous Pleurodesis by Median Sternotomy for Spontaneous Pneumo thorax

Aspiration versus tube drainage in primary spontaneous pneumothorax: a randomised study

In patients with solid organ cancers, malignant pleural effusion

Pneumothorax Post CT-guided Fine Needle Aspiration Biopsy for Lung Nodules: Our Experience in King Hussein Medical Center

Min Hur, Eun-Hee Kim, In-Kyung Song, Ji-Hyun Lee, Hee-Soo Kim, and Jin Tae Kim INTRODUCTION. Clinical Research

BELLWORK page 343. Apnea Dyspnea Hypoxia pneumo pulmonary Remember the structures of the respiratory system 1

Purpose This Operating Procedure provides guidance on the management of blunt thoracic traumatic injury

Medical Thoracoscopy When to Choose Over a General Anaesthetic VATS

Respiratory complications are a major contributing factor to postoperative morbidity and mortality in pediatric liver transplantation.

Implication of pigtail catheter vs chest tube drainage

Pneumothorax lecture no. 3

JMSCR Volume 03 Issue 04 Page April 2015

How to secure the connection between thoracostomy tube and drainage system?

Conservative management of spontaneous

Persistent Spontaneous Pneumothorax for Four Years: A Case Report

Pneumothorax ANITA SHARMA. Pneumothorax 813. Classification INTRICACIES OF PNEUMOTHORAX

Intrapleural minocycline following simple aspiration for initial treatment of primary spontaneous pneumothorax

Lines and tubes. 1 Nasogastric tubes Endotracheal tubes Central lines Permanent pacemakers Chest drains...

Post Pneumonic Empyema: Is There Still a Role for Surgery?

EVALUATE DATA IN THE PATIENT RECORD

Early Outcomes of Single-Port Video-Assisted Thoracic Surgery for Primary Spontaneous Pneumothorax

(SKILLS/HANDS-ON) Chest Tubes. Rebecca Carman, MSN, ACNP-BC. Amanda Shumway, PA-C. Thomas W. White, MD, FACS, CNSC

Gold Anchor enables safe reach to inner organs

Spontaneous pneumothorax

Problem Based Learning Session. Mr Robinson is a 67 year old man. He visits the GP as he has had a cough and fever for 5 days.

CT-Guided Lung Biopsies: Pleural Blood Patching Reduces the Rate of Chest Tube Placement for Postbiopsy Pneumothorax

Procedure: Chest Tube Placement (Tube Thoracostomy)

Clinical Study The Incidence and Management of Pleural Injuries Occurring during Open Nephrectomy

DISCLOSURE. Dr. Plummer has declared no conflicts of interest related to the content of his presentation.

Indwelling Pleural Catheters in Malignant and Non-Malignant Disease

ASEPT. Pleural Drainage System INSTRUCTIONS FOR USE REF LOT STERILE EO. Manufactured for: 824 Twelfth Avenue Bethlehem, PA

Esophageal Perforation

Learning Curve of a Young Surgeon s Video-assisted Thoracic Surgery Lobectomy during His First Year Experience in Newly Established Institution

ASEPT System ASEPT Pleural/Peritoneal. ASEPT Drainage Kits (600 ml ml) Accessories. Quality and Experience

CT-guided transthoracic needle biopsy induced complications - how to cut back?

Role of Simple Needle Aspiration in the Management of Pneumothorax

EMPYEMA. Catheter Based Treatment vs. VATS. UCHSC Department of Surgery Grand Rounds August 27 th, Jeremy Hedges, M.D.

Specific Basic Standards for Osteopathic Fellowship Training in Pulmonary / Critical Care Medicine

Incidence and risk factors of iatrogenic pneumothorax after thoracentesis in emergency department settings

Primary spontaneous pneumothorax most commonly

ASEPT -System ASEPT Pleural/Peritoneal. ASEPT Drainage Kits (600 ml + 1,200 ml) Accessories. Quality and Experience

Critical Care Monitoring. Indications. Pleural Space. Chest Drainage. Chest Drainage. Potential space. Contains fluid lubricant

Thoracostomy: An Update on Imaging Features and Current Surgical Practice

Pneumothorax Sets Wayne Pneumothorax Sets Peters Pneumothorax Set Landers Pneumothorax Set... 7

ASEPT. Pleural Drainage System INSTRUCTIONS FOR USE. Rx only REF LOT. STERILE EO Sterilized using ethylene oxide

Trust Guidelines. Title: Guidelines for chest drain insertion

Diagnostic Approach to Pleural Effusion

F: Respiratory Care. College of Licensed Practical Nurses of Alberta, Competency Profile for LPNs, 3rd Ed. 59

Diaphragmatic Hernia Presenting With Intrathoracic Perforation

Alper Toker, MD. VATS decortication. Istanbul University, Istanbul Medical School Department of Thoracic Surgery

& Guidelines. For The Management Of. Pneumothorax

Management of Emergency Department Patients With Primary Spontaneous Pneumothorax: Needle Aspiration or Tube Thoracostomy?

Information for Patients

H: Respiratory Care. Saskatchewan Association of Licensed Practical Nurses, Competency Profile for LPNs, 3rd Ed. 79

Outcomes & Clinical Trials Update: Empyema & NEC

SURGERY FOR GIANT BULLOUS EMPHYSEMA

Original Research. Mummadi, Srinivas; Pack, Sasheen; Hahn, Peter

The Roles and Responsibilities of Nurse Before and After Laparoscopic Urologic Surgery

Thoracic trauma, both in isolation and as part of the. Does size matter? A prospective analysis of versus French chest tube size in trauma

Simplified stepwise management of primary spontaneous pneumothorax: a pilot study

Optimal technique for the removal of chest tubes after pulmonary resection

58 th Tri-State Consecutive Case Conference on Lung Disease

Phil. J. Internal Medicine, 47: 77-81, March-April, 2009 INCIDENCE OF PNEUMOTHORAX AFTER THORACENTESIS AND FACTORS ASSOCIATED WITH ITS OCCURRENCE

A prospective, randomised trial of pneumothorax therapy: Manual aspiration versus conventional chest tube drainage

Top Tips for Pleural Disease in 2012

Conservative versus invasive treatment of primary spontaneous pneumothorax: a retrospective cohort study

APPROACH TO PLEURAL EFFUSIONS. Raed Alalawi, MD, FCCP

Diagnostic and Complication Rate of Image-guided Lung Biopsies in Raigmore Hospital, Inverness: A Retrospective Re-audit

Correspondence should be addressed to Haris Kalatoudis;

Original Article. Abstract

Routine chest drainage after patent ductus arteriosis ligation is not necessary

Surgery has been proven to be beneficial for selected patients

DISCOVER NEW HORIZONS IN FLUID DRAINAGE. Bringing Safety and Convenience to Fluid Drainage Management

Kathmandu University Medical Journal (2007), Vol. 5, No. 4, Issue 20,

Postoperative chest x-ray May Mats Beckman Emergency Radiology. Shutter use!

Chemical Pleurodesis Using Doxycycline and Viscum album Extract

Transcription:

Korean J Thorac Cardiovasc Surg 20;44:48-422 ISSN: 2233-60X (Print) ISSN: 2093-656 (Online) Clinical Research http://dx.doi.org/0.5090/kjtcs.20.44.6.48 Comparative Study for the Efficacy of Small Bore Catheter in the Patients with Iatrogenic Pneumothorax Tae Ook Noh, M.D.*, Kyoung Min Ryu, M.D.** Background: It has recently become most general to use the small bore catheter to perform closed thoracostomy in treating iatrogenic pneumothorax. This study was performed for analysis of the efficacy of treatment methods by using small bore catheter such as 7 F (French) central venous catheter, 0 F trocar catheter, 2 F pigtail catheter and for analysis of the appropriateness of each procedure. Materials and Methods: From March 2007 to February 200, Retrospective review of 05 patients with iatrogenic pneumothorax, who underwent closed thoracostomy by using small bore catheter, was performed. We analyzed the total success rate for all procedures as well as the individual success rate for each procedure, and analyzed the cause of failure, additional treatment method for failure, influential factors of treatment outcome, and complications. Results: The most common causes of iatrogenic pneumothorax were presented as percutaneous needle aspiration(pcna) in 48 cases (45.7%), and central venous catheterization in 26 cases (24.8%). The mean interval to thoracostomy after the procedure was measured as 5.2 hours ( 34 hours). success rate of thoracostomy was 78.%. The success rate was not significantly difference by tube type, with 7 F central venous catheter as 80%, 0 F trocar catheter as 8.6%, and 2 F pigtail catheter as 7%. Twenty one out of 23 patients that had failed with small bore catheter treatment added large bore conventional thoracostomy, and another 2 patients received surgery. The causes for treatment failure were presented as continuous air leakage in 2 cases (52.2%) and tube malfunction in 7 cases (30%). The causes for failure did not present significant differences by tube type. Statistically significant factors affecting treatment performance were not discovered. Conclusion: Closed thoracostomy with small bore catheter proved to be effective for iatrogenic pneumothorax. The success rate was not difference for each type. However, it is important to select the appropriate catheter by considering the patient status, pneumothorax aspect, and medical personnel in the cardiothoracic surgery department of the relevant hospital. Key words:. Pneumothorax 2. Iatrogenic disease 3. Thoracostomy 4. Catheter, indwelling INTRODUCTION Iatrogenic pneumothorax refers to the pneumothorax generated after diagnostic or treatment procedure and is a complication commonly observed at various clinical fields. Recently, the incidence of iatrogenic pneumothorax is in- *Department of Thoracic and Cardiovasular Surgery, Dankook University Hospital **Department of Thoracic and Cardiovascular Surgery, Dankook University College of Medicine Received: July 8, 20, Revised: August, 20, Accepted: September 7, 20 Corresponding author: Kyoung Min Ryu, Department of Thoracic and Cardiovascular Surgery, Dankook University College of Medicine, Anseo-dong, Cheonan 330-75, Korea (Tel) 82-4-550-6269 (Fax) 82-4-550-3983 (E-mail) cskmin@naver.com C The Korean Society for Thoracic and Cardiovascular Surgery. 20. All right reserved. CC This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 48

Small Bore Catheter for Iatrogenic Pneumothorax creased with the development of invasive procedures for various diagnostic or treatment purposes []. Although conventional thoracostomy with large bore chest tube had been used for treating iatrogenic pneumothorax in the past, minimally invasive thoracostomy using various small bore catheters have become more common recently [2-6]. This study was performed for analysis of the treatment efficacy and outcomes of closed thoracostomy by using small bore catheter, such as 7 F central venous catheter, 0 F trocar catheter, fluoroscope guided 4 F pigtail catheter (PCD) for the patients with iatrogenic pneumothorax to evaluate the appropriateness of each procedure. MATERIALS AND METHODS A total of 68 patients were diagnosed and treated for iatrogenic pneumothorax from March 2007 to December 200. In these cases, 05 patients were enrolled in this retrospective study that received closed thoracostomy procedure using small bore catheter. Patients that received conservative treatment, such as oxygen inhalation, and patients generated by barotraumas of mechanical ventilator were excluded from the research. Pneumothorax with more than 20% of thoracic cavity and symptoms such as dyspnea, chest discomfort, subcutaneous emphysema were presented at thoracostomy indication for iatrogenic pneumothorax, and chest tube type was selected by the attending physician. 7-french central venous catheter was inserted by the physician by using the Seldinger method at bed side, while the 0-french trocar catheter was inserted in conventional thoracostomy method by the cardiothoracic surgeon. 4-french pig-tail catheter (PCD) was inserted by the diagnostic radiologist under fluoroscope guid after transferring the patient to the fluoroscope room. All tubes were drained by the underwater seal method and were maintained with low negative pressure suction of approximately 0 5 cmh 2O. The total success rate for all procedures and the individual success rate for each procedure were measured. Cases that succeeded in chest tube removal in the first procedure were regarded successful. Tube removal was performed only in situations without air-leak and after full expansion of lungs had been achieved in the chest X-ray. Also, the reason for failure of treatment, treatment method after failure, influential factors of treatment outcomes and complications were analyzed. All analyses were carried out using statistical software (SPSS version 4.0 for Windows; SPSS, Chicago, IL, USA). Univariate analysis for comparing the continuous variables between groups was performed using independent T-tests, and comparing the categorical variables was performed with χ 2 tests. Differences were considered statistically significant for p values less than 0.05. RESULTS The mean age of the patients was measured as 6.4years (6 9 years), with 58 men and 47 women. Thoracostomy indication was generated after percutaneous needle aspiration (PCNA) in 48 cases (45.7%), central venous catheterization in 26 cases (24.8%), thoracentesis in 9 cases (8.%), and acupuncture in 2 cases (.4%). Pre-procedure underlying lung disease was presented in 93 cases (88.6%), with chronic obstructive pulmonary disease in 23 cases (2.9%) and pneumonia in 23 cases (2.9%). No differences were shown between left and right side. The mean interval to thoracostomy after the invasive procedures was 5.2 hours ( 34 hours) (Table ). As 82 of 05 patients were treated by using small bore catheter at the first procedure, the total success rate was measured as 78.%, and the success rate did not present significant differences for tube type (Table 2). Large bore conventional thoracostomy was added to 2 of 23 patients that did not achieve successful air reduction, and the surgery was executed to another 2 patients. 7 out of 2 patients that received additional thoracostomy with conventional large bore chest tube achieved treatment without additional procedure, while 4 patients received chemical pleurodesis due to continued air-leakage. of the 2 patients that received the surgery was a patient with pneumothorax after PCNA and had received surgery for lung cancer diagnosed during drainage. The other patient received emergency surgery for hemopneumothorax (Fig. ). All of the surgery was performed by VATS. None of the patients had received surgery for continued air-leakage in iatrogenic pneumothorax. The causes of treatment failure were presented as continuous air leakage in 49

Tae Ook Noh and Kyoung Min Ryu iatrogenic pneumo- Table. Characteristics in 05 episode of thorax Characteristics Patient no. (%) Age (years) Sex (male/female) Pneumothroax side (Rt/Lt) Interval from procedure to thoracostomy (hour) Localization Diffuse Loculated Thoracostomy indication Centeral venous catheterization PCNA Acupuncture Thoracentesis Underlying lung disease None COPD Pneumonia ARDS ILD Lung cancer Tube indwelling period (day) 6.4±6.7 (6 9) 58/47 46/59 (43.8%/56.2%) 5.27±5. ( 34) 79 (75%) 26 (25%) 26 (24.8%) 48 (45.7) 2 (.4%) 9 (8.%) 2 (.4%) 23 (2.9%) 23 (2.9%) 7 (6.2%) 5 (4.3%) (0.5%) 8.9±5.2 (2 28) PCNA=Percutaneous needle aspiration; COPD=Chronic obstructive pulmonary disease; ARDS=Acute respiratory distress syndrome; ILD=Interstitial lung disease. Table 2. Comprasion of success rate according to tube type Type N Success Failure p-value 7 Fr central venous catheter 0 Fr trocar catehter 2 Fr pig-tail catheter 25 49 3 05 20 (80%) 40 (8.6%) 22 (7%) 82 (78.%) 5 (20%) 9 (8.4%) 9 (29%) 23 (2.9%) 0.54 2 cases (52.2%) and tube malfunction in 7 cases (30%). Causes for treatment failure did not present differences for each tube type (Table 3). According to analysis on influential factors of treatment outcomes, it was presented that success rate was not affected by age, sex, pneumothorax amount, thoracostomy indication, underlying lung disease, or ventilator apply. Although success rate tended to be decreased with longer interval from procedure to thoracostomy, it did not show statistical significance (Table 4). Fig.. Flow chart represent the treatment outcomes in 05 episode of iatrogenic pneumothorax. Table 3. Cause of treatment failure Cause Continuous air leakage Pneumothorax progression Tube malfunction Other CVP (7 Fr) 2 0 3 0 5 (2.7%) Trocar (0 Fr) 6 9 (39.%) PCD (2 Fr) 4 3 9 (39.%) 2 (52.2%) 2 (8.7%) 7 (30.4%) 2 (8.7%) 23 CVP=Central venous pressure; PCD=Percutaneous drainage (pig-tail catheter). The mean tube indwelling period was measured as 8.9 days (2 28 days). Complications were generated in 3 cases (2.9%), which were chest tube site infection in all. DISCUSSION The use of small bore catheter for pneumothorax treatment was first reported by Sargent and Turner in 970 regarding the use of 9-french Teflon catheter based on Trocar technique in 20 iatrogenic pneumothorax patients after percutaneous needle aspiration [3]. Afterward, 5.5 6 French catheter was used in iatrogenic pneumothorax to present 80 95% success rate [7-9]. The initial treatment of pneumothorax based on use of small bore catheter is reported as the most recent trend. Small bore chest tubes of various types and are used 420

Small Bore Catheter for Iatrogenic Pneumothorax Table 4. Comparasion of successful and failed thoracostomy in 05 episode of iatrogenic pneumothorax Parameters Success Failure p-value Age Sex Pneumothorax amount <50% >50% Tension Interval from procedure to thoracostomy (hours) Indication Centeral venous catheterization PCNA Acupuncture Thoracentesis Underlying lung disease None COPD Pneumonia ARDS ILD Lung cancer Ventilator Not apply Apply 6. 48/34 36 (72.0%) 3 (86/%) 5 (78.9%) 4.4 20 (76.9%) 35 (72.9%) (9.7%) 6 (84.2%) (9.7%) 8 (78.3%) 9 (82.6%) (64.7%) 0 (66.7%) 0 (90.9%) 6 (80.3%) 2 (72.4%) 62.4 0/3 4 (28.0%) 5 (3.9%) 4 (2.9%) 6.9 6 (23.%) 3 (27.%) (8.3%) 3 (5.8%) (8.3%) 5 (2.7%) 4 (7.4%) 6 (35.3%) 5 (33.3%) (9.%) 5 (9.7%) 8 (27.6%) 0.59 0.239 0.294 0.06 0.427 0.446 0.268 PCNA=Percutaneous needle aspiration; COPD=Chronic obstructive pulmonary disease; ARDS=Acute respiratory distress syndrome; ILD=Interstitial lung disease. not only in iatrogenic pneumothorax but also in spontaneous pneumothorax to report results comparable to the treatment based on the use of conventional large bore chest tube, such as more than 20-french. Ryu et al. [6] presented 77% treatment success rate for primary spontaneous pneumothorax using 7-french catheter commonly used in central venous catheterization, while Park et al. [0] reported that the use of 8-french catheter (Pleuracan R, B. Braun, Melsungen, Germany) in primary spontaneous pneumothorax patients do not present differences in clinical efficacy when compared with large bore chest tube thoracostomy and is rather more comfortable for patients as the use of intravenous analgesics is reduced. Liu et al. [] reported that the insertion of fluoroscope-guided pigtail tube in spontaneous pneumothorax treatment did not present differences in tube indwelling period, air-reduction rate, hospital stay when compared with conventional thoracostomy and also decreased restrictions in activity and presented less complications when compared with large bore tube. The mean success rate of this study was analyzed as 78.% and did not show differences with most other reports. Differences were not presented in success rate between use of 7-french, 0-french, 2-french small bore catheters. The advantages of using small bore catheter include convenient procedure, lower possibility of complications which can be generated by invasive procedure, less pain and fear experienced by patients from procedure, and less scar after procedure. Each small bore catheter had individual advantages and disadvantages. The procedure can be easy to perform in use of 7-french catheter as insertion is achieved by using the seldinger technique. On the other hand, line kinking may be generated to cause tube malfunction in the use of 7-french catheter [5,6]. The 0-french thoracic catheter insertion using trocar technique is a procedure that can overcome such disadvantage of 7-french catheter. This method facilitates bed side procedure and presents little tube malfunction. However, lung damage may be exerted on patients with severe adhesion and thus require careful manipulation [0]. We experienced this complication on one patient during the research period. As a solution, large bore thoracostomy was added and chemical pleurodesis was conducted on this patient. As the fluoroscope-guided pigtail catheter insertion achieves treatment in the accurate space, it is advantageous in that it can be easily applied in pneumothorax loculated in locations that are difficult to access or in areas with adhesion. On the other hand, a skilled diagnostic radiology doctor is required and patients experience greater anxiety as they must be transferred to the fluoroscope room due to difficulties in achieving bed side treatment. Before March 2007, treatment protocol for iatrogenic pneumothorax of our hospital was achieved by conducting conventional thoracoscomy by using 20 28 french chest tube. Afterward, thoracostomy using small bore catheter was performed for initial treatment. Currently, 0-french thoracic catheter insertion is preferentially considered for the initial treatment protocol of iatrogenic pneumothorax. If immediate treatment is required for patients with serious symptoms or if the cardiothoracic surgeon is absent in place, the attending 42

Tae Ook Noh and Kyoung Min Ryu doctor is responsible for performing 7-french central venous catheter insertion. 2-french pigtail catheter is executed by the diagnostic department for loculated pneumothorax. To increase the success rate of treatment, chest X-rays must be used to check the existence of pneumothorax after performing procedures that present possible occurrence of iatrogenic pneumothorax. If the patient presents dyspnea, chest discomfort, or subcutaneous emphysema after procedure, chest X-rays must be immediately inspected. In this study, the success rate tended to be decreased with longer interval from procedure to thoracostomy, but it did not show statistical significance. CONCLUSION Thoracostomy with small bore catheter proved to be effective for iatrogenic pneumothorax. Difference in success rate was not presented by type. However, appropriate catheter must be selected by considering patient condition, pneumothorax aspect, and availability of medical personnel of cardiothoracic surgery department in the relevant hospital. REFERENCES. Khan MF, Straub R, Moghaddam SR, et al. Variables affecting the risk of pneumothorax and intrapulmonal hemorrhage in CT-guided transthoracic biopsy. Eur Radiol 2008;8:356-63. 2. Henry M, Arnold T, Harvey J; Pleural Diseases Group, Standards of Care Committee, British Thoracic Society. BTS guidelines for the management of spontaneous pneumothorax. Thorax 2003;58(Suppl 2):ii39-52. 3. Sargent EN, Turner AF. Emergency treatment of pneumothorax. A simple catheter technique for use in the radiology department. Am J Roentgenol Radium Ther Nucl Med 970; 09:53-5. 4. Lin YC, Tu CY, Liang SJ, et al. Pigtail catheter for the management of pneumothorax in mechanically ventilated patients. Am J Emerg Med 200;28:466-7. 5. Cho S, Lee EB. Management of primary and secondary pneumothorax using a small-bore thoracic catheter. Interact Cardiovasc Thorac Surg 200;:46-9. 6. Ryu KM, Jung ES, Cho SK, Sung SW, Jheon S. Clinical efficacy of 7-French catheter for initial treatment of primary spontaneous pneumothorax. Korean J Thorac Cardiovasc Surg 2006;39:394-8. 7. Crouch JD, Keagy BA, Delany DJ. "Pigtail" catheter drainage in thoracic surgery. Am Rev Respir Dis 987;36: 74-5. 8. Conces DJ Jr, Tarver RD, Gray WC, Pearcy EA. Treatment of pneumothoraces utilizing small caliber chest tubes. Chest 988;94:55-7. 9. Light RW. Management of spontaneous pneumothorax. Am Rev Respir Dis 993;48:245-8. 0. Park JS, Lee JI, Hwang YJ, et al. Treatment of primary spontaneous pneumothorax using a commercialized 8-French catheter (Pleuracan(R)). Korean J Thorac Cardiovasc Surg 2007;40:292-6.. Liu CM, Hang LW, Chen WK, Hsia TC, Hsu WH. Pigtail tube drainage in the treatment of spontaneous pneumothorax. Am J Emerg Med 2003;2:24-4. 422