Preparation of Edible Corn Starch Phosphate with Highly Reactive Sodium Tripolyphosphate in the Absence of Catalyst

Similar documents
Luo et al. Received: 9 April 2015 Revised accepted: 3 January 2016

Journal of Chemical and Pharmaceutical Research, 2015, 7(8): Research Article

Preparation and Properties of Cornstarch Adhesives

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF

Effect of Some Oligosaccharides on Functional Properties of Wheat Starch

Research Article The Rheological Property of Potato Starch Adhesives

Study on Ultrasonic-assisted Extraction of Polysaccharide of Atractylis Macroceohala Koidz of Experiment 1

Study on Synthesis of Maleic Anhydride Grafted Starch Jian-Jiang SHANG1, a*, Li-Na JIANG1,b, De-Qiang LI2,c and Xiao-Yan ZHU1,d

Characterization and DPPH Radical Scavenging Activity of Gallic Acid-Lecithin Complex

Rong Zhou 1,a, Mingxia Yang 1,b and Haixia Zhang 1,c 1

THE RELATIONSHIP BETWEEN TWO METHODS FOR EVALUATING FIVE-CARBON SUGARS IN EUCALYPTUS EXTRACTION LIQUOR

Colour of starch-iodine complex as index of retrogradability of starch pastes

Research on Extraction Process of Gallic Acid from Penthorum chinense Pursh by Aqueous Ethanol

Properties of Oxidized Cassava Starch as Influenced by Oxidant Concentration and Reaction Time

OUTLINE. ILVO Introduction Determination of HP Validation of method Conclusion

Characterization of Digestion Resistance Sweet Potato Starch Phosphodiester

Hydrolysis of Semi-finished Polyacrylonitrile (PAN) Fiber

MODIFIED CASSAVA STARCH IN MALAYSIAN FOOD PRODUCTS

Pectins. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016

Starch Applications in Meat Products. Kris J. Swenson Tom Katen

FREEZE-THAW STABILIZATION OF WATER CHESTNUT (TRAPA BISPINOSA) STARCH IN THE PRESENCE OF GUMS AND SALTS

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS

Application and Curative Effect of Micro-implant Anchorage in Orthodontics

Microwave-assisted esterification of cassava starch

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Journal of Chemical and Pharmaceutical Research, 2017, 9(3): Research Article

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Article. Hendrik Aditya Mulyatno, Odisaputra Ihsan Pratama, Inayati*

Feedstuffs Analysis G-22-1 PROTEIN

Rapid Detection of Milk Protein based on Proteolysis Catalyzed by Trypsinase

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

Pasting Properties of Heat-Moisture Treated Starches of White and Yellow Yam (Dioscorae species) Cultivars

GB Translated English of Chinese Standard: GB NATIONAL STANDARD

Most of the ethanol that is used as a biofuel in this country is produced from corn.

Preparation of Glucose Syrup from Waxy Corn by Enzymatic Process

Li et al. Received: 28 August 2015 Revised accepted: 10 February 2016

Research Article Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate

Ultrasonic-Assisted Extraction and Antioxidant Activity of Flavonoids from Adinandra nitida Leaves

Analysis of Amino Acids Derived Online Using an Agilent AdvanceBio AAA Column

P-STARCH-15 Gelatinization and retrogradation properties of hypochlorite-oxidized cassava starch

THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS

SWEOAT products for different uses and markets. Oats for the food industry. SWEOAT Brans for food

SYNTHESIS, CHARACTERIZATION AND PROPERTIES OF ACETYLATED HIGH-AMYLOSE CORN STARCH

TECHNICAL BULLETIN METHOD 1: DETERMINATION OF TOTAL DIETARY FIBRE

Improvement of 2-O-α-D-Glucopyranosyl-L-Ascorbic Acid Biosynthesis Using Ultrasonic Radiation

BRIEFING Assay + + +

National Standard of the People s Republic of China. National food safety standard. Determination of pantothenic acid in foods for infants and

Rice Starch Isolation by Neutral Protease and High-Intensity Ultrasound 1

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

Journal of Chemical and Pharmaceutical Research, 2018, 10(3): Research Article

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

TENOFOVIR TABLETS: Final text for addition to The International Pharmacopoeia (June 2010)

RITONAVIRI COMPRESSI RITONAVIR TABLETS. Final text for addition to The International Pharmacopoeia (July 2012)

CYCLOSERINI CAPSULAE - CYCLOSERINE CAPSULES (AUGUST 2015)

Umapathi et al. Keywords: Fixed dose combination; Rifampin quinone; Tuberculosis; Sodium ascorbate; Quantitative determination; HPLC

6.02 Uniformity of Dosage Units

Extraction and Purification of Flavonoids from Radix Puerariae

DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA: CARBAMAZEPINI COMPRESSI - CARBAMAZEPINE TABLETS

Effect of fermentation length and varieties on the qualities of corn starch (Ogi) production

Purity Tests for Modified Starches

Study on Amylose Iodine Complex from Cassava Starch by Colorimetric Method

Corn Starch Analysis B-47-1 PHOSPHORUS

Pornchai Rachtanapun*, Dararat Pankan and Darin Srisawat

Effect of Washing on Quality Improvement of Mechanically Deboned Chicken Meat

Functional and pasting properties of cassava sweetpotato starch blends

Citri-Fi Clean Label Solution

Influence of Atorvastatin/Probucol Combination on Blood Lipid and Serum C-Reactive Protein Levels in Patients with Cerebral Infarction

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

INFLUENCE OF STARCH AND OIL PHASE RATIO ON THE QUALITY OF EMULSIONS

LACTOSE/ SUCROSE/D-GLUCOSE

Selenium content in meals consumed for lunch by Sri Lankans and the effect of cooking on selenium content

Chemical Synthesis of ascorbyl palmitate in [BMIM]BF 4. Junmin Ji

Starch - Gelatinisation Activity (1) Objectives To study the gelatinisation ability for different types of starch commonly used in cookery.

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB

Draft for comments only Not to be cited as East African Standard

Change to read: BRIEFING

SOUTH AFRICAN NATIONAL STANDARD

Research Project. Gina Bressani Alicia Porras Brittany Wonnell. Purdue University

Effect of Garlic on Perfusion Scintigraphy of Rabbit s Lungs Following Experimentally-Induced Pulmonary Embolism

LEVONORGESTREL AND ETHINYLESTRADIOL TABLETS. (January 2012) DRAFT FOR COMMENT

Lab 6: Cellular Respiration

Commercial Bulleting Aloe Flakes

The effect of alkali treatment on the granular morphology and pasting properties of rice flour. Kunyarat Reepholkul and Sanguansri Charoenrein

Improved production of chlorogenic acid from cell suspension cultures of Lonicera macranthoids

Journal of Chemical and Pharmaceutical Research, 2014, 6(2): Research Article

Research & Reviews: Journal of Microbiology and Biotechnology

Chemistry 201 Laboratory Fall 2006 page 1 of 4

Clinical efficacy of paclitaxel in the treatment of mid-stage and advanced malignant gastric cancer, and effect of nursing interventions

Determination of the components of peanut oil, soybean oil, corn oil heating products and simply cooking products by GC-MS

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Indulgent Coconut Milk Yogurt through Functional Tapioca Starch. Food Innovation Center SMS CORPORATION THAILAND 15 Nov, 2017

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 3: Determination of the Acid Number of Vegetable Oils by Titration

Guideline for Adherence and Diabetes Control in Co- Morbid Conditions in a Tertiary Hospital in Malaysia

SULFAMETHOXAZOLE AND TRIMETHOPRIM TABLETS Draft proposal for The International Pharmacopoeia (September 2010)

ESS Method 310.2: Phosphorus, Total, Low Level (Persulfate Digestion)

ARTENIMOLUM ARTENIMOL. Adopted revised text for addition to The International Pharmacopoeia

Effect of Heating Time on the Quality of Tapioca Starch and Xanthan Gum Mixture

Optimization of Enzyme-assisted Ultrasonic Extraction of Total Ginsenosides from Ginseng Roots Guangna LIU, Yulin ZUO, Jing ZHANG

Transcription:

Tropical Journal of Pharmaceutical Research March 2016; 15 (3): 441-445 ISSN: 1596-5996 (print); 1596-9827 (electronic) Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved. Original Research Article Available online at http://www.tjpr.org http://dx.doi.org/10.4314/tjpr.v15i3.2 Preparation of Edible Corn Starch Phosphate with Highly Reactive Sodium Tripolyphosphate in the Absence of Catalyst Xiaoyu Zhang 1, Lei Luo 1, Huaibin Kang 1, Xinfang Liu 2 *, Wenxue Zhu 1 * and Xina Yu 1 1 Food & Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, 2 College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, PR China *For correspondence: Email: liuxinfang6@126.com; Tel: +86-379-69810219; Fax: +86-379-69810219 Received: 9 October 2015 Revised accepted: 14 February 2016 Abstract Purpose: To prepare edible corn starch phosphate under optimized experimental conditions. Methods: Edible corn starch phosphate was prepared via the reaction of starch with active sodium tripolyphosphate. Reaction efficiency and viscosity were used as indices to optimize experimental conditions. Freeze-thaw stability and transparency of starch phosphate and native starch were comparatively studied. Results: Starch phosphate with optimal combined phosphate content (0.39 %) was obtained under optimized conditions: reaction duration, 90 min; temperature, 160 oc; ph, 5.0; and phosphate, 1.5 g. Starch phosphate with optimal viscosity (230 cp) was obtained under different conditions: reaction duration, 120 min; temperature, 140 oc; ph, 6.0; and phosphate, 1.5 g. Significant differences (p < 0.05) were observed in syneresis and paste transparency of starch phosphate and native starch. Conclusion: Edible corn starch phosphate has been successfully prepared under optimized experimental conditions whose freeze-thaw stability and paste transparency has obvious improvement compared with native starch. Keywords: Starch phosphate, Combined phosphate, Sodium tripolyphosphate, Syneresis, Paste efficiency Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus, International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index Medicus, JournalSeek, Journal Citation Reports/Science Edition, Directory of Open Access Journals (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts INTRODUCTION Starch phosphate, one of the esterified starches, is produced from esterification of starch and phosphate. In food industry, starch phosphate can replace some colloids as thickener and stabilizer used in flour products, meat, soup or drink products because it has high viscosity, freeze-thaw stability and anti-aging resistance [1-3]. Usually, starch phosphate is prepared with phosphate as esterifying agent and urea as catalyst [4,5]. However, the use of harmful urea makes the target product unsuitable for human consumption. Herein, highly reactive sodium tripolyphosphate (STP) was used as esterifying agent to react with starch to prepare edible corn starch phosphate in the absence of catalyst (urea). Through single factor tests and orthogonal experiments, we confirm the optimized reaction conditions of starch phosphate with the optimal combined phosphate content and that with the optimal paste viscosity. In the meanwhile, paste Trop J Pharm Res, March 2016; 15(3): 441

transparency and freeze-thaw stability of the prepared starch phosphate and native starch are comparatively studied. EXPERIMENTAL Materials Ordinary corn starch was purchased from Shandong Shou Guang Corn Starch Company. Sodium tripolyphosphate (STP, chemical pure), sodium hydrogen phosphate (analytical pure) and sodium dihydrogen phosphate (analytical pure) were purchased from Shanghai Chemical Reagent Company. Main equipment High-speed homogenate machine, Jiangsu Jintan Rong Hua Instrument Manufacture Company; Oven, Xinli Instrument Manufacture Factory; phs - 3c Precision ph meter, Shanghai Ray Magnetic Instrument Factory; DZF - 6010 vacuum drying oven, Henan Gongyi Yingyu Yuhua Instrument Factory; 752 Ultraviolet grating spectrophotometer, Shanghai Third Analysis Instrument Factory; Micro sprayer, self-made; NDJ - 9 viscometer, Shanghai Shangtian Precision Instrument Company. Preparation of starch phosphate A certain quality of STP was dissolved in 10 ml of water and ph value was adjusted to a certain value. The sample was sprayed evenly on to 100 g dried starch after dissolving completely. The mixture was stirred about 30 min in a homogenate machine and the product was obtained after reaction at certain temperature for certain duration. At last the product was washed with water and filtered. The effects of ph value, reaction temperature, reaction duration and added amount of phosphate on reaction efficiency and viscosity of starch phosphate were examined through single factor experiments. The orthogonal experiments were designed according to the results of single factor tests. The level of design factors are shown in Table 1, choosing L 9 (3 4 ) to arrange the experiment. Determination of combined phosphorus content of starch phosphate The total phosphorus content (phosphorus content of unwashed product) was measured according to GB 12092-89. Free phosphorus refers to the phosphorus existing in the form of inorganic phosphorus, which mainly comes from the incomplete reaction of esterifying agent with starch. Assay method is as follows: 1.0 ~ 2.0 g sample was put into a 50 ml beaker and dissolved with 1 mol/l hydrochloric acid. And then it was transferred into a 250 ml volumetric flask, diluted with water to volume, shaken well and filtered for use. The filtrate (5~10 ml) was transferred into a 50 ml conical flask. Color reaction was manipulated according to GB 12092-89 and the phosphorus content was determined by measuring the light absorbance. Combined phosphorus content is the difference between total phosphorus content and free phosphorus content. Determination of reaction efficiency Reaction efficiency (RE) was calculated according to Eq 1. RE(%)=(X1-Y)/(Y1-Y) 100.. (1) Where X1 = combined phosphorus content of starch phosphate, Y = total phosphorus content of native starch, and Y1 = total phosphorus content of starch phosphate. Performance test Viscosity was measured according to GB 12098-89. Freeze-thaw stability (syneresis %) was measured according to literature [6]. Paste transparency was measured according to literature [7]. Table 1: Factors and levels during preparation of starch phosphate Factor Reaction duration A (min) Reaction temperature B ( o C) ph value C Added amount of phosphate D (g) 1 60 120 5.0 0.5 2 90 140 5.5 1.0 3 120 160 6.0 1.5 Trop J Pharm Res, March 2016; 15(3): 442

Statistical analysis The results are reported as mean ± SD (n = 3). Differences were determined using Duncan s new multiple range test. Single factor and other experiments for means and differences were set p < 0.05. All data were statistically analyzed using SPSS software (version 12.0; SPSS Inc, Chicago, IL, USA). RESULTS Optimized experimental conditions The effects of added amount of phosphate, ph value, reaction temperature and reaction duration on reaction efficiency and viscosity of starch phosphate are initially determined through single factor experiment and the results are shown in Figures 1 ~ 4. The optimal conditions were as follows: phosphate < 1.5 g; ph: 5.5; temperature: < 160 o C; reaction duration: < 2 h. Fig 3: Effect of reaction temperature on the esterification reaction (phosphate: 1.5 g; ph: 5.5; Figure 4: Effect of reaction duration on the esterification reaction (phosphate: 1.5 g; ph: 5.5; temperature: 140 o C) Figure 1: Effect of adde amounts of phosphate on the esterification reaction (ph: 5.5; temperature: 140 o C; The results of orthogonal design experiments are shown in Table 2. Statistically significant differences are observed in the combined phosphate content and viscosity of starch phosphate prepared under different conditions. According to the table, the reaction conditions for starch phosphate with optimal combined phosphorus content (0.39 %) are A2B3C1D3. That is, the reaction conditions are optimized as follows: reaction duration: 90min; temperature: 160 o C; ph, 5.0; phosphate, 1.5 g. The reaction conditions for starch phosphate with the best viscosity (230 cp) are A3B2C3D3. It means the optimized reaction conditions are as follows: reaction duration: 120min; temperature: 140 o C; ph, 6.0; phosphate, 1.5 g. Performance data for phosphates and native starch Figure 2: Effect of ph value on the esterification reaction (phosphate: 1.5 g; temperature: 140 o C; Statistically significant differences also occurred in transparency and freeze-thaw stability of starch phosphates prepared under optimal reaction conditions and native starch (Table 3). The results show that starch phosphate has high viscosity, freeze-thaw stability and paste transparency compared with native starch. Trop J Pharm Res, March 2016; 15(3): 443

Table 2: The orthogonal experimental results of starch phosphate Experimentno. Combined phosphate content (%) Viscosity (cp) 1 0.059 ± 0.002 e 53 ± 4.0 g 2 0.13 ± 0.005 d 110 ± 4.7 e 3 0.33 ± 0.007 b 208 ± 7.5 b 4 0.27 ± 0.006 c 195 ± 6.2 b 5 0.14 ± 0.006 d 85 ± 4.7 f 6 0.27 ± 0.007 c 160 ± 5.2 c 7 0.13 ± 0.004 d 150 ± 5.0 cd 8 0.39 ± 0.007 a 230 ± 7.8 a 9 0.14 ± 0.004 d 140 ± 4.8 d Table 3: Performance results for starch phosphate and native starch Variable Syneresis (%) Paste transparency Viscosity (%) (cp) Native corn starch 65 ± 2.5 a 11 ± 0.3 c 40 ± 3.2 c Starch phosphate with the optimal combined phosphorus 46 ± 1.9 b 28 ± 0.5 a 210 ± 7.4 b Starch phosphate with the best viscosity 42 ± 1.8 b 24 ± 0.5 b 255 ± 8.3 a DISCUSSION Figure 1 shows that added amount of phosphate (0.5, 1.0, 1.5, 2.0 g) has great influence on reaction efficiency. With the increase of phosphate, the reaction efficiency of starch phosphate is on the decline while the viscosity is increased. When the dosage of phosphate increases from 1.5 g to 2.0 g, the viscosity increases a little while the reaction efficiency decreases much. More importantly, when the added amount of phosphate was 2.0 g, the combined phosphorus content is more than 0.4 %, which is the maximum amount prescribed by the Food and Drug Administration (FDA). And thus, the best addition of phosphate is 1.5 g. The effects of ph value (3.5, 4.5, 5.5, 6.5 and 7.5) were shown in Figure 2. The figure indicates that when the ph value raises from 3.5 to 4.5, the reaction efficiency increased from 39 % to 71 % and the viscosity increases from 40 to 140 cp; when ph raises to 5.5, the reaction efficiency decreases little while the viscosity is as high as 240 cp; when the ph value is greater than 5.5, the reaction efficiency and viscosity tend to decrease. Accordingly, the appropriate ph is about 5.5. The effects of reaction temperature (110, 120, 130, 140, 150 and 160 o C) were shown in Figure 3. As can be seen from Figure 3, the reaction efficiency is low under 110 o C. With the increase of reaction temperature, reaction efficiency is gradually increased. From 110 o C to 140 o C, the product viscosity is on the rise. From 140 to 150 o C, the increase of viscosity is very small and the viscosity decreases at 160 o C. In addition, when reaction temperature is higher than 160 o C, the product color will be yellow, affecting the appearance of the starch. Therefore, the appropriate temperature should not be higher than 160 o C. Effect of reaction duration (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 hours) was determined and shown in Figure 4. As can be seen from Figure 4, reaction duration and reaction efficiency are positively correlated from 30 min to 90 min. When the reaction duration increases from 90 min to 3.0 hours, the reaction efficiency is increased slowly and the viscosity is decreased gradually. Long reaction duration will also deepen the color of starch phosphates, making unfavorable performance of the final product. For reasons given above as well as the perspective of saving energy, it is advisable to choose the reaction duration not higher than 120 min. On the basis of single-factor experiments, an orthogonal experiment was carried out. The reaction conditions for the preparation of starch phosphate with optimal combined phosphorus content (0.39 %) are optimized. The reaction conditions for starch phosphate with the best viscosity (238 cp) are the same with the former except for the reaction temperature. The results of transparency and freeze-thaw stability show that the prepared starch phosphates have high viscosity, freeze-thaw stability and paste transparency compared with native starch. And thus, corn starch phosphate is more suitable for use as a thickener in food industry. CONCLUSION Starch phosphate with optimal combined phosphorus content (0.39 %) and starch phosphate with the optimal viscosity (255 cp) Trop J Pharm Res, March 2016; 15(3): 444

have been successfully prepared under optimized reaction conditions. Compared with native starch, corn starch phosphate is more effective as a thickener in food industry because it has great improvement in viscosity, freezethaw stability and paste transparency. ACKNOWLEDGEMENT The authors are grateful for the financial support from the National Natural Science Foundation of China (nos. 31401654 and 21302082), Henan University of Science and Technology Dr Startup Funds (no. 09001744) and Henan University of Science and Technology Fund (no. 13470099). REFERENCES 1. Pająk P, Fortuna T, Gałkowska D. Rheological characteristics of sour cherries in gels containing waxy maize and cassava starches. J. Food Qual. 2012; 35(6), 401-410. 2. Passauer L, Liebner F, Fischer K. Synthesis and properties of novel hydrogels from cross-linked starch phosphates. Macromol. Symp. 2006; 244(1): 180-193. 3. Ptaszek A. The role of characteristic times in rheological description of structure forming food additives. J. Food Eng. 2012; 111(2): 272-278. 4. Liu Z, Yan Y, Gao X, Gao L. Study on the preparation of wheat starch phosphate with low degree of substitution. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183(2-3): 547-554. 5. Wei M, Liu Y, Liu B, Lv X, Sun P, Zhang Z, Zhang F, Yin S, Liu Z. Preparation and application of starch phosphate with a low degree of substitution. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186(4): 974-982. 6. Arunyanart T, Charoenrein S. Effect of sucrose on the freeze-thaw stability of rice starch gels: Correlation with microstructure and freezable water. Carbohyd. Polym. 2008; 74(3): 514-518. 7. Jacobson MR, Obanni M, Bemiller JN. Retrogradation of starches from different botanical sources 1. Cereal Chem. 1997; 74(5): 511-518. 8. Grant RH, Mertens DR. Influence of buffer ph and raw corn starch addition on in vitro fiber digestion kinetics. J. Dairy Sci. 1992; 75(10): 2762-2768. 9. Guska E, Khan K. Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. J. Food Sci. 1990; 55(2): 466-469. Trop J Pharm Res, March 2016; 15(3): 445