THE OCULAR histoplasmosis

Similar documents
Retina Conference. Janelle Fassbender, MD, PhD University of Louisville Department of Ophthalmology and Visual Sciences 09/04/2014

Presumed ocular histoplasmosis in the Netherlands an area without histoplasmosis

Misdiagnosed Vogt-Koyanagi-Harada (VKH) disease and atypical central serous chorioretinopathy (CSC)

Stabilization of visual acuity with photodynamic therapy in eyes with chorioretinal anastomoses

Doc, I See a Donut in My Vision : An Optometrist s Guide to a Rare Cause of Choroidal Neovascular Membrane

White-Spot Syndromes of the Retina Lee Jampol, M.D. Chicago, IL

ISPUB.COM. Photopsia post flu: A case of MEWDS. S Baisakhiya, S Dulani, S Lele INTRODUCTION CASE HISTORY

IQ 532 Micropulse Green Laser treatment for Refractory Chronic Central Serous Retinopathy

Choroidal Neovascularization in Sympathetic Ophthalmia

연령연관황반변성에서망막혈관종성증식과동반된망막색소상피박리의임상양상과일차적인광역학치료의결과

ZEISS AngioPlex OCT Angiography. Clinical Case Reports

Photocoagulation of disciform macular lesions

Non-arteritic anterior ischemic optic neuropathy (NAION) with segmental optic disc edema. Jonathan A. Micieli, MD Valérie Biousse, MD

Retinal pigment epithelial detachments in the elderly:

Natural History of Experimental Histoplasmic Choroiditis in the Primate

Myopic Choroidal Neovascularization

Disease-Specific Fluorescein Angiography

Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015

OCT Angiography in Primary Eye Care

Mitsuko Yuzawa,* Takako Isomae,* Ryuzaburo Mori,* Hiroyuki Shimada* and Izumi Utsunomiya

Serpiginous choroidopathy

Long-term Management of AMD. Motasem Al-latayfeh, MD Assistant Prof. Ophthalmology Hashemite University Jordan

Fluorescein Angiography

Ophthalmology Macular Pathways

VERTEPORFIN IN PHOTODYNAMIC THERAPY STUDY GROUP

Although photocoagulation and photodynamic PROCEEDINGS PEGAPTANIB SODIUM FOR THE TREATMENT OF AGE-RELATED MACULAR DEGENERATION *

Scrub In. What is the function of vitreous humor? What does the pupil do when exposed to bright light? a. Maintain eye shape and provide color vision

Spontaneous Large Serous Retinal Pigment Epithelial Tear

Department of Ophthalmology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea

Original Policy Date


CLINICALCASE PROVOST J, SEKFALI R, AMOROSO F, ZAMBROWSKI O, MIERE A

Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion

Macular Hole Associated with Vogt-Koyanagi-Harada Disease at the Acute Uveitic Stage

The Foundation. continued next page. RETINA HEALTH SERIES Facts from the ASRS

CASE STUDIES CURRENT AND FUTURE TREATMENT OPTIONS FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION * Discussion led by Neil M.

Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome)

COEXISTENCE OF OPTIC NERVE HEAD DRUSEN

Long-Term Visual Outcome in Proliferative Diabetic Retinopathy Patients After Panretinal Photocoagulation

Dr/ Marwa Abdellah EOS /16/2018. Dr/ Marwa Abdellah EOS When do you ask Fluorescein angiography for optic disc diseases???

The Human Eye. Cornea Iris. Pupil. Lens. Retina

Unexplained visual loss in seven easy steps

Choroidal neovascularization in a young, healthy eye after LASIK

Moncef Khairallah, MD

Central serous chorioretinopathy (CSCR) was

Clinically Significant Macular Edema (CSME)

Fundus Autofluorescence. Jonathan A. Micieli, MD Valérie Biousse, MD

A Patient s Guide to Diabetic Retinopathy

Preliminary report on effect of retinal panphotocoagulation on rubeosis iridis and

Rare Presentation of Ocular Toxoplasmosis

Neuro-Ocular Grand Rounds

The legally binding text is the original French version

What You Should Know About Acute Macular Neuroretinopathy

Retinal Pigment Epithelial Tears (Rips) in the ERA of Anti Vegf - When and Why?

Sorsby's pseudoinflammatory macular dystrophy

Photodynamic Therapy for Choroidal Neovascularization

Title. Author(s)Saito, Wataru; Kase, Satoru; Ohgami, Kazuhiro; Mori, CitationActa Ophthalmologica, 88(3): Issue Date Doc URL.

CMS Manual System Pub Medicare National Coverage Determinations

DOME SHAPED MACULOPATHY. Ιωάννης Ν. Βαγγελόπουλος Χειρ. Οφθαλμίατρος - Βόλος

Why Is Imaging Critical in My Uveitis Practice?

Role Of Various Factors In The Treatment Of Optic Neuritis----A Study Abstract Aim: Materials & Methods Discussion: Conclusion: Key words

Diabetic retinopathy damage to the blood vessels in the retina. Cataract clouding of the eye s lens. Cataracts develop at an earlier age in people

Facts About Diabetic Eye Disease

Tuberous sclerosis presenting as atypical aggressive retinal astrocytoma with proliferative retinopathy and vitreous haemorrhage

Diabetic Retinopathy A Presentation for the Public

Description. Section: Other Effective Date: July 15, Subsection: Vision Original Policy Date: December 7, 2011 Subject: Page: 1 of 23

Abstract Aims To analyse the histopathology of classic and occult choroidal neovascular membrane surgical specimens in age

Convergence in. Introduction. Case Report: Dr. Piyali SenM.B.B.S, Dr. Abhipsha Saha M.B.B.S, Dr. Anuradha Chandra M.S,FAICO

Brampton Hurontario Street Brampton, ON L6Y 0P6

Panretinal acute multifocal placoid pigment epitheliopathy: a novel posterior uveitis syndrome with HLA-A3 and HLA-C7 association

The use of a high-intensity laser to create an anastomotic

Diabetes & Your Eyes

R&M Solutions

RETINAL CONDITIONS RETINAL CONDITIONS

CLINICAL SCIENCES. Verteporfin Therapy for Subfoveal Choroidal Neovascularization in Age-Related Macular Degeneration

Intrapapillary hemorrhage with concurrent peripapillary and vitreous hemorrhage in two healthy young patients

You can C-ME after Uveitis

Age-Related Macular Degeneration (AMD)

A Curious Case of Bilateral Optic Disc Edema Brittney Dautremont, DO, MPH

Despite our growing knowledge of the

Technologies and Methods for Visualizing the Retina

The Foundation WHAT IS THE RETINA?

Macular edema (ME) is the most common

Coagulative necrosis in a malignant melanoma of the choroid at the macula with extensive subretinal hemorrhage

Relentless Placoid Chorioretinitis

Test Bank for Medical Surgical Nursing An Integrated Approach 3rd Edition by White

CENTRAL SEROUS CHORIORETINOPATHY (CSC) IS

What You Should Know About Angioid Streaks By David J. Browning, MD, PhD

SUMMARY. Heather Casparis, MD,* and Neil M. Bressler, MD MARINA AND ANCHOR

Cases CFEH. CFEH Facebook Case #4

OCCLUSIVE VASCULAR DISORDERS OF THE RETINA

Setting The setting was a hospital. The economic study was conducted in the USA.

Fluorescein and Indocyanine Green Videoangiography of Choroidal Melanomas

Polypoidal choroidal vasculopathy and photodynamic therapy with verteporfin

11/29/2016 MACULAR MALADIES: TYPICAL & ATYPICAL CASES

Authors. Introduction. Introduction. Materials and Methods. Objective 10/27/2015

Neuropathy (NAION) and Avastin. Clinical Assembly of the AOCOO-HNS Foundation May 9, 2013

Clinical Policy Title: Ocular photodynamic therapy (OPDT) with Visudyne (verteporfin) for macular degeneration treatment

Intravitreal Triamcinolone Acetonide for Macular Edema in HLA-B27 Negative Ankylosing Spondylitis

Transcription:

CLINICAL SCIENCES Reactivation of Inflammatory Lesions in Ocular Histoplasmosis David Callanan, MD; Gary E. Fish, MD, JD; Rajiv Anand, MD Background: Active inflammation has not been traditionally associated with the ocular histoplasmosis syndrome. Objective: To investigate the occurrence of presumed inflammatory chorioretinal lesions in patients with the ocular histoplasmosis syndrome. Methods: Patients seen with acute symptoms and a clinical picture of ocular histoplasmosis were observed prospectively between August 13, 1993, and December 2, 1997. Symptoms, visual acuity, and fluorescein sodium angiography were used to document changes in inflammatory loci. Results: Twelve patients were seen with active inflammatory lesions. Eleven had resolution of the loci with lessening of symptoms and improvement in acuity and angiographic findings. A typical subretinal neovascular membrane developed in 1 patient 8 months after the onset of symptoms. Conclusions: Inflammatory chorioretinal lesions can reactivate in the ocular histoplasmosis syndrome. In most of these patients, neovascularization did not develop and visual acuity was preserved. Arch Ophthalmol. 1998;116:470-474 From the Texas Retina Associates, Arlington. THE OCULAR histoplasmosis syndrome (OHS) has typically included atrophic chorioretinal lesions, peripapillary scarring, and the absence of vitreal inflammation. 1-4 Choroidal neovascularization is the common cause of loss of vision in involved eyes and is estimated to occur in up to 5% of affected eyes. 3,5 Gass and Wilkinson 4 have reported that patients observed for an extended period can demonstrate enlargement of previous scars and even the development of new ones. Palvolgyi et al 6 have shown in a primate model of OHS that inflammatory lesions can reactivate. The Macular Photocoagulation Study Group 7 recently reported the results of a 5-year follow-up of fellow eyes in patients with OHS. In a retrospective review of photographs before the development of choroidal neovascularization, atypical histoplasmosis lesions were noted. It is unclear what these atypical spots represent. This report provides an extended follow-up of patients with OHS who had an acute reactivation of presumed inflammatory loci. RESULTS The Table shows the characteristics of the patients. The mean age was 50.1 years (range, 16-74 years). Of the 12 patients, 7 were women. The patients had a documented diagnosis of OHS for a mean of 10.9 years (range, 1.1-28.7 years). The mean follow-up of the study was 2.1 years (range, 0.9-3.7 years). The mean acuity on presentation was 20/100 (range, 20/20-20/400) in the affected eye. The mean final acuity in the affected eye was 20/60 (range, 20/20-20/ 400). Seven patients had more than 2 lines of improvement in their acuity, and 4 patients maintained good acuity in the affected eye with resolution of their symptoms. Only 1 patient (patient 5) lost significant acuity during the study. This patient initially improved, but 5 months later his symptoms recurred and a lesion developed into a typical subfoveal neovascular membrane during a 3-month period. The mean acuity in the fellow eye was 20/170. Each of the decreased acuities in the fellow eye was from previous choroidal neovasculariation. Of the 12 patients, 6 had myopia. Eight of the patients had only 1 episode during the follow-up. Three patients had 2 separate episodes during the follow-up, and 1 patient had 3 separate episodes. Of the 12 patients, 7 had a history of onychomycosis or recurrent vaginal yeast 470

PATIENTS AND METHODS All patients with OHS who were seen with new symptoms between August 13, 1993, and November 25, 1995, and who did not have typical neovascular membranes were included in the study. Twelve patients with a minimum follow-up of 6 months are included in this report. In each case, the patients had acute symptoms of decreased vision or metamorphopsia. A detailed clinical history was obtained, visual acuity was measured, and an examination of dilated eyes was performed. None of the patients reported peripheral photopsias that could be associated with other inflammatory diseases. The patients best Snellen acuity with either their current refraction or pinhole acuity was recorded on each visit. An afferent pupillary defect was not noted in any of the patients. In all patients there were typical punched-out atrophic chorioretinal lesions as well as peripapillary chorioretinal atrophy. In addition, none of the patients had vitreous cells as determined by slitlamp examination with a Hruby lens or 90-diopter lens. Each of the patients demonstrated at least 1 active lesion that showed progressive leakage with irregular borders on angiography. The lesions did not resemble typical welldefined neovascular membranes; they lacked a branching network of vessels, early choroidal fluorescence, subretinal hemorrhage, or increased pigmentation. The optic nerve did not show any signs of active inflammation such as leakage or staining. Routine visual field testing was not done. Indocyanine green angiography and electrophysiologic testing were also not done on a routine basis. The follow-up consisted of monitoring visual acuity, symptoms, clinical appearance, and fluorescein sodium angiography as indicated. Of the 12 patients, 6 had been placed on a regimen of oral corticosteroids before being seen by us. The dosage was rapidly tapered in all cases. All 12 patients received a course of oral itraconazole, an antifungal medication. Informed consent was obtained from all patients in the study. Characteristics of Patients With the Ocular Histoplasmosis Syndrome (OHS) Patient/Sex/ Age, y Duration of Disease, y* Acute Phase Follow-up, y Initial Visual Acuity Final Involved Eye Fellow Eye Myopia Steroid Episodes, No. Systemic Fungus 1/F/50 10.2 1.4 25 20 OS 25 N Y 1 None 2/F/54 5.9 3.7 30 20 OD 20 Y Y 2 Toenail 3/M/56 9.0 2.7 20 20 OS 200 Y Y 3 Toenail 4/M/49 3.1 3.1 70 25 OS 60 N Y 1 None 5/M/61 11.3 1.2 60 400 OD 20 N N 2 Toenail 6/M/48 16.1 0.9 200 60 OS 300 Y N 1 Athlete s foot 7/F/45 2.7 2.1 80 25 OD 400 N Y 2 None 8/F/74 18.7 3.0 80 25 OD 200 Y Y 1 Athlete s foot 9/F/16 1.1 1.2 200 20 OD 20 N N 1 None 10/F/40 2.9 2.1 400 60 OD 100 Y N 1 Recurrent vaginal 11/F/52 28.7 1.8 20 20 OD 400 Y N 1 Fingernail, vaginal 12/M/58 20.9 2.0 25 20 OD 300 N N 1 None Mean 50.1 10.9 2.1 100.8 59.6... 170.4............ *Duration of documented history of OHS. Length of follow-up for current active phase. Snellen acuity (best of current refraction or pinhole). N indicates no; Y, yes. For steroid, patient received steroids for treatment (Y) or did not (N). Number of separate symptomatic episodes during follow-up. History of external fungal infection. infections. Because of this, they were treated with itraconazole. Of these 7 patients, 3 were treated with oral prednisone at the beginning of their course before being seen by us; the steroid dosage was rapidly tapered. The remaining 5 patients without a history of systemic fungal infection were also treated with itraconazole because they did not show a prompt response to steroid administration or had previously lost vision in the fellow eye despite corticosteroid treatment. Six patients had documented evidence that the active inflammatory lesion had been present previously as an inactive scar. Figure 1 shows the course of patient 3 and highlights the characteristics of these patients. A photograph of the left eye in May 1988 (Figure 1, A) shows 3 atrophic lesions temporal to the fovea. The patient underwent laser photocoagulation in his right eye in April 1989 for a typical choroidal neovascular membrane. He was seen in July 1994 with a spot in his left eye for 3 weeks. Acuity was 20/70 OD and 20/25 OS. He had an atrophic scar in the right eye (Figure 1, B). One of the spots next to the fovea in his left eye was significantly larger (Figure 1, C) and had lost its sharp borders. The angiogram demonstrated active leakage at this site (Figure 1, D and E). Oral prednisone at a dosage of 40 mg/d was started and then tapered over 1 week. A regimen of oral itraconazole was also started, which was continued for 2 months at a dosage of 100 mg twice a day. He noted gradual improvement during the next month. The pa- 471

A B C D E F G H Figure 1. Patient 3. A, The left eye in May 1988 shows 3 atrophic lesions just temporal to the fovea. B, The right eye in July 1994 shows an atrophic laser treatment scar. C, The left eye in July 1994 shows enlargement of an inferior lesion (arrow). Early (D) and late (E) phases of angiography show the inferior lesion as a hyperfluorescent spot with leakage. F, In October 1994 there was resolution of the lesion in the left eye (arrow). Early (G) and late (H) angiography shows staining of the inactive scar without any leakage. 472

A B C D E F Figure 2. Patient 5. A, The right eye in July 1985 shows no lesion in the macula, and this is confirmed on the angiogram (B). Both eyes (C and D) in August 1995 show a new white-yellow lesion in the fovea of the right eye and atrophic scar in the left. Early (E) and late (F) phases of angiography show a poorly defined hyperfluorescent lesion with leakage in the right eye. tient later reported that a chronic fungal infection of the toenails had cleared while he was taking the itraconazole. Figure 1, F through H, shows the color and angiographic appearance 3 months after onset. There is no longer any evidence of active inflammation. Acuity was 20/80 OD and 20/20 OS. Five patients had no previous photographs to determine whether the active spot had been present previously. One patient (patient 5) had photographic and angiographic evidence that the inflammatory lesion was new. Figure 2, A and B, shows the patient s right eye in July 1985. There is no macular lesion visible on the photograph or angiogram. At that time, he had an extrafoveal neovascular membrane in his left eye that was successfully treated with laser. He was seen in August 1995 with new symptoms in his right eye. Acuity was 20/60 OD. He also reported a chronic fungal infection of the toenails. There was a new lesion present in the right eye and an atrophic scar in the left eye (Figure 2, C-F). The new lesion in the right eye was poorly defined and did not resemble a typical neovascular membrane. A regimen of itraconazole, 100 mg twice a day, was started. During the next month, the patient had improvement of his vision to 20/30. The dosage of itraconazole was decreased to 100 mg/d. In December 1995 the patient thought his vision was stable, and his acuity measured 20/25+2. The itraconazole was stopped. Three months later, a classic subfoveal neovascular membrane developed in the right eye. Acuity decreased to 473

20/60. He underwent successful subretinal surgery in April 1996 but had a recurrence 3 months after that. Acuity is currently 20/400. COMMENT Gass and Wilkinson 4 previously reported the results of follow-up of 81 patients with OHS. Only 1 of these patients had a new histoplasmosis lesion develop during a 7-year follow-up. During this time, 11 patients had enlargement of an existing lesion, as determined by a comparison of color photographs. Patient 5 in this report had angiographic evidence of the development of a new histoplasmosis lesion. Rivers et al 8 described 2 patients with OHS who were seen with metamorphopsia. Both patients had poorly defined neovascularization, but typical choroidal neovascularization developed within a short period. The authors concluded that ill-defined lesions seen on fluorescein angiograms probably represented early neovascularization. Recently the Macular Photocoagulation Study Group released a 5-year follow-up report 7 on the development of neovascularization in the fellow eye of patients with OHS. The group presented evidence that neovascularization occurred in association with atypical histoplasmosis lesions in the macula of the fellow eye. How these atypical spots evolve or how frequent they are is still not well understood. Each of these previous reports has suggested that there is an evolution of the disease in some patients with OHS. Smith and colleagues 6,9,10 have contributed substantially to our understanding of OHS with an experimental primate model. Smith et al 10 initially demonstrated that typical lesions of OHS could be produced in monkeys following the intravenous administration of live Histoplasma capsulatum. Palvolgyi et al 6 subsequently reported that inflammatory reactivation occurred in ocular histoplasmosis lesions when these same monkeys were administered antigen only. This report was the stimulus for our investigation. Many ophthalmologists think of OHS as a static condition in which neovascularization develops at the site of previous scars. The course of our patients indicates that inflammation does indeed recur in humans with OHS. This can result in enlargement of an existing lesion and the formation of a new lesion. If the active lesions in our patients represented early neovascularization, then there was an unusually rapid regression of these neovascular membranes. They did not appear to be typical neovascular lesions for other reasons as well. They lacked a sharp border in the early phase of angiography and did not have a fine mesh or branching structure. In addition, they did not follow a typical course for neovascular membranes. They quickly became quiescent without laser treatment. They also did not have a permanent deleterious effect on vision that would be typical of untreated neovascular membranes. Perhaps these patients represent only a subset of patients with OHS. Previous studies 11,12 have shown a genetic association in patients with OHS. Both HLA-DRw2 and HLA-B7 have been found in a high percentage of patients with OHS. 11 In addition, HLA-B7 appeared to be related to the presence of disciform scars. 12 Several, but not all, of our patients had a chronic fungal infection of the foot or a history of recurrent vaginal yeast infections. We could speculate that these patients have some immunologic or genetic inability to eradicate fungal infections. We could also speculate that the peripheral fungal infection may somehow trigger an immune response leading to the reactivation of ocular inflammation. This was the rationale in initially treating these patients with itraconazole. One of the more important questions raised by this report is whether it is possible to prevent neovascularization and its subsequent effect on vision. It is not possible from this small group of patients to determine the efficacy of intervention. Neovascularization developed in only 1 of 12 patients during an extended period. It cannot be said whether these presumed inflammatory lesions would have resolved spontaneously. The previous course of the fellow eye in our patients suggests that these patients are at considerable risk of vision loss. Only a large randomized study of patients with OHS will determine the efficacy of any treatment. The purpose of this study was to document that active inflammation occurs in OHS. We can speculate that there is a potential to prevent neovascularization in some patients with OHS, if we can determine a treatment that is effective for inflammation and the patients are seen early in the disease. Patients with known OHS should be encouraged to use an Amsler grid regularly. This may allow earlier detection of an active process. It is hoped that further study will allow us to determine the correct therapeutic intervention. Accepted for publication December 30, 1997. Presented in part at the McGill Symposium on Uveitis, Montreal, Quebec, May 12, 1995, and the American Uveitis Society, Atlanta, Ga, October 30, 1995. Ronald E. Smith, MD, provided helpful review and comments. Reprints: David Callanan, MD, Texas Retina Associates, 1001 N Waldrop Dr, Room 605, Arlington, TX 76012 (e-mail: david@callanan.net). REFERENCES 1. Krause AC, Hopkins WG. Ocular manifestation of histoplasmosis. Am J Ophthalmol. 1951;34:564-566. 2. Woods AC, Wahlen HE. The probable role of benign histoplasmosis in the etiology of granulomatous uveitis. Am J Ophthalmol. 1960;49:205-220. 3. Smith RE, Ganley JP. An epidemiologic study of presumed ocular histoplasmosis. Trans Am Acad Ophthalmol Otolaryngol. 1971;75:994-1005. 4. Gass JDM, Wilkinson CP. Follow-up study of presumed ocular histoplasmosis. Trans Am Acad Ophthalmol Otolaryngol. 1972;76:672-694. 5. Lewis ML, Van Newkirk MR, Gass JDM. Follow-up study of presumed ocular histoplasmosis syndrome. Ophthalmology. 1980;87:390-398. 6. Palvolgyi I, Anderson A, Rife L, Taylor C, Smith RE. Immunopathology of reactivation of experimental ocular histoplasmosis. Exp Eye Res. 1993;57:169-175. 7. Macular Photocoagulation Study Group. Five-year follow-up of fellow eyes of individuals with ocular histoplasmosis and unilateral extrafoveal or juxtafoveal choroidal neovascularization. Arch Ophthalmol. 1996;114:677-688. 8. Rivers MB, Pulido JS, Folk JC. Ill-defined choroidal neovascularization within ocular histoplasmosis scars. Retina. 1992;12:90-95. 9. Anderson A, Clifford W, Palvolgyi I, Rife L, Taylor C, Smith RE. Immunopathology of chronic experimental histoplasmic choroiditis in the primate. Invest Ophthalmol Vis Sci. 1992;33:1637-1641. 10. Smith RE, Macy JI, Parrett C, Irvine J. Variations in acute multifocal histoplasmic choroiditis in the primate. Invest Ophthalmol Visual Sci. 1978;17:1005-1018. 11. Meredith TA, Smith RE, Duquesnoy RJ. Association of HLA-DRw2 antigen with presumed ocular histoplasmosis. Am J Ophthalmol. 1980;89:70-76. 12. Braley RE, Meredith TA, Aaberg TM, Koethe SM, Witkowski JA. The prevalence of HLA-B7 in presumed ocular histoplasmosis. Am J Ophthalmol. 1978;85:859-861. 474