Microanatomy of Muscles. Anatomy & Physiology Class

Similar documents
MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

Muscle Tissue. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

Muscle Tissue- 3 Types

Ch 10: Skeletal Muscle Tissue (Myology)

MUSCULAR TISSUE. Dr. Gary Mumaugh

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

Chapter 8 Notes. Muscles

Muscle Histology. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

MODULE 6 MUSCLE PHYSIOLOGY

Muscle tissues. Dr. Hersh Abdul Ham-Karim BVM&S, PG Dip, MSc and PhD

Chapter 9 - Muscle and Muscle Tissue

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1

How many skeletal muscles are present in our body? Muscles are excitable & contractile, extensible and elastic to some extent.

Session 3-Part 2: Skeletal Muscle

The Muscular System PART A

CLASS SET Unit 4: The Muscular System STUDY GUIDE

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

SKELETAL MUSCLE CHARACTERISTICS

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc.

Chapter 10 -Muscle Tissue

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law).

Chapter 10 Muscle Tissue and Physiology Chapter Outline

Muscle Tissue. General concepts. Classification of muscle. I. Functional classification is based on the type of neural control.

Muscle Tissue. Alternating contraction and relaxation of cells. Chemical energy changed into mechanical energy

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Skeletal Muscle. Skeletal Muscle

Chapter 10 Muscle Tissue Lecture Outline

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

Connective tissue MUSCLE TISSUE

Muscle and Muscle Tissue

Nerve regeneration. Somatic nervous system

Nerve meets muscle. Nerve regeneration. Somatic nervous system

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS.

Muscular System- Part 1. Unit 5 Miss Wheeler

Chapter 8: Skeletal Muscle: Structure and Function

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscles and Muscle Tissue

Chapter 10: Muscle Tissue

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

The Muscular System. Specialized tissue that enable the body and its parts to move.

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement

Chapter 10 Muscle Tissue

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

Medical Biology. Dr. Khalida Ibrahim

1. General characteristics of muscle tissues: 2. A. Skeletal muscle tissue ("striated muscle tissue")

Anatomy & Physiology. Unit Two. Muscular System URLs Frog Dissection

Human Anatomy and Physiology - Problem Drill 09: The Muscular System

Muscular System. Human A & P

Muscular System. 3 types of muscle tissue. How skeletal muscles arrange CARDIAC SMOOTH SKELETAL

A and P CH 8 Lecture Notes.notebook. February 10, Table of Contents # Date Title Page # /30/17 Ch 8: Muscular System

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Lecture 9A. Muscle structure. Outline

PSK4U THE NEUROMUSCULAR SYSTEM

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions:

******************************************************************************************************* MUSCLE CYTOLOGY AND HISTOLOGY

Muscle tissue- part 2

Ch. 6: Contraction of Skeletal Muscle Physiological Anatomy of Skeletal Muscle

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Essentials of Human Anatomy & Physiology. The Muscular System

The Nervous and Muscular Systems and the role of ATP

Muscle Cells & Muscle Fiber Contractions. Packet #8

Muscle tissue. 1) Striated skeletal muscle tissue. 2) Striated cardiac muscle tissue. 3) Smooth muscle tissue.

Muscular Tissue. Functions of Muscular Tissue. Types of Muscular Tissue. Skeletal Muscular Tissue. Properties of Muscular Tissue

5. What component of the sarcomere is not attached to the Z line?

Skeletal Muscle Contraction and ATP Demand

The Muscular System. Muscle tissue is one of the 4 tissue types in vertebrates Muscle

Anatomy & Physiology Muscular System Worksheet

The Muscular System and Homeostasis

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

The Muscular System. Objective: The student will become familiar with the structure and function of the muscular system

Muscle Tissue. Xie Fenfen. Department of Histology and Embryology School of Basic Medicine Anhui Medical University

Dr. Heba Kalbouneh. Ragad Alhawi. Heba Kalbouneh

Page 1. Introduction Skeletal muscle cells have unique characteristics which allow for body movement.

Functions of Muscle Tissue

Chapter Skeletal Muscle Structure and Function

Class XI Chapter 20 Locomotion and Movement Biology

2/28/18. Muscular System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Physiology. Anatomy. Muscle Fiber

The Sliding Filament Theory

2/28/18. Muscular System. Introduction. Anatomy. Chapter 20

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Biomechanics of Skeletal Muscle

NOTES MUSCULAR SYSTEM

Muscles & Muscle Tissue

Skeletal Muscle Tissue

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart

The Musculoskeletal System. Chapter 46

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

Table of Contents # Date Title Page # /27/14 Ch 7: Skeletal System 01/29/14 Ch 8: Muscular System

Chapter 7 The Muscular System. Mosby items and derived items 2012 by Mosby, Inc., an affiliate of Elsevier Inc. 1

Transcription:

Microanatomy of Muscles Anatomy & Physiology Class

Three Main Muscle Types

Objectives: By the end of this presentation you will have the information to: 1. 2. 3. 4. 5. 6. Describe the 3 main types of muscles. Detail the functions of the muscle system. Correctly label the parts of a myocyte (muscle cell) Identify the levels of organization in a skeletal muscle from organ to myosin. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. Contrast and compare cardiac and smooth muscle with skeletal muscle.

Major Functions: 1. 2. 3. 4. 5. Muscle System Moving the skeletal system and posture. Passing food through the digestive system & constriction of other internal organs. Production of body heat. Pumping the blood throughout the body. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton.

Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic reticulum found in smooth and striated muscle fibers whose function is to store and release calcium ions. Myofibrils:a contractile fibril of skeletal muscle, composed mainly of actin and myosin Multiple Nuclei (skeletal) & many mitochondria

Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue.

Skeletal Muscle - Microscopic Anatomy Epimysium, perimysium and endomysium layers of connective tissue generally extend beyond the fleshy part of the muscle, forming a thick ropelike tendon. Fascia is a layer of thickened connective tissue that covers the entire muscle and is located over the layer of epimysium that also makes up the tendon that connects to the periosteum of the bone.

You will need to know the breakdown of the structure of a skeletal muscle from the organ down to the actin and myosin. muscle organ fascicle myofiber myofibril sarcomere actin myosin DRAW THIS

Sliding Filament Theory ~ main structures Myofibril: A cylindrical organelle running the length of the muscle fiber, containing Actin and Myosin filaments. Sarcomere: The functional unit of the myofibril, divided into I, A and H bands. Actin: A thin, contractile protein filament, containing 'binding' sites. Myosin: A thick, contractile protein filament, with protrusions known as Myosin Heads. Tropomyosin: An actin-binding protein which regulates muscle contraction. Troponin: A protein attached to Tropomyosin.

Sliding Filament Theory ~ main structures Thin Filament Thick Filament

Sarcomeres

Sliding Filament Theory - Step 1 A nervous impulse arrives at the neuromuscular junction, which causes a release of a chemical called Acetylcholine. The presence of Acetylcholine causes the depolarisation of the motor end plate which travels throughout the muscle by the transverse tubules, causing Calcium (Ca+) to be released from the sarcoplasmic reticulum

Sliding Filament Theory - Step 2 In the presence of high concentrations of Ca+, the Ca+ binds to Troponin, changing its shape and so moving Tropomyosin from the binding site of the Actin. The Myosin heads can now attach to the Actin, forming a cross-bridge.

Sliding Filament Theory - Step 3 The breakdown of ATP releases energy which enables the Myosin to pull the Actin filaments inwards and so shortening the muscle. This occurs along the entire length of every myofibril in the muscle cell.

Sliding Filament Theory - Step 4 The Myosin detaches from the Actin and the cross-bridge is broken when an ATP molecule binds to the Myosin head. When the ATP is then broken down the Myosin head can again attach to an Actin binding site further along the Actin filament and repeat the 'power stroke'. This repeated pulling of the Actin over the myosin is often known as the ratchet mechanism.

Sliding Filament Theory - Relaxation This process of muscular contraction can last for as long as there is adequate ATP and Ca+ stores. Once the impulse stops the Ca+ is pumped back to the Sarcoplasmic Reticulum and the Actin returns to its resting position causing the muscle to lengthen and relax.

Insert Video Here Cross Bridges

Sarcomere through contraction M- disk (line) does not move. H-Zone shrinks A-Band does not change length Z-lines move toward the M-line All sarcomeres contract so the the muscle insertion will move toward the origin.

Sarcomere through contraction All sarcomeres contract so the the muscle insertion will move toward the origin. Muscles can only PULL, not push at a joint. They work in antagonistic pairs.

More Facts~ Mature cells can change in size, but new cells are not formed when muscles grow; however, cellular components within the cell can change in response to use. hypertrophy = structural proteins are added to muscle fibers increasing mass. atrophy = when structural proteins are lost and muscle mass decreases. satellite cells = help to repair skeletal muscle fibers. They are located outside the muscle fibers and are stimulated to grow and fuse with muscle cells under certain forms of stress. Satellite cells can regenerate muscle fibers to a very limited extent, but they primarily help to repair damage by facilitating the protein synthesis. Fibrosis = scar tissue that replaces muscle tissue not able to be fixed by satellite cells. Scar tissue cannot contract; therefore, damaged muscle loses strength and endurance.

Cardiac Muscle: The structure & function are very similar to skeletal muscle with a few exceptions: 1. One nucleus centrally located 2. Shorter than skeletal muscles 3. Branched myoctes, not parallel 4. Intercalated discs for faster electrical impulses because of gap junctions and desmosomes. Two types of cardiac cells: The contractile cells are the main contracting cells that must beat as a unit, so the heart contracts as one organ. Pacemaker cellsdepolarize at set intervals, and the heart beats a steady, predictable 60 to 80 bpm at rest

Smooth Muscle Not striated, so contracts differently than skeletal and cardiac. no sarcomeres, but do have actin and myosin in the dense bodies attached to the sacolemma. Thin and thick filaments are aligned in a diagonal pattern across the cell so that contraction produces a twisting or corkscrew motion muscles form layers that are usually arranged so that one runs parallel to an organ and the other wraps around it - allows for peristalsis and labor and delivery Can produce more cells (hyperplasia) Two Types of Smooth Muscle: Single Unit: gap junctions allow for coordinated depolarization and contraction often triggered by stretching. Multiunit: Stimulated by hormones or autonomic nerves, no gap junctions

Insert all or none video https://youtu.be/9figszfww-q?t=4m15s

Fast Twitch Muscles Fast Twitch (Type IIB): - Quick bursts of energy most skeletal muscles are of this type large in diameter use enormous reserves of glycogen rather than oxygen-rich blood for quick energy densely packed myofibrils few mitochondria generate a lot of tension rely largely on anaerobic metabolism fatigue rapidly WHITE MEAT fast twitch fibers appear in muscles needed for fine movements, such as the small muscles of the hand and the eye

Slow Twitch Muscles Slow Twitch (Type I): -Endurance are smaller than fast twitch muscles take about three times longer to contract after receiving stimulus many mitochondria contain a large amount of myoglobin, which carry oxygen to muscle fibers (similar to hemoglobin, which helps carry oxygen to blood) slow twitch fibers are needed for posture and movement, and in back muscles and muscles of the legs DARK MEAT

Intermediate Twitch Muscles Intermediate (Type IIA): have properties of both fast and slow twitch fibers similar in appearance to fast twitch fibers similar in endurance to slow twitch fibers