Spinal Cord (2005) 43, & 2005 International Spinal Cord Society All rights reserved /05 $

Similar documents
Radiological pathogenesis of cervical myelopathy in 60 consecutive patients with cervical ossi cation of the posterior longitudinal ligament

Spinal cord edema: unusual magnetic resonance imaging findings in cervical spondylosis

Daniel J. Blizzard, MD, MS

Incidence and Risk Factors for Late Neurologic Deterioration after C3-6 Laminoplasty in Patients with Cervical Spondylotic Myelopathy

Ossification of the posterior longitudinal ligament

Anterior decompression for cervical spondylosis associated with an early form of cervical ossification of the posterior longitudinal ligament

Cervical spondylarthrotic myelopathy with early onset in Down's syndrome: five cases and a review of the literature

Orthopaedics and Rehabilitation Medicine Fuculty of Medical Sciences University of Fukui

Ossification of the posterior longitudinal ligament

CERVICAL SPONDYLOSIS AND CERVICAL SPONDYLOTIC MYELOPATHY

MRI of chronic spinal cord injury

Rick C. Sasso MD Professor Chief of Spine Surgery Clinical Orthopaedic Surgery Indiana University School of Medicine

CERVICAL SPONDYLOSIS & CERVICAL DISC DISEASE

Disclosures: T. Yoshii: None. T. Yamada: None. T. Taniyama: None. S. Sotome: None. T. Kato: None. S. Kawabata: None. A. Okawa: None.

Unanswered Questions. Laminoplasty is best

Outcome of Anterior Cervical Discectomy and Fusion with Autograft and Plating in management of Cervical Spondylotic Myelopathy

Upper limb involvement in cervical spondylosis

Complex Spine Symposium January 12th, Balgrist University Hospital

Key Primary CPT Codes: Refer to pages: 7-9 Last Review Date: October 2016 Medical Coverage Guideline Number:

Pathogenesis of Cervical Myelopathy in Chronic Cervical Cord Compression Model of Rat

Morphological Patterns of the Anterior Median Fissure in the Cervical Spinal Cord Evaluated by Computed Tomography After Myelography

Cervical spondylotic myelopathy: Make the difficult diagnosis, then refer for surgery

CMEARTICLE * * * Wen Qi Tan 1, BEng, Bak Siew Steven Wong 2, MBChB, MMed

Spinal canal stenosis Degenerative diseases F 06

Morphological changes of the cervical spinal canal and cord due to aging on MR imaging

CSM is the most common cause of spinal cord dysfunction

Original Article Prognosis of Cervical Degenerative Myelopathy after Multilevel Anterior Cervical Discectomies and Fusion

Yoshifumi Kudo, 1 Tomoaki Toyone, 1 Toshiyuki Shirahata, 1 Tomoyuki Ozawa, 1 Akira Matsuoka, 1 Yoichi Jin, 2 and Katsunori Inagaki 1. 1.

Reduced invasiveness of myoarchitectonic laminectomy compared with open-door laminoplasty in patients with cervical myelopathy

Ce rv i c a l spondylosis is a progressive disease that is

Stand-Alone Technology. Reginald Davis, M.D., FAANS, FACS Director of Clinical Research

Spur on posterior arch of atlas with fatal spinal cord compression - a case report

Misdiagnosis in cervical spondylosis myelopathy.

Systematic review Cervical artificial disc replacement versus fusion in the cervical spine: a systematic review (...)

Comparative study on the effect of anterior and posterior decompression in the treatment of multi-segmental cervical spondylotic myelopathy

3D titanium interbody fusion cages sharx. White Paper

Comprehension of the common spine disorder.

Key words: Professional Med J 2018;25(8): CERVICAL LAMINOPLASTY

Incidence and Risk Factors for Late Neurologic Deterioration after C3 C6 Laminoplasty for Cervical Spondylotic Myelopathy

Gillian Wooldridge, DO Houston Methodist Willowbrook Hospital Primary Care Sports Medicine Fellowship May 3, 2018

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

SUBAXIAL CERVICAL SPINE TRAUMA- DIAGNOSIS AND MANAGEMENT

Cervical Degenerative Disease - Surgical Approaches to CSM 가톨릭의대인천성모병원척추센터 김종태

Intraoperative spinal cord monitoring with Tce-MEP for cervical laminoplasty

Spine Surgery: Techniques, Complication Avoidance, and Management. 2 Volume Set

A CASE OF MISMANAGED CERVICAL FRACTURE IN A PATIENT OF ANKYLOSING SPONDYLITIS

Discal herniation and spondylosis

Selective laminoplasty for cervical spondylotic myelopathy: a comparative study with a minimum 5-year follow-up

Lumbar spinal canal stenosis Degenerative diseases F 08

Ten Second Step Test" as a New Quantifiable Parameter of Cervical Myelopathy. Spine January 1, 2009; Volume 34; Issue 1; pp 82-86

Clinical approach to the adult Doberman Pinschers with cervical spondylomyelopathy ( wobbler syndrome )

Cervical corpectomy for sub-axial retro-vertebral body lesions

Cervical Spine Surgery: Approach related outcome

Is OPLL-induced canal stenosis a risk factor of cord injury in cervical trauma?

Symptomatic ossification of the anterior longitudinal ligament with stenosis of the cervical spine

Cervical myelopathy is a common disease that is

Risk factors for development of cervical spondylotic myelopathy: results of a systematic review

Common fracture & dislocation of the cervical spine. Theerachai Apivatthakakul Department of Orthopaedic Chiangmai University

ORIGINAL PAPER. Department of Orthopedic Surgery, Chubu Rosai Hospital, Nagoya, Japan ABSTRACT

In recent years, cervical disc arthroplasty (CDA) has

Cervical intervertebral disc disease Degenerative diseases F 04

ELY ASHKENAZI Israel Spine Center at Assuta Hospital Tel Aviv, Israel

Synovial cyst of spinal facet

Age-related and degenerative changes in the osseous anatomy, alignment, and range of motion

Minamide A*, Yoshida M*, Yamada H*, Hashizume H*, NakagawaY*, Iwasaki H*, Tsutsui S*, Hiroyuki Oka H**.

Degenerative Disease of the Spine

Case SCIWORA in patient with congenital block vertebra

UPPER CERVICAL MYELOPATHY WITH METATROPIC DYSPLASIA

102 Results RESULTS. Age Mean=S.D Range 42= years -84 years Number % <30 years years >50 years

Original Investigation. Byung-Wan CHOI. INTRODUCTION Ossification of the posterior longitudinal ligament ABSTRACT

ORIGINAL ARTICLE. Introduction SPINE SURGERY AND RELATED RESEARCH

Cervical myelopathy is caused by spinal canal narrowing

Efficacy and results of expansive laminoplasty in patients with severe cervical myelopathy due to cervical canal stenosis

Junming Cao, Yongsheng Lin, Xiangbei Qi, Zhihong Wang, Yipeng Yang, Hehuan Xia, Bin Xu

C ervical spondylosis is an important and frequent cause

Surgical Management of Cervical Spondyloarthropathy in Hemodialysis Patients

Cervical artificial disc replacement versus fusion in the cervical spine: a systematic review comparing multilevel versus single-level surgery

Clinical Correlation of a New Practical MRI Method for Assessing Cervical Spinal Canal Compression

Christopher I. Shaffrey, MD

12 Interesting MSK Cases

Neurological manifestations of thoracic myelopathy in 203 patients

Accelerated spondylotic changes adjacent to the fused segment following central cervical corpectomy: magnetic resonance imaging study evidence

We performed CT myelography in 38 patients

흉추척수증을유발한황색인대골화증의골절 - 증례보고 -

Case Report Delayed Neurologic Deficit due to Foraminal Stenosis following Osteoporotic Late Collapse of a Lumbar Spine Vertebral Body

Radiculopathy Caused by Osteoporotic Vertebral Fractures in the Lumbar Spine

Jing Tao Zhang 1, Lin Feng Wang 1, Yue Ju Liu 2, Jun Ming Cao 1, Jie Li 1, Shuai Wang 1 and Yong Shen 1*

Lumbar radiculopathy caused by foraminal stenosis in rheumatoid arthritis

Mitsuhiro Hashimto 1), Masashi Yamazaki 2), Macondo Mochizuki 3), Masatsune Yamagata 1), Yoshikazu Ikeda 1), Fumitake Nakajima 1)

A rare case of spinal injury: bilateral facet dislocation without fracture at the lumbosacral joint

Symptomatic Multiple Level Lateral Meningoceles with Intraspinal Meningocele: A Case Study and Its Surgical Management

Objectives. Comprehension of the common spine disorder

Title. CitationSpine, 34(19): E709-E711. Issue Date Doc URL. Rights. Type. File Information.

Bilateral Foot Drop Without Cauda Equinae Syndrome Due To L4-L5 Disc Prolapse: A Case Report

Magnetic resonance image (MRI) is a useful tool for

Spinal Imaging. ssregypt.com. Mamdouh Mahfouz MD

Development of Spinal Cord & Vertebral Column. Dr. Sanaa Alshaarawi & Prof. Ahmed Fathalla

Soccer causes degenerative changes in the cervical spine. European Spine Journal, February 2004, 13(1):76-82

Spine. Neuroradiology. Spine. Spine Pathology. Distribution of fractures. Radiological algorithm. Role of radiology 18/11/2015

Treatment of Two Level Artificial Disc Replacement for Cervical Spondylotic Myelopathy

Transcription:

(2005) 43, 503 507 & 2005 International Society All rights reserved 1362-4393/05 $30.00 www.nature.com/sc Case Report Postmortem study of the spinal cord showing snake-eyes appearance due to damage by ossification of the posterior longitudinal ligament and kyphotic deformity J Mizuno*,1, H Nakagawa 1, H-S Chang 1 and Y Hashizume 2 1 Department of Neurological Surgery, Aichi Medical University, Aichi, Japan; 2 Institute of Medical Science for Aging, Aichi Medical University, Aichi, Japan Clinical design: A case report. Objectives: To elucidate the clinical role of snake-eyes appearance in this case, correlation between radiological, clinical and postmortem study was performed. Setting: Aichi, Japan. Case report: A 73-year-old man developed weakness and pain in the upper limbs due to kyphotic deformity secondary to laminectomy for cervical ossification of the posterior longitudinal ligament.axial magnetic resonance imaging revealed snake-eyes appearance from C4 to C6.He died of acute myocardial infarction 3 months after anterior decompressive surgery. Results: A postmortem examination of the cervical spinal cord showed small cystic six necrotic areas at the junction of the central gray matter and the ventrolateral posterior column, one in the right and one in the left, in association with neuronal loss in the anterior horn. Conclusions: Bilateral small intramedullary high-signal areas known as snake-eyes appearance located around the central gray matter and the ventrolateral posterior column, are associated with neuronal loss in the compressed anterior horn that played an important role in worsening weakness of the upper limbs. (2005) 43, 503 507. doi:10.1038/sj.sc.3101727; published online 8 March 2005 Keywords: snake-eyes appearance; compression myelopathy; magnetic resonance imaging; cystic necrosis; neuronal loss Introduction Intramedullary high-signal intensity (IMHSI) is a wellknown radiological finding of magnetic resonance (MR) imaging.snake-eyes appearance (SEA), defined as small high-signal areas around the central gray matter and the ventrolateral posterior column, one in the right and one in the left, is a unique IMHSI of the spinal cord with compression myelopathy. 1 5 Although this phenomenon is commonly observed in cases with cervical spondylosis (CS) or ossification of the posterior longitudinal ligament (OPLL), it s clinical role is obscure.seemingly, the controversy over the prognostic value of SEA is derived from the lack of clinicopathological correlations with small high-signal lesions.thus, it is important to examine the pathological changes of the compressed cervical spinal cord with SEA confirmed by MR imaging in relation to the clinical manifestations. *Correspondence: J Mizuno, Department of Neurological Surgery, Aichi Medical University, 21 Karimata Yazako Nagakute, Aichi-gun, Aichi 480-1195, Japan We report an autopsy study of SEA with weakness and pain of the upper limbs caused by canal stenosis secondary to OPLL and postlaminectomy kyphotic deformity of the cervical spine. Case report A 73-year-old man was admitted to hospital with weakness and pain of the upper limbs.he had undergone laminoplasty for cervical OPLL 6 years previously. Neurological examination showed moderate weakness of the deltoid, biceps, triceps and grip strength with muscle atrophy, hyperreflexia in the knee and ankle jerks, hypesthesia in C5 T1 dermatome, decreased position sensation on knees and toes and severe gait difficulty.fasciculation of the upper limbs was not observed.cervical radiograph revealed kyphotic deformity secondary to the previously performed open-door laminoplasty from C3 to C7 for OPLL (Figure 1). Sagittal T2-weighted MR imaging revealed severe cord

504 compression with linear IMHSI from C4 to C6.Axial T2-weighted MR imaging revealed SEA consecutively from C4 to C6 (Figure 2).Anterior decompression and fixation with an interbody cage (Pyramesh, Medtronics Sofamor Danek, Tennessee, USA) packed with bone chips collected from the resected vertebral bodies and an anterior plate (ORION, Medtronics Sofamor Danek, Tennessee, USA) were performed (Figure 3). Postoperatively, his neck and arm pain subsided with medication, although his motor weakness remained without significant improvement.his neurological status was relatively stable; however, he died Figure 1 Cervical radiograph showing kyphotic deformity with subluxation at C3/4 Figure 3 Postoperative cervical radiograph showing restoration of normal cervical spinal alignment with interbody Pyramesh and Orion plate Figure 2 (a) Sagittal T2-weighted MR imaging revealing linear IMHSI from C4 to C6 with posterior displacement of the cervical spinal cord.(b d) Axial T2-weighted MR imaging revealing atrophic cervical cord with SEA at C4 C6

505 Figure 4 Photomicrograph of the transverse cervical spinal cord.(a) C3, (b) C4, (c) C5, (d) C6, (e) C7; C3 and C7 cords were relatively well preserved, although C4 C6 showed intramedullary cystic necrosis around the central gray matter and the ventrolateral posterior column (original magnification 15, K B stain) suddenly of acute myocardial infarction 3 months after operation. Postmortem study of the cervical spinal cord showed severe cord deformity with atrophy from C4 to C6, although good surgical decompression had been performed.hematoxylin eosin (H E) stain and Kluver Barrera (K B) stain were applied.flattening of the spinal cord was slightly asymmetric, with a right-side predominance.cystic cavitation with surrounding spongy state was observed bilaterally at the junction of the central gray matter and the ventrolateral posterior column from C4 to C6.There was a sizable discrepancy regarding the degree of deformity between the spinal cord and the anterior horn of the left-sided C4, C5 and C6 and the right-sided C5.At these levels, the anterior horn was severely flattened despite mild-to-moderate cord compression (Figure 4).There was a significant neuronal loss in the compressed anterior horn except for the right-sided C5 (Figure 5).The fibrous thickening of the small veins with narrowing of the lumen around the cavity was prominent, although reactive gliosis was not prominent (Figure 6). Discussion There have been many investigations into whether or not IMHSI in patients with compression myelopathy acts as a poor prognostic indicator. 1 8 SEA is a unique radiological finding that can be observed in cases with compression myelopathy, kyphotic deformity or spinal cord injury.the term snake-eyes appearance is derived from the resemblance of the bilateral small IMHSI in the compressed cord to the face of a snake.this term may be the same as fried-egg appearance demonstrated by computed-tomographic myelography by Iwasaki et al. 9 Some authors suggested that SEA is an irreversible change in the spinal cord, like cystic necrosis. 3,7,8,10 Others suggested that it is a reversible change, similar to edema. 3,6,8 This confusion arises from a lack of precise pathological correlation of the compressed spinal cord with SEA. In the present case, we attempted to correlate the neurological presentation with MR findings, and compared the results of precise pathological examination. Sagittal MR imaging showed multisegmental linear

506 Figure 5 Higher power of photomicrographs at C4 (a), C5 (b) and C6 (c) showed severe flattening of the anterior horn with neuronal loss associated with intramedullary cystic necrosis (original magnification 40, K B stain) IMHSI from C4 to C6 and axial MR imaging revealed SEA, confirming that this linear IMHSI was correlated with SEA.In addition to the cord compression with posterior shifting, atrophy of the spinal cord was apparent because of the relatively wide subarachnoid space.postmortem study of the spinal cord showed formation of small cavities at the junction of the central gray matter and the ventrolateral posterior column with surrounding spongy state from C4 to C6, bilaterally. This pathological finding correlated well with the highsignal intensity observed in T2-weighted MR imaging. The authors believe that SEA may indicate an irreversible change caused by cystic cavity formation, not a reversible change as gliosis or edema. The majority of previous investigators have described the possible pathology or the morphological characteristics of the SEA without examining the precise pathological changes of the whole transverse spinal cord.we found that the neurons in the flattened anterior horn remarkably reduced at the levels of the intramedullary cavity formation.segmental motor weakness in our patient with atrophy of the upper limbs may be caused by neuronal loss in the anterior horn, while segmental sensory deficits could be explained by the formation of a cystic cavity at the junction of the central gray matter and the ventrolateral posterior column. Pathogenesis of SEA is still obscure.long-term cord compression and secondary vascular changes are

Figure 6 Photomicrograph showing fibrous thickening of the small veins with narrowing of the lumen (arrow) around cysts (original magnification 100, H E stain) considered to be possible mechanisms. 11 14 The fibrous thickening of small veins with narrowing of the lumen around the cysts in this case may indicate that venous infarction plays an important role in the formation of cystic necrosis.although MR imaging revealed SEA at the central gray matter and the ventrolateral posterior column, damage of anterior horn cells should be considered as a causative lesion for motor dysfunction of the upper limbs. Conclusion From observation of this case, SEA on T2-weighted MR imaging may visualize the small intramedullary cysts due to venous infarction.associated neuronal loss in the anterior horn could be responsible for segmental weakness and atrophy of the upper limbs.accumulation of precise pathological analyses of SEA is essential in order to elucidate the pathophysiology of the intramedullary cystic necrosis in compression myelopathy. References 1 Mehalic TF, Pezzuti RT, Applebaum BI.Magnetic resonance imaging and cervical spondylotic myelopathy. Neurosurgery 1990; 26: 217. 2 Ramanauskas WL et al. MR imaging of compressive myelomalacia. J Comput Assist Tomogr 1989; 13: 399. 3 Takahashi M et al. Chronic cervical cord compression: clinical significance of increased intensity on MR images. Radiology 1989; 173: 219 224. 4 Yone K et al. Preoperative and postoperative magnetic resonance image evaluations of the spinal cord in cervical myelopathy. Spine 1992; 17: S388 S392. 5 Mizuno J et al. Surgical outcomes analysis of cervical OPLL and spondylosis patients with intrinsic high signal intensity lesions on MRI. Prog Comput Imaging 1999; 21: 5 11. 6 Wada E et al. Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine 1995; 20: 2226 2332. 7 Al-Mefty O et al. Myelopathic cervical spondylotic lesions demonstrated by magnetic resonance imaging. J Neurosurg 1988; 68: 217 222. 8 Matsuda Y et al. Increased MR signal intensity due to cervical meylopathy. J Neurosurg 1991; 74: 887 892. 9 Iwasaki Y et al. CT myelography with intramedullary enhancement in cervical spondylosis. J Neurosurg 1985; 63: 363 366. 10 Okada Y et al. Magnetic resonance imaging study on the results of surgery for cervical compression myelopathy. Spine 1993; 18: 2024 2029. 11 Bedford PD, Bosanquet FD, Russell WR.Degeneration of the spinal cord associated with cervical spondylosis. Lancet 1952; 2: 55 59. 12 Mair WGP, Druckman R.The pathology of spinal cord lesions and their relation to the clinical features in protrusions of cervical intervertebral discs. Brain 1953; 76: 70 91. 13 Ono K et al. Cervical myelopathy secondary to multiple spondylotic protrusions: a clinicopathological study. Spine 1977; 2: 109 125. 14 Murakami N, Muroga T, Sobue I.Cervical myelopathy due to ossification of the posterior longitudinal ligament: a clinicopathologic study. Arch Neurol 1978; 35: 33 36. 507