Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover

Similar documents
3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

Dr. Puntarica Suwanprathes. Version 2007

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

PBL SEMINAR. HEMOGLOBIN, O 2 -TRANSPORT and CYANOSIS An Overview

Chronic Obstructive Pulmonary Disease

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

Gas Exchange in the Tissues

How Does Pulse Oximetry Work? SpO2 Sensors Absorption at the Sensor Site Oxyhemoglobin Dissociation Curve

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Blood Gases, ph, Acid- Base Balance

CYANOSIS. İ.U. Cerrahpaşa Medical School Department of Pediatric Cardiology. İ. Levent SALTIK, MD

3. Which statement is false about anatomical dead space?

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

1. Hemoglobin and the Movement of Oxygen. Respirator system/biochemistry

Tissue Hypoxia and Oxygen Therapy

Appendix E Choose the sign or symptom that best indicates severe respiratory distress.

Respiratory Pathophysiology Cases Linda Costanzo Ph.D.

Globular proteins Proteins globular fibrous

OpenStax-CNX module: m Transport of Gases. OpenStax College. Abstract

Omar Sami. Mustafa Khader. Yanal Shafaqouj

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

i. Zone 1 = dead space ii. Zone 2 = ventilation = perfusion (ideal situation) iii. Zone 3 = shunt

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his

Maternal and Fetal Physiology

Lec.2 Medical Physiology Blood Physiology Z.H.Kamil

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Lab 4: Respiratory Physiology and Pathophysiology

Arterial Blood Gas Analysis

Lecture 19, 04 Nov 2003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance. Vertebrate Physiology ECOL 437 University of Arizona Fall 2003

Decreased Affinity of Blood for Oxygen in Patients with Low-Output Heart Failure

Lecture 10. Circulatory systems; flow dynamics, flow regulation in response to environmental and internal conditions.

ALCO Regulations. Protocol pg. 47

ADVANCED ASSESSMENT Respiratory System

Feeling Blue? Aaron St-Laurent Montreal Children s Hospital Pulmonology Cross Canada Rounds

2. List seven functions performed by the respiratory system?

Lecture 5. Dr. Sameh Sarray Hlaoui

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)

Topics of this lecture : RBC. Structural characteristics Hemoglobin Erythropoiesis Erythrocytes destruction

Introduction To Medical Technology. Hemoglobin Concentration Determination

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

5/24/14. A Dusky Hypoxic Woman. Blue man case #1. Blue woman case #2

Introduction and Overview of Acute Respiratory Failure

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1)

Factors affecting oxygen dissociation curve

Nitric Resource Manual

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system :

Question Expected Answers Marks Additional Guidance 1 (a) C ; E ; A ; B ; 4. PhysicsAndMathsTutor.com

Red blood cell transfusions Risks, benefits, and surprises

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD

There are number of parameters which are measured: ph Oxygen (O 2 ) Carbon Dioxide (CO 2 ) Bicarbonate (HCO 3 -) AaDO 2 O 2 Content O 2 Saturation

GAS EXCHANGE IB TOPIC 6.4 CARDIOPULMONARY SYSTEM CARDIOPULMONARY SYSTEM. Terminal bronchiole Nasal cavity. Pharynx Left lung Alveoli.

IB TOPIC 6.4 GAS EXCHANGE

Appendix D An unresponsive patient with shallow, gasping breaths at a rate of six per minute requires:

Biochemistry. Structure and function of hemoglobin M E D I C I N E. Be like stem cells, differentiate yourself from others! Editing file PO 4.

Haemoglobin BY: MUHAMMAD RADWAN WISSAM MUHAMMAD

Cardiovascular System: Blood Physiology Study Guide, Chapter 13 Cardiovascular System: Blood Part I. Clinical Applications

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

RESPIRATION AND SLEEP AT HIGH ALTITUDE

بسم هللا الرحمن الرحيم

Acute care testing. handbook. Your knowledge source

When Cyanosis is the Norm. Steven M. Schwartz, MD, FRCPC Cardiac Critical Care Medicine The Hospital for Sick Children Toronto

Chapter 7 The pulmonary circulation: Bringing blood and gas together

Control of Breathing

Arterial Blood Gases. Dr Mark Young Mater Health Services

M5 BOARD REVIEW. Q s. Q s. Q s. Q s. Q s. Equations. Be Brilliant Today. Respiratory ( ) Alveolar Gas Equation. Dead Space (Bohr Equation)

Ola Al-juneidi Abdel-Mu'ez Siyam. Dr. Nayef

Chapter 7. Heme proteins Cooperativity Bohr effect

Lecture Notes. Chapter 9: Smoke Inhalation Injury and Burns

thebiotutor.com AS Biology Unit 2 Exchange & Transport

Around million aged erythrocytes/hour are broken down.

Anatomy and Physiology

Fluid and Electrolytes P A R T 4

Hemoglobin. Each alpha subunit has 141 amino acids, and each beta subunit has 146 amino acids.

Pulmonary arterio-venous fistulas. Pulmonary arterio-venous fistulas. Pulmonary angiogram. Typical patient presentation

Acute Changes in Oxyhemoglobin Affinity EFFECTS ON OXYGEN TRANSPORT AND UTILIZATION

Chapter 34 Active Reading Guide Circulation and Gas Exchange

Physiological Causes of Abnormal ABG s

ARTERIAL BLOOD GASES PART 1 BACK TO BASICS SSR OLIVIA ELSWORTH SEPT 2017

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University

O X Y G E N ADVANTAGE THEORY 1

DO 2 > VO 2. The amount of oxygen delivered is a product of cardiac output (L/min) and the amount of oxygen in the arterial blood (ml/dl).

Transport of oxygen and carbon dioxide in body fluids. Circulation and Hearts. Circulation in vertebrates and invertebrates

The hemoglobin (Hb) can bind a maximum of 220 ml O2 per liter.

Definition: HPS is a disease process with a triad of: 1- Liver disease. 2- Widespread intrapulmonary vasodilatation. 3- Gas exchange abnormality prese

Oxygenation, oxygen saturation, oxygen content, alveolar gas equation, indices of

A. Incorrect! The left ventricle receives oxygenated blood from the lungs via the left atrium.

Pulmonary Pathophysiology

Objectives. Blood Buffers. Definitions. Strong/Weak Acids. Fixed (Non-Volatile) Acids. Module H Malley pages

Pulse. Assess for the following:

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant

SIMPLY Arterial Blood Gases Interpretation. Week 4 Dr William Dooley

Emergency Medical Training Services Emergency Medical Technician Paramedic Program Outlines Outline Topic: HEMATOLOGY Revised: 11/2013

Respiratory Failure in the Pediatric Patient

Capillary Action and Blood Components. Biology 20 Unit D: Body Systems Circulation

Last time we finished the abnormal hemoglobins. We have some hemoglobin. 5 Abdel-muez siyam Abdullah nimer Dr. nayef. Page 1

Human Circulation and Respiration Chapter 38

Transcription:

Topics to Cover Module G: Oxygen Transport Oxygen Transport Oxygen Dissociation Curve Oxygen Transport Studies Tissue Hypoxia Cyanosis Polycythemia Oxygen Transport Oxygen is carried from the lungs to the tissues in two different fashions: Oxygen Dissolved in the blood plasma (PO 2 ) Oxygen Combined with Hemoglobin (SO 2 ) Dissolved Oxygen As oxygen diffuses across the A-C membrane, it dissolves into the plasma and remains in that fashion until it reaches the tissue. Expressed as a partial pressure - PO 2 Normal arterial level = 80-100 mm hg Normal venous level = 35 45 mm hg The quantity of oxygen dissolves is a function of Henry s law. At 37 C 0.003 ml of oxygen will dissolve in 100 ml of blood. (Henry s Law) At 100 mm hg PaO 2, the amount of dissolved oxygen is 0.3 ml O 2 /100 ml blood (0.3 vol%). Combined Oxygen Dissolved oxygen is inadequate for metabolic needs. Need a substance which will bind to oxygen and carry it, BUT will release it when needed. Voila! Hemoglobin! Miracle #2 As we ll see later, hemoglobin also carries carbon dioxide and is a key buffer of [H+]. 1

Hemoglobin Each RBC contains approximately 280 million molecules of hemoglobin Adult Hemoglobin (Hb A) consists of 4 Heme Groups Primarily iron in the Fe +2 (ferrous) state. 4 Globulin 4 amino acid chains (2 & 2 ) One heme group binds with one of the amino acid chains and oxygen binds with the iron in the heme group in a reversible way. O 2 + Fe +2 FeO 2 (Oxyhemoglobin) chains chains Heme Units FERROUS Hemoglobin & the RBC Normal hemoglobin level 15 g/dl (men) & 13-14 g/dl (women) - Malley 15 + 1.5 g/dl (men) & 13.5 + 1.5 g/dl (women) Egan 15 + 2 (men) & 14 + 2 (women) - Easy Why do women have less? The hemoglobin molecule resides in the erythrocyte and is responsible for giving the blood its red color. Hundreds of hemoglobin variants. Normal: A, A2, F Abnormal: S, H The affinity of hemoglobin for oxygen increases with each oxygen molecule attached All or Nothing Oxygen Saturation Saturation = Sites Filled Total Sites Available Example: 80 sites filled = 80% saturation 100 sites available Oxygen Saturation only talks about how much hemoglobin is saturated, NOT how much hemoglobin is present. 2

Combined Oxygen Each gram of Hemoglobin combines with 1.34 ml of oxygen. O 2 bound to Hb = 1.34 ml O 2 x 15 g Hb = 20.1 vol% O 2 Quantity of Oxygen Bound to Hemoglobin Not all hemoglobin molecules are bound with oxygen. Normal saturation Arterial (SaO 2 ) 97% Venous (S O 2 ) 75% Some desaturated hemoglobin exists because of normal physiologic shunts: Mixing of poorly saturated venous blood with arterial blood Thebesian, bronchial, and pleural veins Intrapulmonary shunts (perfused alveoli that are not ventilated) 20.1 vol% O 2 x 0.97 = 19.5 vol% O 2 Hemoglobin not bound with oxygen is called reduced hemoglobin. Oxygen Content The total amount of oxygen in 100 ml of blood is the sum of the dissolved oxygen & the oxygen bound to hemoglobin. Arterial Content CaO 2 = (Hb x 1.34 x SaO 2 ) + (PaO 2 x.003) Venous Content C O2 = (Hb x 1.34 x S O 2 ) + (P O 2 x.003) Capillary Content CćO2 = (Hb x 1.34 x SćO 2 ) + (PćO 2 x.003) SćO 2 = Ideal Saturation = 100% PćO 2 = Ideal Partial Pressure = PAO 2 Oxygen Dissociation Curve The relationship between the partial pressure of oxygen and the saturation of oxygen is not linear. 2 lines Steep Portion of Curve Dissociation Portion of curve. Between 10 and 60 mm Hg. Small increases in PO 2 yield large increases in SO 2. At the tissue capillary, blood comes in contact with reduced tissue PO 2 and oxygen diffuses from the capillary to the tissue. As the PO 2 falls, oxygen bound to the hemoglobin (SO 2 ) is released. Flat Portion of Curve Association Portion of curve. Greater than 60 mm Hg. Large increases in PO 2 yield small increases in SO 2. At the pulmonary capillary, blood comes in contact with increased alveolar PO 2 and oxygen diffuses from the alveolus to the capillary. As the PO 2 rises, oxygen binds with the hemoglobin (increasing SO 2 ). Very little rise in oxygen saturation above 100 mm Hg of PaO 2. 3

Key Points to Remember The amount of oxygen that is saturated on the hemoglobin (SO 2 ) is dependent on the amount dissolved (PO 2 ). Between a PaO 2 of 60 and 100 mm Hg, the curve is flat. This means that small changes in PaO 2 can occur without a big drop in saturation and oxygen content. At the tissues, where the PO 2 is about 40 mm Hg, the curve is steep. This means that small changes in PO 2 will result in a large amount of oxygen being unloaded. PO 2 27 40 60 250 Rules of Thumb of the Oxyhemoglobin Curve SO 2 50 75 90 100 PO 2 40 50 60 SO 2 70 80 90 P 50 The degree to which oxygen is attracted to hemoglobin can be assessed by evaluating at what PO 2 there is a 50% SO 2 (P 50 ). Normal P 50 value is 27 mm Hg As P 50 increases/decreases, we say the curve has shifted. P 50 less than 27: Shift to the left. P 50 greater than 27: Shift to the right. Leftward Shift of the OHDC Left Shift. Increased oxygen affinity for hemoglobin. This is the expected shift at the lungs (Left- Lungs). For any given PO 2, SO 2 will be higher. Decreasing P 50. LOW THINGS CAUSE A LEFT SHIFT H+ concentration ( ph, alkalosis) Temperature (Hypothermia) Carbon Dioxide (PCO 2, Hypocarbia) 2,3 DPG Rightward Shift of the OHDC Right Shift. Decreased oxygen affinity for hemoglobin. This is the expected shift at the tissues. For any given PO 2, SO 2 will be lower. Increasing P 50. ELEVATED THINGS CAUSE A RIGHT SHIFT (Up-Right) H+ concentration ( ph, acidosis) Temperature (Hyperthermia) Carbon Dioxide (PCO 2, Hypercarbia) 2,3 DPG 4

2,3 DPG 2,3 DPG is an organic phosphate normally found in the RBC that has a tendency to bind with Hemoglobin and thereby decrease the affinity of Hemoglobin for oxygen. It promotes a rightward shift and enhances oxygen unloading at the tissues. This shift is longer in duration than that due to [H + ], PCO 2 or temperature. A doubling of DPG will result in a 10 torr increase in P 50. 2,3 DPG The levels increase with Cellular hypoxia. Anemia Hypoxemia secondary to COPD Congenital Heart Disease Ascent to high altitudes The levels decrease with Septic Shock Acidemia Stored blood No DPG after 2 weeks of storage. Bohr Effect The effect of CO 2 on the OHDC is known as the Bohr Effect. (OH Bohr) High PCO 2 levels and low ph decrease affinity of hemoglobin for oxygen (a rightward shift). This occurs at the tissues where a high level of PCO 2 and acidemia contribute to the unloading of oxygen. Oxygen Transport The volume of oxygen leaving the left ventricle each minute. CaO 2 x CO x 10 = 20 ml O 2 x 5 L/min x 10 Make sure to convert CO to L/min! Normal value is 1,000 ml O 2 / min Decreased oxygen delivery occurs when there is: A decreased blood oxygenation Decreased hemoglobin concentration Decreased cardiac output. Arterial-Venous Oxygen Content Difference C(a- )O 2 CaO 2 C O 2 The venous blood is mixed venous blood obtained from the pulmonary artery via a pulmonary artery catheter. Normal CaO 2 : 20 vol% Normal C O 2 : 15 vol% Normal CaO 2 C O 2 : 5 vol% Decreased with: Increased CO Certain Poisons Hypothermia 5

Oxygen Extraction Ratio Def: The amount of oxygen extracted by the peripheral tissues divided by the amount of oxygen delivered to the peripheral cells. aka: Oxygen coefficient ratio & Oxygen utilization ratio O 2 ER = (CaO 2 -C O 2 )/CaO 2 Normal is 25% Increased with: Decreased. CO Increased VO 2 Exercise Seizures Shivering Hyperthermia Anemia Low PaO 2 Decreased with: Increased Cardiac Output Skeletal Muscle Relaxation Peripheral Shunting Certain Poisons Hypothermia Increased Hemoglobin Increased PaO 2 Pulmonary Shunting PERFUSION WITHOUT VENTILATION. Pulmonary shunt is that portion of the cardiac output that enters the left side of the heart without coming in contact with an alveolus. True Shunt No contact Anatomic shunts (Thebesian, Pleural, Bronchial) Cardiac anomalies Shunt-Like (Relative) Shunt Some ventilation, but not enough to allow for complete equilibration between alveolar gas and perfusion. Shunts are refractory to oxygen therapy. Delivery of oxygen therapy will NOT help (at least to the expected degree). Venous Admixture The mixing of oxygenated blood with contaminated deoxygenated blood resulting in a reduction in: Alveolar-arterial Gradient PAO 2 -PaO 2 More on this in today s 1060 class. PaO 2 SaO 2 Shunt Equation So just how much blood is shunted? Q Cc O2 CaO S 2 Q T Cc O2 CvO2 Where CćO 2 = (Hb x 1.34) + (PAO 2 *.003) You will need PBARO Barometric Pressure PaO 2 Arterial Partial Pressure of Oxygen PaCO 2 Arterial Partial Pressure of Carbon Dioxide P O 2 Venous Partial Pressure of Oxygen Hb Hemoglobin concentration PAO 2 Alveolar Partial Pressure of Oxygen FIO 2 Fractional Concentration of Inspired Oxygen Shunt Equation Example You obtain the following data on you patient. What is the percent shunt present? ph: 7.25 PaCO 2 : 28 torr PaO 2 : 68 torr SaO 2 : 91% PB: 749 P O 2 : 38 torr S O 2 : 72 % Hb: 13 gm% FIO 2 :.90 Steps: Calculate CaO 2 Calculate C O 2 Calculate PAO 2 Calculate CćO 2 Plug in numbers & solve! 6

Shunt Clinical Significance Normal Shunt: 3 to 5% Shunts above 15% are associated with significant hypoxemia. Tissue Hypoxia Hypoxemia: Reduced oxygen in blood (PaO 2 ). Hypoxia: Reduced oxygen at the tissue. Four types: Hypoxic (Hypoxemic) Hypoxia Anemic Hypoxia Circulatory Hypoxia Histotoxic Hypoxia Hypoxic Hypoxia Tissues have inadequate oxygen levels because there is inadequate levels in the blood (reduced PaO 2 ). Rule out causes of hypoxemia Low Alveolar Oxygen (reduced PAO 2 ) Altitude Hypoventilation (increased PACO 2 ) Breathing of gas mixtures less than 21% Diffusion Impairment Intrapulmonary Shunt Ventilation/Perfusion Mismatch Anemic Hypoxia Tissues have inadequate oxygen levels secondary to reduced oxygen carrying capacity. No hypoxemia! Caused by Reduced Hemoglobin Defective Hemoglobin Carboxyhemoglobin Methemoglobin Sulfahemoglobin Sickle Cell Anemia (HbS) Carboxyhemoglobin Carbon Monoxide has 245 times the affinity for hemoglobin as oxygen. Causes a leftward shift (increased affinity of Oxygen) Normal level is less than 3% 10% is common with smokers. Toxic at 20%; Lethal at 50%. Suspect incomplete combustion if level is elevated. Furnace, space heater Treatment is 100% oxygen Reduces half-life of HbCO from 5 hours to 20 minutes. Hyperbaric treatment remains controversial. 7

Methemoglobin A normal variant of adult hemoglobin. Ferrous to Ferric (loses an electron, Fe +3 ) Normal levels are less than 1%. Usually associated with excessive nitrate ingestion. Amyl Nitrate Nitroglycerine Topical anesthetics Treatment with methylene blue Sulfhemoglobin Sulfhemoglobin results from the union of hemoglobin with medications such as sulfonamides (antibiotics including Bactrim & Septra). The resultant form of hemoglobin is unable to transport oxygen, and is untreatable. The only treatment is to wait until the affected red blood cells are destroyed as part of their normal life cycle. Hemoglobin S Hemoglobin S is a abnormal variant of Hemoglobin A where one of the 146 amino acids in the beta chain is altered. Inherited disorder from both parents. 1% of African Americans. Recurrent painful episodes (Crisis) occur as sickled cells become obstructed. Typical anemic symptoms. Can lead to infections and stroke. Circulatory Hypoxia Tissues have inadequate oxygen levels secondary to reduced oxygen delivery. Most significant cause is reduced cardiac output or blood pressure abnormalities. Histotoxic Hypoxia Tissues have inadequate oxygen levels secondary to inability of tissue to use oxygen for metabolism. Cyanide poisoning. Cyanosis A clinical condition manifested by a bluish discoloration of the mucous membranes or nail beds. Peripheral vs. Central Present when 5 g/dl of hemoglobin is desaturated. This usually correlates with a SaO 2 below 85%. ANEMIC PATIENTS WILL NEVER BE CYANOTIC! 8

Polycythemia Response to chronic hypoxemia is the release of erythropoietin and stimulation of the bone marrow to produce more RBC and hemoglobin. Increased hemoglobin allows for greater carrying capacity BUT also results in increased viscosity of the blood. Increased viscosity increases work of the heart. Fetal Hemoglobin (HbF) Fetal hemoglobin (hemoglobin F) is the main hemoglobin that transports oxygen around the body of the developing baby during the last 7 months of pregnancy. It has a greater affinity for oxygen than Hemoglobin A (P 50 of 20 mm Hg). At about 30 weeks gestation, the fetus begins to make increasing amounts of hemoglobin A. Hemoglobin F does not turn into hemoglobin A. As they grow babies automatically turn off the production of hemoglobin F (usually complete by one year). Failure to stop Hemoglobin F production is found in certain beta thalassemias. Possible link to SIDS. 9