The Synthetic Machinery of the Cell

Similar documents
Biology 12 January 2004 Provincial Examination

The Cell T H E C E L L C Y C L E C A N C E R

Bacterial Gene Finding CMSC 423


Protein sequence alignment using binary string

General aspects of bacteriology, bacterial structure and growth. Che-Hsin Lee, Ph.D. Department of Biological Sciences National Sun Yat-senUniversity

Summary of Endomembrane-system

Biology 12 November 1999 Provincial Examination

CASE TEACHING NOTES. Decoding the Flu INTRODUCTION / BACKGROUND CLASSROOM MANAGEMENT

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION BIOLOGY 12 GENERAL INSTRUCTIONS

Protein Synthesis and Mutation Review

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

AP Biology

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy

The endoplasmic reticulum is a network of folded membranes that form channels through the cytoplasm and sacs called cisternae.

Biology 12 JANUARY Course Code = BI. Student Instructions

PROTEIN TRAFFICKING. Dr. SARRAY Sameh, Ph.D

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION BIOLOGY 12 GENERAL INSTRUCTIONS

Genomic and evolutionary aspects of chloroplast trna in monocot plants

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled

Objectives: Prof.Dr. H.D.El-Yassin

Name: Date: Block: Biology 12

Intracellular Compartments and Protein Sorting

TRANSLATION: 3 Stages to translation, can you guess what they are?

The transfer RNA genes in Oryza sativa L. ssp. indica

Protein Trafficking in the Secretory and Endocytic Pathways

endomembrane system internal membranes origins transport of proteins chapter 15 endomembrane system

Translation Activity Guide

Endomembrane system 11/1/2018. Endomembrane System. Direct physical continuity. Transfer of membrane segments as vesicles. Outer Nuclear envelope

Protein sorting (endoplasmic reticulum) Dr. Diala Abu-Hsasan School of Medicine

Cell Overview. Hanan Jafar BDS.MSc.PhD

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Renata Schipp Medical Biology Department

A Tour of the Cell Lecture 2, Part 1 Fall 2008

Don t Freak Out. Test on cell organelle on Friday!

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION BIOLOGY 12 GENERAL INSTRUCTIONS

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

CELLS. Cells. Basic unit of life (except virus)

BIOLOGY 12 NOVEMBER 2000 STUDENT INSTRUCTIONS

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

Intracellular vesicular traffic. B. Balen

Biology 12 AUGUST Course Code = BI. Student Instructions

Bacterial Gene Finding CMSC 423

10/13/11. Cell Theory. Cell Structure

/searchlist/6850.html Tour of the Cell 1

Organelles of the Cell & How They Work Together. Packet #7

Cell morphology. Cell organelles structure and function. Chapter 1: UNIT 1. Dr. Charushila Rukadikar

Types of cells. Cell size comparison. The Jobs of Cells 10/5/2015. Cells & Cell Organelles. Doing Life s Work

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.

Genetic information flows from mrna to protein through the process of translation

Cell Structure & Function. Source:

BIOLOGY 621 Identification of the Snorks

Biology 12. Examination Booklet 2008/09 Released Exam June 2009 Form A DO NOT OPEN ANY EXAMINATION MATERIALS UNTIL INSTRUCTED TO DO SO.

Biology 12 Cell Structure and Function. Typical Animal Cell

Biology 12. Examination Booklet August 2007 Form A DO NOT OPEN ANY EXAMINATION MATERIALS UNTIL INSTRUCTED TO DO SO.

Point total. Page # Exam Total (out of 90) The number next to each intermediate represents the total # of C-C and C-H bonds in that molecule.

Complete Student Notes for BIOL2202

Renáta Schipp Gergely Berta Department of Medical Biology

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Human Anatomy & Physiology

Organelles of the Cell & How They Work Together. Packet #5

BIO 5099: Molecular Biology for Computer Scientists (et al)

RNA (Ribonucleic acid)

Molecular Cell Biology - Problem Drill 17: Intracellular Vesicular Traffic

Cells. Variation and Function of Cells

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

Central Dogma. Central Dogma. Translation (mrna -> protein)

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters

Chapter 4: Cell Structure and Function

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

Organelles of the Cell & How They Work Together. Packet #5

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells

Eukaryotic Cell Structures

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

Human Epithelial Cells

Chapter 3: Cells. I. Overview

AP Biology Cells: Chapters 4 & 5

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 06

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

Cell Cell

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes.

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

1. This is the location where N-linked oligosaccharide is initially synthesized and attached to glycoproteins.

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue

Protein Synthesis

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in

Starch grains - excess sugars

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

CELL PARTS TYPICAL ANIMAL CELL

Objective: You will be able to explain how the subcomponents of

BIOLOGY Unit 3 Written examination

Sections 12.3, 13.1, 13.2

A TOUR OF THE CELL 10/1/2012

Biology. Lectures winter term st year of Pharmacy study

Organelles Found in a Generalized Animal Cell

Transcription:

The Synthetic Machinery of the Cell Professor Alfred Cuschieri University of Malta Department of Anatomy Objectives State the characteristics of messenger, ribosomal and transfer RNA Distinguish between transcription and translation Describe the composition and structure of the nucleolus Explain what constitutes the nucleolus organizer region Outline the role of ribosomes in protein synthesis Discuss how antibiotics inhibit the growth of bacteria and have different sites of action List the main sites of protein synthesis Identify RER, SER and Golgi apparatus in electron micrographs Explain the roles of the RER and Golgi apparatus in protein glycosylation and sorting Name the functions of the SER in different cells Recommended Reading The World of the Cell: Becker WM, Kleinsmith LJ, Hardin J. 4 th Edition Chapter 12 Intracellular compartments o The endoplasmic reticulum o The Golgi complex o Roles of ER and Golgi complex in protein glycosylation o Roles of ER and Golgi complex in protein sorting Chapter 19 Gene Expression: I. The Genetic Code and Transcription Chapter20 Gene Expression: II. Protein Synthesis and Sorting

The nucleolus and ribosomes form part of the protein synthesising machinery The nucleolus is the site where most of the ribosomal RNA (r-rna) is transcribed Ribosomes are composed of r-rna and proteins The ribosomes are the sites where protein synthesis occurs Synthesis of specific proteins (transcription) also requires the action of other RNAs: o m-rna as a template o t-rna for the assembly process The cellular machinery for protein synthsis involves RNA. RNA (ribose nucleic acid) is a single-stranded nucleic acid composed of four different types of nucleotides adenine(a), uracil (U), Cytosine (C) and guanine (G). The Cell Has 3 Types of RNA Messenger RNA (m-rna) - Is transcribed from DNA in the nucleus - Carries a coded message to cytoplasm - There are about 105 varieties in humans (corresponding to the number of genes) Ribosomal r-rna (r-rna) - There are 4 varieties - Correspond to the 4 RNA constituents of ribosomes Transfer t-rna (t-rna) - There are 20 varieties - Each corresponds to an amino-acid - Transfers the appropriate amino acid to polypeptide chains

M-RNA is the transcript of a gene DNA has two strands. The template strand carries the message, and is transcribed to m- RNA. The coding strand carries a sequence that is: - Complementary to that on the template strand, and - Coincides with the sequence on m-rna, except that T in DNA is replaced by U in RNA. The following diagram summarizes the process of transcription and translation. DNA Coding strand Template strand 5' --- T G T A C G A T T C C G A T G A C T --------3' 3' --- A C A T G C T A A G G C T A C T G A --------5' Transcription m-rna Translation 5' --- U G U A C G A U U C C G A U G A C U -------3' codon codon codon codon codon codon Protein A1 A2 A3 A4 A5 A6 5 3 Direction of transcription & translation Transcription Is the process of synthesis of m-rna using the transcribed strand of DNA as template Is the process whereby the genetic message for a specific protein is transcribed on to m-rna Occurs in the nucleus of eukaryotic cells Occurs in the 5 to 3 direction (i.e. nucleotides are always added at the 3 end) Translation Is the process of synthesis of a specific protein using m-rna as template. Occurs in the ribosomes in the cytoplasm The message is read in codons (triplets of nucleotides) in the 5 to 3 direction

Each codon is a triplet of bases on m-rna corresponding to an amino acid according to the genetic code THE GENETIC CODE U C A G UUU Phe UCU Ser UAU Tyr UGU Cys U U UUC Phe UCC Ser UAC Tyr UGC Cys C UUA Phe UCA Ser UAA Stop UGA Stop A UUG Leu UCG Ser UAG Stop UGG Trp G CUU Leu CCU Pro CAU His CGU Arg U C CUC Leu CCC Pro CAC His CGC Arg C CUA Leu CCA Pro CAA Gln CGA Arg A CUG Leu CCG Pro CAG Gln CGG Arg G AUU Ile ACU Thr AAU Asn AGU Ser U A AUC Ile ACC Thr AAC Asn AGC Ser C AUA Ile ACA Thr AAA Lys AGA Arg A AUG Met Start ACG Thr AAG Lys AGG Arg G GUU Val GCU Ala GAU Asp GGU Gly U G GUC Val GCC Ala GAC Asp GGC Gly C GUA Val GCA Ala GAA Glu GGA Gly A GUG Val GCG Ala GAG Glu GGG Gly G U C A G The genetic code specifies the possible codons and the amino acids corresponding to each codon. By convention, the genetic code is interpreted with reference to the sequence of bases on m-rna. In the genetic code there are four bases - A, U, C, G; 64 possible codons (=4 4 ); and 20 amino acids The genetic code is degenerate i.e. One amino acid may be represented by more than one codon Codon AUG codes for methionine but at the beginning of a gene also serves as a start signal for translation. Codons UAA, UAG and UGA are stop signals for translation. 5' 3' GUA Histidine Transfer RNA t- RNA consists of RNA folded in the form of a cross It has an anti-codon at one end (a triplet complementary to a codon sequence) It has the corresponding amino-acid attached to the opposite end The example in the adjacent figure is of t- RNA for histidine, which is attached to one end, and has the anticodon GUA

(complementary to the codon CAU) at the other end. Ribosomal RNA (r-rna) Is involved, together with proteins, in the assembly of ribosomes, There are 4 types of r-rna referred to as 5S, 5.8S, 18S, 28S (indicating the sedimentation coefficient in Svedberg units) Is transcribed from multiple copies of DNA (unlike m-rna transcribed from a unique gene) Is synthesised in the nucleolus The Nucleolus Consists of two parts: A fibrillar part consisting of chromatin - DNA transcribing r-rna A granular part consists of ribonucleoprotein particles (r-rna + proteins) The nucleolar DNA The genes for 5.8S, 18S and 28S r-rna form a gene cluster They are all transcribed together forming a r-rna complex of 45S These genes are present on the nucleolus organiser regions on the satellites of the acrocentric chromosomes 13, 14, 15, 21 and 22 satellites The gene for 5S r-rna is located on chromosome 1 and is transcribed separately. The nucleolus organiser regions contain many repeated copies of the r- RNA gene cluster. This is an example of gene amplification. 18S 5. 8S 28S 18S 5. 8S 28S 18S 5. 8S 28S 18S 5. 8S 28S The multiple copies of r-rna are transcribed simultaneously. As they are transcribed from the 5 moving towards the 3 end, the growing chain of the r-rna complex gives rise to form a feather arrangement. DNA strand 5 3

Ribosome structure Ribosome structure has been extensively studied using isolated ribosomes. The ribosomes are separated from the RER by using mild detergents and isolated using differential centrifugation. Eukaryotic ribosomes have a sedimentation coefficient of 80 S. Further treatment of the ribosomes with a salt solution containing a low concentration of [Mg ++ ] ions splits them into two subunits with the following composition: 18S r-rna 33 proteins 5S, 5.8S, 28S r-rna 49 proteins 1. The small subunit has a sedimentation coefficient of 40S and consists of 18S r-rna together with 33 different proteins. 2. The large subunit has a sedimentation coefficient of 60S consists of 5S, 5,8S and 28S r-rna together with about 49 different proteins. Ribosomes have four binding sites, important for their function in protein synthesis: 1. Groove for binding of m-rna 2. Amino-acyl site (A) - for binding to t- RNA 3. Peptidyl transferase site (PT) - for binding a P A PT newly added amino acid by peptide bonds 4. Peptidyl site (P) - for the growing polypeptide chain Steps In Protein Synthesis 1. Initiation The ribosome dissociates into its small and large subunits. This requires an initiation factor and energy derived from GTP P A PT Initiation factor GTP GDP

2. Formation of an initiation complex - the small subunit attaches to m- RNA and the first t-rna. The initiator codon is AUG, and the first amino acid is methionine. The ribosome is closed. 5 3 5 3 3. Translocation - m-rna moves one codon at a time; a new t- RNA occupies the A site, and an appropriate amino acid is added on. Elongation of the polypeptide chain requires an elongation factor and GTP 5 3 5 3 GTP GDP polypeptide 4. Chain termination The terminator codon UAG is the signal for the end of protein synthesis. A releasing factor is required for UAG 3 releasing factor detaching the protein fro the ribosome. polypeptide

Polyribosomes. 3 5 Frequently, one m-rna runs successively through several ribosomes producing multiple copies of a protein as shown in this diagram. The longest protein chains are close to the 3 end of the m-rna Clinical Applications y Antibiotics Inhibit Protein Synthesis in Bacteria Prokaryotic (bacterial) ribosomes are similar in general structure and function to eukaryotic ribosomes, but have a sedimentation coefficient of 70S and consist of 30S and 50S subunits. The following are some examples of antibiotics that inhibit protein synthesis in bacteria. They could be bacteriostatic or bactericidal. Streptomycin binds to 30S subunit and inhibits binding of t-rna Tetracycline inhibits binding of t-rna to A-site Eryhthromycin binds to 50S subunit and prevents ribosome assembly Some antibiotics act at different stages of protein synthesis Fusidic acid inhibits the attachment of t-rna to A-site Puromycin is a molecular analogue of t-rna and causes premature chain termination Chloramphenicol and Lincomycininhibit peptidyl transferase Thioseptrin prevents translocation from A to P site Why do antibiotics inhibit protein synthesis in bacteria but not in humans? y antibiotics are specific for prokaryotic (bacterial) ribosomes (70S). Prokaryotic ribosomes (70S) have a different protein composition from eukaryotic (80S) ribosomes. The bacterial cell wall is permeable to some antibiotics while the plasma membrane of eukaryotic cells is not

Some protein synthesis inhibitors also act on eukaryotic cells Antibiotics that inhibit protein synthesis in human cells are useful as cytostatic agents e.g. cycloheximide They are lethal to cells that are actively dividing

The Cell s Export Industry Ribosomes attached to RER produce proteins for use outside the cell Secretion into the extracellular space e.g. collagen Secretion into the bloodstream e.g. plasma proteins, immunoglobulins, hormones Secretion into a secretory duct - exocrine secretions Secretion into lysosomes - acid hydrolase Free ribosomes produce proteins for use within the cell In dividing cells In haemopoietic tissue In gamete formation - oocyte In the zygote In embryonic cells Rough Endoplasmic Reticulum is usually present as stacks of flattened lamellae. Distinguish between the cytoplasmic and cisternal faces of the RER Ribosomes indicate the cytoplasmic face Cisternae appear as clear spaces containing proteins

Rough endoplasmic reticulum is found in abundance in cells that actively secrete proteins for export outside the cell. The following are some examples: Protein secreting glands - pancreas, parotid gland etc. Antibody secreting cells - plasma cells Fibroblasts - collagen synthesis Neurons for production of neurotransmitter and membrane synthesis Proteins for export are synthesized on ribosomes attached to the RER Synthesis of secretory proteins begins in free ribosomes, which then become attached to the RER. Proteins destined for export have a signal protein that guides the ribosome to the RER. Attachment of ribosomes to the RER involves a number of intermediate molecules: 1. A signal peptide - the first part of the protein serves as a signal for the ribosome to attach to the RER 2. A signal recognition particle (SRP) present in the cytosol combines with the signal peptide. 3. A docking protein present in the membrane attaches to the SRP and brings it close to the membrane of the RER 4. Ribophorin is a membrane protein channel for passage of the protein. The SRP guides the signal protein to the ribophorin. m-rna 1. 2. 3. 4. Having entered the lumen of the RER, the signal protein is cleaved off and protein synthesis continues.

Functions of the Golgi Apparatus Packaging of secretory materials Processing of proteins - glycosylation, phosphorylation, sulphation Synthesis of polysaccharides and glycolipids Sorting of proteins for several destinations Formation of new membranes e.g. plasma membrane The Golgi complex consists of: Cisternae - stacks of 3 to 8 flat, disc-shaped, membrane-bound sacs Vesicles of variable size surrounding the cisternae The Golgi Complex has two faces and a middle compartment: Cis face (forming face) where vesicles from RER and SER merge into Golgi apparatus Medial cisternae the transition between the cis and trans faces, where most of the processing of proteins occurs Trans face (maturing face) where vesicles bud out from the Golgi apparatus to their various destinations The vesicles are transport vesicles transporting contents from: The RER and SER to the Golgi One Golgi cisterna to the next The trans face to their various destinations. The Golgi complex contains different enzymesin different compartments. Some of these enzymes can be stained cytochemically or used as identification markers. In this electron micrograph the trans face has been stained for thiamine pyrophosphatase.

Proteins undergo post-transcriptional modification in the RER and Golgi complex. Most of the post-transcriptional modification involves glycosylation, the addition of carbohydrate side-chains, forming glycoprotein. This occurs in two steps: 1. Core glycosylation is the initial glycosylation is the same in all proteins. It involves the addition of branched oligosaccharide chains of 14 sugar units consisting of: - 3 terminal glucose units - 9 mannose units - 2 N-acetylglucosamine attached to the asparagine residues of the protein. This process is also termed N- glycosylation, and occurs in the lumen of the RER. This is followed by pruning of the oligosaccharide chain involving the removal of the 3 Asp glucose and one mannose units (shown boxed in the diagram) by the enzymes glucosidase and mannosidase respectively. This process occurs before the protein moves out of the RER. Glu Glu Glu 2. Terminal glycosylation occurs in the Golgi complex as the proteins move from the cis face, through the medial cisternae to the trans face. It involves modifications of the initial glycoproteins to serve as signals for directing the proteins to their final destinations. PO 4 PO 4 Proteins destined for lysosomes receive two terminal PO 4 groups (as shown in the adjacent diagram), which constitute the signal for packaging in primary lysosomes. Asp

For other destinations, modification usually involves further pruning of the mannosidase branches (shown boxed in diagram a) by mannosidase I and mannosidase II. Further modification involves the addition of various carbohydrate units, including N-acetylglucosamine, galactose, sialic acid and sometimes fucose, generating complex oligosaccharides (c). SA SA Gal Gal Asp Asp Asp a. b. c. The Golgi complex may also receive vesicles from the smooth endoplasmic reticulum. Lipids formed in the SER are transferred to the Golgi comples to synthesise lipoproteins. Sorting and packaging of proteins occurs in the trans face of the Golgi Complex. The sorting depends on the tag that has been attached to the protein. The tag may be an oligosachharide, a side-group, lipid component or a specific amino acid sequence. The tags are necessary for the final packaging in specific vesicles, according to their destination e.g. lysosomes or secretory vesicles. They also help to exclude the intrinsic enzymes of the different Golgi compartments from being enclosed in vesicles.

Smooth Endoplasmic Reticulum (SER) SER is structurally & functionally different from RER SER consists of branched tubules and lacks ribosomes. The enzymes contained in the lumen and membranes of the SER are different from those of RER reflecting their different functions Functions of Smooth Endoplasmic Reticulum 1. Lipid synthesis: a. Phospholipids for membranes b. Adrenal cortical hormones c. Sex hormones 2. Carbohydrate metabolism: a. Glycogen granules lie in close proximity to SER b. Glycogenolysis - Glucose 6-phosphate dehydrogenase is present in the SER membrane 3. Detoxification of metabolites or extraneous chemicals. This may occur by: a. conjugation b. hydroxylation c. methylation d. phosphorylation This function occurs primarily in liver cells: o Detoxification of drugs and chemicals o Conjugation of bilirubin 3. A reservoir of Ca 2+ ions This occur mainly in skeletal muscle cells: Ca 2+ pumps in the SER membrane pump ions into the SER lumen; Ca 2+ channels in the SER membrane regulate the flow of ions into the cytosol

SER occurs in abundance in steroid secreting cells. They have three distinctive cytoplasmic features: a) Abundant SER b) Mitochondria with tubular cristae c) Lipid droplets In these cells part of the biosynthesis of the steroid hormones occurs in the mitochondrial cristae, which have a similar appearance to the SER tubules. Steroid-secreting cell include: a) Adrenal cortical cells secrete cortisol b) Interstitial cells of the testes secrete testosterone c) Corpus Luteum secretes progesterone Clinical Applications Barbiturates are a group of drugs that were used for the treatment of insomnia, as short-acting anaesthetics and for the treatment of epilepsy. Their use is now restricted because they induce dependence and have several undesirable side effects. Prolonged use of barbiturates induced proliferation of the SER in the liver and consequent impairment of liver function. Barbiturates were used extensively in experimental animals for the study of SER. Barbiturates happens to have an unusually marked effect in inducing SER proliferation, but most medications including antibiotics and drugs, are broken down in the liver. Most drugs are administered in divided doses two or three times a day because of their rate of inactivation in the liver. Conversely, most medications have to be administered with caution and in reduced dosage in patients who have liver damage or impairment because the drug remains active for a long time.