Radiology Rounds A Newsletter for Referring Physicians Massachusetts General Hospital Department of Radiology

Similar documents
Multi-detector CT in the pre-operative assessment of live donors for liver transplantation

Journal of American Science 2014;10(2)

Nasogastric tube. Stomach. Pylorus. Duodenum 1. Duodenum 2. Duodenum 3. Duodenum 4

Variations in Surgical Anatomy of the Portal Vein in Living Donor Liver Transplantation

Renal vascular evaluation with 64 Multislice Computerized Tomography Daniela Stoisa, Fabrizzio E. Galiano, Andrés Quaranta, Roberto L.

Lab Monitor Images Dissection of the Abdominal Vasculature + Lower Digestive System

Staging Colorectal Cancer

Biliary Anatomy in Living-related Liver Transplantation

Interactive Exhibit On Imaging Updates For Staging And Response Assessment In Pancreatic Cancer

Anatomical and Functional MRI of the Pancreas

Liver Transplantation in Children: Techniques and What the Surgeon Wants to Know from Imaging

Newcastle HPB MDM updated radiology imaging protocol recommendations. Author Dr John Scott. Consultant Radiologist Freeman Hospital

MRI Abdomen Protocol Pancreas/MRCP with Contrast

Radiology Rounds A Newsletter for Referring Physicians Massachusetts General Hospital Department of Radiology

Post-operative complications following hepatobiliary surgery: imaging findings and current radiological treatment options

Vascular Imaging in the Pediatric Abdomen. Jonathan Swanson, MD

University of Colorado Health Sciences Center, Denver Colorado ******************** ******************

Surgical anatomy of the biliary tract

Technique of Split-Liver Transplant for Two Adult Recipients

The Whipple Operation Illustrations

Index words : Bile duct radiography, technology Bile ducts MR Bile ducts surgery Liver, transplantation

Imaging of liver and pancreas

Gemstone Spectral Imaging quantifies lesion characteristics for a confident diagnosis

CT & MRI of Benign Liver Neoplasms Srinivasa R Prasad

Alice Fung, MD Oregon Health and Science University

CT abdomen and pelvis

Variations in hepatic vascularisation: lack of a proper hepatic artery. Two case reports

Normal Sonographic Anatomy

Variations in portal and hepatic vein branching of the liver

HOW I DO IT Feasibility of Bisegmentectomy 7 8 is Independent of the Presence of a Large Inferior Right Hepatic Vein

Imaging in gastric cancer

Liver Transplantation

Case Report pissn J Korean Soc Radiol 2012;67(4): INTRODUCTION CASE REPORT

Pancreas & Biliary System. Dr. Vohra & Dr. Jamila

MDCT Angiographic Evaluation of Celiac Axis, Common Heaptic Artery And its Branches

Normal anatomy and anatomic variants of the biliary tree and pancreatic ductal system at MRCP - what the clinicians want to know

Imaging iconography of gallbladder cancer. Assessment by CT.

My Patient Has Abdominal Pain PoCUS of the Biliary Tract and the Urinary Tract

Spontaneous portosystemic venous shunts in liver cirrhosis: Anatomy, pathophysiology, hemodynamic changes and imaging findings

The abdominal Esophagus, Stomach and the Duodenum. Prof. Oluwadiya KS

Surgical Management of CBD Injury Jin Seok Heo

pitfall Table 1 4 disorientation pitfall pitfall Table 1 Tel:

Liver imaging takes a step forward with Ingenia

Lung sequestration and Scimitar syndrome

HEPATO-BILIARY IMAGING

Liver Ultrasound - Beyond the Basics. Pamela Parker Lead Sonographer

VARIANT ORIGIN OF RENAL ARTERIES AND ITS CLINICAL IMPLICATION

Optimal Bile Duct Division Using Real- Time Indocyanine Green Near-Infrared Fluorescence Cholangiography During Laparoscopic Donor Hepatectomy

Portal Venous Thrombosis: Tumor VS Bland Thrombus

Lobar and segmental liver atrophy associated with hilar cholangiocarcinoma and the impact of hilar biliary anatomical variants: a pictorial essay

Liver Cancer (Hepatocellular Carcinoma or HCC) Overview

د. عصام طارق. Objectives:

CTA/MRA of Pediatric Hepatic Masses Radiology-Pathology Correlation

Guidelines, Policies and Statements D5 Statement on Abdominal Scanning

A pictorial review of normal anatomical appearences of Pericardial recesses on multislice Computed Tomography.

To describe normal anatomy and common variants in biliary tree anatomy including the prevalence of these.

Visceral aneurysm. Diagnosis and Interventions M.NEDEVSKA

CASE 1 11/1/2016 HEPATOBILIARY IMAGING CASE PRESENTATIONS DECLARATION. Dr. Chirag Patel ORGAN IMAGING yr old lady

Prevalence of anatomical variations of cystic artery in South Indian cadavers

MRI of the Hepatobiliary System

Accessory Renal Arteries: A Cadaveric Study

Guide to Small Animal Vascular Imaging using the Vevo 770 Micro-Ultrasound System

The gastroduodenal artery: Radiological anatomy, imaging and endovascular intervention

Uroradiology For Medical Students

CT Angiography for Delineation of Celiac and Superior Mesenteric Artery Variants in Patients Undergoing Hepatobiliary and Pancreatic Surgery

Key words: celiac occlusive disease, pancreaticoduodenectomy, abdominal aorta-celiac bypass

Original article: new surgical approaches to the Klatskin tumour

1 Right & left Hepatic ducts Gastric Impression of spleen

Scanning Mesenteric and Hypogastric Artery Aneurysms

Prevalence and Types of Main and Right Portal Vein Branching Variations on MDCT

Cruveilhier-Baumgarten syndrome: anatomical and pathologic imaging of periumbilical venous network

Anatomy of the SMALL INTESTINE. Dr. Noman Ullah Wazir PMC

ANOMALOUS ORIGIN OF HEPATIC ARTERY AND ITS RELEVANCE IN HEPATOBILIARY SURGERIES

Liver metastases: treatment planning. PJ Valette

MR imaging of primary sclerosing cholangitis (PSC) using the hepatobiliary specific contrast agent Gd-EOB-DTPA

Liver Tumors. Patient Education. Treatment options 8 4A. About the Liver. Surgical Specialties

Revised Annual Program Volumes for ASTS Accreditation Approved May 2013 Revised June 2016

Imaging abdominal vascular emergencies. V.Stoynova

LiverGroup.org. Case Report Form (CRF) for STAGED procedures

Poonam Verma, Anterpreet K. Arora*, Punita Sharma, Anupama Mahajan

Radiology of hepatobiliary diseases

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

Abdominal Doppler Mastering the next level of vascular anatomy in the belly. Cindy A. Owen, RDMS, RVT

Liver transplant for biliary atresia

Normal morphology of renal vascularization and its related anatomic variations by use of imaging examinations in Albania

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

Interesting Cases from Liver Tumor Board. Jeffrey C. Weinreb, M.D.,FACR Yale University School of Medicine

Renal Transplant Surgery

Appendix 5. EFSUMB Newsletter. Gastroenterological Ultrasound

CT 101 :Pancreas and Spleen

Pulmonary vascular anatomy & anatomical variants

Imaging of Neuroendocrine Metastases

CT angiography techniques. Boot camp

Three-dimensional CT angiography of the canine hepatic vasculature

Evolution of Clinical Anatomy with Ultrasonography Past Present and Future

Abdomen Sonography Examination Content Outline

CT Screening for Lung Cancer for High Risk Patients

Liver Perfusion Analysis New Frontiers in Dynamic Volume Imaging. Case Study Brochure Chang Gung Memorial Hospital.

The role for contrast-enhanced ultrasonography outside of focal liver lesions

To describe the liver. To list main structures in porta hepatis.

Transcription:

Radiology Rounds A Newsletter for Referring Physicians Massachusetts General Hospital Department of Radiology Imaging for Pre-Transplant Evaluation of Living Donor Liver Transplantation Imaging plays a vital role in assessing the suitability of a potential donor for transplantation and for planning surgery CT or MR imaging are used to evaluate for diffuse and focal disease CT or MR angiography and venography are used to identify variants in vascular anatomy CT or MR cholangiography are used identify variants in biliary duct anatomy Image post-processing is used to generate 3-D images that are used to estimate liver volume and to map the vascular and biliary anatomy for surgical planning Liver transplantation, first introduced 40 years, is the recognized treatment of choice for patients suffering from end-stage liver disease, including documented fulminant hepatic failure (FHF), decompensated cirrhosis, or hepatocellular carcinoma within defined criteria. Unfortunately, the demand for liver transplantation is greater than the supply of cadaveric livers. There are approximately 17,000 patients listed for liver transplantation in the United States, but only 5,000 transplants are performed each year. Thus, many patients succumb to the complications of endstage liver disease while awaiting organ transplant. Living donor transplantation, an alternative that was first developed for pediatric recipients and later expanded to adults, can alleviate this shortfall and decrease the number of deaths of patients on waiting lists. Living donor surgery is not without risk and potential donors must be carefully assessed for their suitability. There are many factors to be considered including donor age, immunological compatibility, medical history, liver and renal function, and the presence of disease that could compromise the health of the donor or the success of the transplantation. CT and or MR imaging plays a significant role in this process and is necessary for parenchymal evaluation for diffuse liver disease, focal lesion detection, liver volume estimation, and evaluation of the vascular and biliary anatomy of the liver. Liver Volume Accurate preoperative estimation of the donor s liver volume is essential to ensure that the volume is sufficient for the graft to be successful and for the donor to survive. Provided that there is no diffuse liver disease, a remaining liver volume of 30-40% is Figure 1. Diagram shows the hemihepatectomy plane (arrowheads). This plane connects the gallbladder fossa and IVC and runs 1 cm to the right of the middle hepatic vein. (Diagram courtesy of Susanne Loomis - REMS) sufficient for the donor to survive. The liver rapidly regenerates and the volume is fully restored within a few weeks after surgery. The size of the recipient is also a factor. The minimum size for donation is considered to be 0.8% of the recipient s weight, after correction for any diffuse liver disease. For pediatric patient recipients, the left lobe is sufficiently large for this purpose. For adult recipients, right lobe donation is the norm (Figure 1). Commercially available software for both CT and MR imaging can be used to produce 3-dimensional liver models that enable volume measurements with an accuracy of 95-97%.

Figure 2. Axial in-phase (A) and opposed-phase (B) GRE images show fatty infiltration of the liver. The decreased signal intensity of the liver on the opposed-phase image (B) indicates that fat is present in the liver. The spleen or paraspinal muscles act as the internal standard. Incidentally noted are two focal lesions in the liver: a hemangioma (arrow) and a cyst (arrowhead). Parenchymal Disease Identification and quantification of diffuse liver disease such as fatty liver disease is critical for both the donor and recipient. Fatty liver disease affects 20-40% of the population in Western countries and effectively lowers the functional size of the liver. Moreover, transplants of steatotic livers with > 50% concentration are associated with a greater likelihood of ischemic reperfusion injury. CT can provide an estimate of fatty infiltration by comparing the attenuation in Hounsfield units (HU) to that in the spleen. Similarly, MR imaging can be used to assess fatty infiltration by comparing the signal intensity using and in-phase and opposedphase protocol (Figure 2). The presence of focal lesions, such as adenomas, focal nodular hyperplasia, or hemangiomas (Figure 2) may be incidentally detected in a healthy adult using contrast-enhanced imaging with either CT or MR. The presence of such lesions may increase surgical morbidity or contraindicate liver surgery. However, benign lesions, such as hemangiomas, especially if single and small in size, are not contraindications for liver donation. Vascular Anatomy In order for transplantation to be successful, it is vital to maintain a balance between the blood supply and the venous drainage of the graft. Venous congestion can seriously damage the graft, causing its failure. Therefore it is essential to know the location of the principle vessels in order to ensure that they will be left intact and that they can be successfully anastamosed to the recipient s vasculature. Even small hepatic venous branches should be left intact or reconstructed. The anatomy of the hepatic arterial and venous systems is quite variable, and the classic anatomy is only found in 55% and 60%, respectively, of the population. The surgical techniques of the transplantation procedure are dictated by the individuals anatomy (Tables 1 and 2) and, therefore, a radiological evaluation of the vascular and biliary anatomy is a prerequisite for surgical planning. Multidetector CT angiography has demonstrated excellent correlation with conventional angiography but has the advantages of less radiation exposure and lower cost. Thin section CT examinations using a multidetector scanner are 3-7 times as fast as single detector scanners and can be performed during a single breath hold. CT angiography (Figure 3A) is performed during the hepatic arterial phase, 20-25 seconds after the injection of iodinated intravenous contrast agent or, if automated bolus tracking is used, when the attenuation in the aorta at the level of the celiac artery reaches 125 HU. A second scan is performed during the venous phase at 60-65 sec after the injection of contrast. Alternatively, MR angiography (Figure 3B) enables acquisition of a large volume data set during the first pass of contrast material within a single breath hold. However, consistent visualization of the terminal arterial branches, such as the segment IV artery may be difficult in few patients. Like CT, MR venography, in which images are acquired as the contrast agent passes through the veins, is highly accurate in mapping the venous anatomy and delineating venous anomalies. 2

Table 1. Hepatic Arterial Variants and their Implications for Transplantation Surgery Arterial Variants Surgical implication Variants relevant to donors: MHA from the RHA CHA trifurcation into the RHA, LHA, and GDA RHA or LHA from the CHA before origin of the GDA The hepatic plane would cut this artery, compromising arterial supply to the left lobe of the liver Clamping or ligation of the CHA can cause gastric or duodenal hyperperfusion Clamping or ligation of the CHA can cause gastric or duodenal hyperperfusion Variations relevant to recipients: Short RHA Celiac artery stenosis Replaced or accessory LHA (Michel types II and V) Replaced hepatic trunk arising from the SMA (Michel type IX) Increases surgical complexity and can lead to difficult anastomosis Increases risk of graft failure and biliary complications Increases complexity of surgery Increases complexity of the surgery LHA, left hepatic artery; LGA, left gastric artery; RHA, right hepatic artery; SMA, superior mesenteric artery; From Catalano et al., 2008 Table 2. Hepatic Arterial Variants and their Implications for Transplantation Surgery Hepatic and Portal Venous Variants Variants relevant to donors: Accessory inferior RHV > 3mm Trifurcation of the portal vein Portal venules to segment V Surgical planning must because of lack of a portal segment to clamp during surgery, as well as to prevent bleeding in the recipient; difficult anastomosis in the recipient Surgical planning must to avoid bleeding and ischemia Variations relevant to recipients: Accessory inferior RHV draining into the IVC > 3 cm form the main hepatic venous confluence with the IVC Early branching of the segment VIII vein Anomalous drainage of segments V and VII into the MHV Early confluence of the hepatic veins Dorsal branch of segment VII supplying the posteriorsuperior area of the right lobe Trifurcation of the portal vein Acute angle of portal vein branching Short length of the portal vein Risk of medial sector congestion and atrophy Surgical planning must to prevent ischemia in the recipient Surgical planning must because of lack of a portal segment to clamp during surgery, as well as to prevent bleeding in the recipient; difficult anastomosis in the recipient During regeneration, the liver may engulf the veins and reduce blood supply, causing ischemia in the graft May cause allograft failure MHV, middle hepatic vein; RHV, right hepatic vein; IVC, inferior vena cava From Catalano et al., 2008 3

Figure 3. Reformatted images from CT (A) and MR imaging (B) data depict the normal course and branching pattern of the hepatic artery. Note that in a, the gastroduodenal artery (curved arrow) branches off from the common hepatic artery (CHA). The proper hepatic artery divides into the left hepatic artery (LHA) and right hepatic artery (RHA). CA celiac artery, SMA superior mesenteric artery. Hepatic Ducts Postoperative biliary complications, occurring in 4-13% of donors and 15-40% in recipients, are the most common cause or morbidity in living donor transplantation. In part this is due to the technical difficulty of performing biliary reconstruction on small caliber ducts and because of leakage from even minor branches that cross the transaction line and are therefore cut during surgery. Forty per cent of the population have anomalous biliary tract anatomy and knowledge of the individual variations are essential to minimize the likelihood of complications. Although an interoperative cholangiogram is the standard of reference, this approach runs the risk of aborted operations if complex anatomy is discovered that precludes liver donation. CT cholangiography (Figure 4A), performed using an intravenous biliary contrast agent, enables good visualization of the biliary tree to the second order biliary branches. Image Post-Processing A complete set of CT angiography, CT venography, and CT cholangiography, and parenchymal images can be completed in a single session lasting 15 minutes. A similar set of MR images can be completed in 45 minutes. Once complete, image post-processing is used to generate 3-D images (Figure 5) that can be superimposed to show the vascular and bile duct anatomy. The radiology report is presented in a structured format in order to clearly convey the findings to the surgeon. A radiologist will review the images with the transplant surgeon to help plan the surgery in order to optimize the success of the transplant and to minimize risk to the donor. MR cholangiopancreatography (MRCP) can be used to evaluate bile duct anatomy without the aid of contrast agents. Although this technique has high signal contrast, it may not be adequate for visualizing a nondilated biliary system because of the lower image resolution of T-2 weighted images. Alternatively, a biliary contrast agent and T-1 weighted imaging (Figure 4B) can be used, which results in good resolution of the normal biliary tree. 4

Figure 4. (A) Coronal MIP image from 3D multidetector CT cholangiography, performed after intravenous administration of iodipamide meglumine, shows the segment IV bile duct (Seg IV BD) draining into the left hepatic duct (LHD) in a 64-year-old man with a right lobe liver metastasis from colorectal cancer. (B) Mangafodipir-enhanced MIP image from preoperative MR cholangiography shows biliary trifurcation in a 52-year-old liver donor. CBD, common bile duct; CD, cystic duct; RHD, right hepatic duct; LHD, left hepatic duct; RAHD, right anterior hepatic duct; RPHD, right posterior hepatic duct. Figure 5. Superimposed 3-D volume reconstruction of the liver and 3-D vascular maps are used to assist in understanding the relative location of key structures and determining the surgical plane of a virtual hepatectomy (red line). Scheduling MR angiography, venography, and MRCP as well as CT angiography, venography, and cholangiography are performed on the main MGH campus, Mass General West Imaging in Waltham, and Mass General Imaging, Chelsea. The examinations can be scheduled via online Radiology Order Entry (http://mghroe/) or by calling 617-724-9729 (4-XRAY). Further Information For further questions, please contact Dushyant Sahani, M.D., Director of CT Imaging Services, Abdominal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital at 617-726-3937. We would like to thank Dushyant Sahani, M.D., Director of CT imaging, Department of Radiology, and Martin Hertl, M.D., Transplant Unit, Department of Surgery, Massachusetts General Hospital, for their assistance and advice for this issue. 5

References Catalano, OA, Singh, AH, Uppot, RN, Hahn, PF, Ferrone, CR and Sahani, DV. (2008) Vascular and biliary variants in the liver: implications for liver surgery. Radiographics 28: 359-78 Chitturi, S, Farrell, GC, Hashimoto, E, Saibara, T, Lau, GK and Sollano, JD. (2007) Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines. J Gastroenterol Hepatol 22: 778-87 Low, G, Wiebe, E, Walji, AH and Bigam, DL. (2008) Imaging evaluation of potential donors in living-donor liver transplantation. Clin Radiol 63: 136-45 Sahani, D, D'Souza, R, Kadavigere, R, Hertl, M, McGowan, J, Saini, S and Mueller, PR. (2004) Evaluation of living liver transplant donors: method for precise anatomic definition by using a dedicated contrast-enhanced MR imaging protocol. Radiographics 24: 957-67 Sahani, D, Mehta, A, Blake, M, Prasad, S, Harris, G and Saini, S. (2004) Preoperative hepatic vascular evaluation with CT and MR angiography: implications for surgery. Radiographics 24: 1367-80 Said, A and Lucey, MR. (2008) Liver transplantation: an update Curr Opin Gastroenterol 24: 339-45 2008 MGH Department of Radiology Janet Cochrane Miller, D. Phil., Author Raul N. Uppot, M.D., Editor 6