THE INVISIBLE WORLD OF MICROBES

Similar documents
Immune System. Before You Read. Read to Learn

Before Statement After

Bacteria. Remember they are everywhere! In your food (yogurt), air (germs) on your body (remember our video?)

Infectious Disease. Unit 6 Lesson 1

Chapter 6: Fighting Disease

What are Germs? Click on the germ to find out more.

Lesson Objectives. Core Content Objectives. Language Arts Objectives

LESSON 2.4 WORKBOOK. How can we prove infection causes disease?

Chapter 1. The Science of Biology. h+p://

MICROORGANISM NORMAL FLORA AND PATHOGENS

Tetanus - Aids - Tuberculosis - Diphtheria - Rabies - Cancer - Poliomyelitis

Section One: Background Material

Biology. Slide 1 of 30. End Show. Copyright Pearson Prentice Hall

Unit B: Cells and Systems

Pre-lab homework Lab 8: Community Interactions

Where are we heading?

Key Stage 2 Science PSHE English Estimated Teaching Time

McGraw-Hill Open Court Grade 4

Disease Prevention and Public Health. SPC2P Biology

Grade 6 Standard 5 Unit Test Microorganisms. 1. Which of the following correctly describes the size of fungi compared to the size of bacteria?

Grade 2: Historical Lesson Lesson 8: Louis Pasteur, Andrew Taylor Still, and the Digestive System

THINKING SCRIPTS RESEARCH GROUPS LOUIS PASTEUR STEVE WILLIAMS CLASSROOM SCRIPT. Name: Character: School:

Why was there so much change in this period?

Angel International School - Manipay 1 st Term Examination November, 2015

SEPUP ITEM BANK. Item Banks TR-253. Multiple choice. Circle the best answer.

World Health Day Vector-borne Disease Fact Files

Infectious Diseases through Viruses. Obj. 3.c. & 3.g.

Community mobilization in major emergencies

Issue 05 This article is about: Career Guidance Interesting Science Real Life Application Real Time News about Science. Tapeworms

LESSON -9 GERMS AND DISEASES

Food Safety Summary for Food for Learning. Prepared by: Joanna Mestre, BScHE Health Promoter, Environmental Health

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

What is HIV? Shoba s story. What is HIV?

Cell Basics. Basic Unit of Life. Prokaryotic. Eukaryotic. Plant Cell. Has a nucleoid (not a nucleus) Bacteria. Very Complex.

2011 Peabody Museum of Natural History, Yale University. All rights reserved.

Biology. Magic Doctor. Magic Doctor. Topic Two: Immunity. 1) The first line of defense in our immune system is composed of what?

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion

What are the parts of a eukaryotic cell? What is the function of each part of a eukaryotic cell?

You ve spent your whole life with those miniature minions hiding inside you. Isn t it time you got to know them?

Microbiology. Bacteria Viruses Fungi Parasites

4. Which sentence is a

Disease Transmission Methods

How Does the Digestive System React to Illness and Help Spread Illness?

OPTIONAL BIOLOGY 1 STUDY PACKET IMMUNE SYSTEM SC.912.L AA

Knowledge is power: 815 Second Avenue New York, NY Toll Free HEAL

The invisible world of germs and cells

MicroLife Review Sheet

OPTIONAL GRADE 8 STUDY PACKET IMMUNE SYSTEM SC.6.L.14.5 AA

Bacteria: More Than Pathogens By Trudy M. Wassenaar

bacteria review 1. Which of the following structures is not found in bacteria?

The Cell and Its Chemical Compounds

Communicable and Noncommunicable. Diseases

Mouth Health. Quiz. To protect your toothbrush from harmful germs, you should: Leave it out in the open air. Store it in a closed container

Chapter 10. Objectives. Describe the difference between infectious and noninfectious diseases. Describe how the human body fights diseases.

Food Safety: Basic Overview of Safely Handling Food

Chapter 8 Review. 4. Scientists do not consider viruses as true living organisms because they

Biology: Life processes are performed at the cellular level

NOTES CELL UNIT WHAT IS A CELL? cell unicellular multicellular DISCOVERY OF CELLS Robert Hooke Anton van Leeuwenhoek THE CELL THEORY

PART A. True/False. Indicate in the space whether each of the following statements are true or false.

Course Learning Outcomes for Unit III. Reading Assignment. Unit Lesson. UNIT III STUDY GUIDE Essential Parts: Cells

Elkins School District

A History of Microbiology

Introduction Evolution of Metabolism

Unit 5: The Kingdoms of Life Module 12: Simple Organisms

Cell Theory. Cells are the basic unit of life.

Abstract. Introduction

University of Georgia Cooperative Extension Bulletin 693. Food, Hands and Bacteria

Chapter 13. Preventing Infectious Diseases. Copyright by Holt, Rinehart and Winston. All rights reserved.

What did Robert Hooke call the boxes that he observed in cork? Cells

Context: Malaria, a disease spread by mosquitoes, kills more than two million people every year.

The School of "Self-Applied" 1 Prevention. Clean Water

What Is TB? 388 How TB Is Spread 388 How to Know if a Person Has TB 389 How to Treat TB 389 Resistance to TB medicines 390

INFECTION CONTROL: MRSA AND OTHER RESISTANT GERMS

Chapter 7 Notes. Section 1

Malaria prevention and control

Protect the quality and safety of your food

WATER AND HEALTH (Water Induced Diseases)

Science 8 - Cells & Cell Organization Notes

year 7 REVISION Spring Assessment - Biology

Pathogens and disease

Bacteriology Virology Mycology Parasitology Immunology Pathology Epidemiology. Microbe alternate terms Germs, microorganisms, pathogens, agents, bugs

Human Body Systems - Parasites

2013 Disease Detectives

Chapter 14. Bugs that Resist Drugs

3.2 Cell Structures. Lesson Objectives. Vocabulary. Introduction. Overview of Cell Structures

Microbiology. Microbiology

Cell Membranes: Diffusion and Osmosis

NOTES KEY. Chapter 19 Bacteria (Biotic) and Viruses (Abiotic)

Cellular Structure and Function. Chapter 7

How to Use This Presentation

3. Complete the sentences using: clever, strong, fast, fierce, brave


The Human Immune System. Video

Introduction to Disease

How to Take Care of a Sick Person

CE Unit 7. Viruses and Vaccines

Your Body's Defenses

PLANKTON LAB SEATTLE AQUARIUM OVERVIEW:

LESSON 8 GRADES 3 5 TIME: 60 MIN OVERVIEW

Transcription:

THE INVISIBLE WORLD OF MICROBES Cells are the building blocks of all life. People have cells. So do dogs, cats, spiders, and gnats. So do trees and flowers and tomatoes and blades of grass. All lifeforms all living organisms are made from cells. Each human body has about a 100 trillion cells. That s 100,000,000,000,000 - an almost unimaginable number. And every single cell is active, constantly going through processes that keep the cell (and your body) alive. It s like a small city inside your cells! If you were a micronaut and could enter the world inside a single cell, you would be amazed by everything going on. Cells digest food. Cells carry oxygen to your lungs. Cells fight infection and also heal wounds. The human body has about 200 types of cells. You have red blood cells and brain cells. You even have cells for making tears and cells for making earwax.

Humans are multicellular, which means we re made of more than one cell. But LOTS of life-forms have just one cell. You might think having only a single cell would limit your options, but there are hundreds of thousands of different species of singlecelled life-forms. In fact, half of all life on Earth (by weight) is made of single-celled microbes. The simplest life-forms on Earth have just one cell. An example of a one-celled life-form is a bacterium. These species of bacteria all cause diseases in humans. But not all bacteria are harmful some are even helpful.

Almost all single-celled organisms are too small to see with the naked eye. But you can see them clearly with microscopes. The earliest forms of life on Earth were simple single-celled organisms. In fact, single-celled organisms were the only forms of life on Earth for over a billion years. There are two main types of cells: prokaryotic and eukaryotic. Prokaryotic cells, like the bacterium pictured here, are simple cells. They don t have a lot of internal parts, just cytoplasm, and DNA floating in the middle with no nucleus. In contrast, eukaryotic cells are complex, with lots of parts and a nucleus that protects the DNA.

Today, we can look deep inside of cells using ultra-powerful microscopes. But there was a time when people did not know cells even existed. The first to notice them was a scientist named Robert Hooke in the 1600s. When he looked through his microscope at a piece of cork which is actually part of a tree he saw a network of what looked like tiny rooms. What he saw reminded him of cells the tiny rooms that monks in a monastery live in so that s what he called them. There was no photography when Robert Hooke saw plant cells through his microscope in 1665. So he drew pictures of what they looked like. After seeing what Hooke had discovered, another scientist, Anton van Leeuwenhoek, made his own cell discoveries. When he took a sample of plaque from his own mouth and looked at it under one of his microscopes, he observed that there were many very little living animalcules, very prettily a-moving. What he called animalcules were actually bacteria the first anyone had ever seen. The idea that there were beasties living inside our bodies blew people s minds and opened the door to a huge number of scientific discoveries.

Want to know something a little creepy and a little amazing? Every human being, in addition to human cells, has trillions of non-human cells. These non-human cells are called your microbiome. Most of the microbes in your microbiome are in your guts, and they help with digesting food and keeping you healthy. You share your body with approximately 100 trillion bacteria! Recently a large group of scientists working on the Human Microbiome Project discovered that it s normal to have about 10,000 different species of microbes in (and on) your body. And these microbes are not just sitting around. These singlecelled microbes do things like make essential vitamins and fight off infections. In people, microbes inside our bodies outnumber our own human cells 10-to-1!

The cells of plants, including the ones we eat, have stiff walls around them made of a material called cellulose. People can t digest cellulose, and any cellulose we eat passes out of our bodies in our waste. Cellulose is actually a type of sugar that has energy in it. To digest the cellulose and get its energy, many animals rely on their own unique microbiomes. Lots of plant-eating (and wood-eating) species from cows to koalas to termites have special bacteria in their guts that can break down cellulose. Without these bacteria, these vegetarian creatures would go hungry. All other bears are meat-eaters. But panda bears pretty much eat just one thing: bamboo. How do they survive on that diet? Pandas can extract energy from bamboo thanks to their microbiomes. Scientists have discovered special microbes that can break down cellulose in the pandas guts.

It took a long time for scientists to figure out what caused certain diseases and some diseases are still being worked on. In Hooke and Leeuwenhoek s day in the 1600s, a lot of people thought diseases were spread by bad air. What they meant by that was the funky-smelling air near garbage dumps or sewers. When Leeuwenhoek discovered microscopic life, scientists started wondering if microbes (a.k.a. germs) might be invading the body and causing diseases. That might seem obvious today, but it was such a radical notion back then that it took almost 200 years for the idea to be completely proved and accepted. This 19th-century drawing shows death stalking the air as a cholera epidemic breaks out. Cholera is caused by the bacterium Vibrio cholerae. It is not spread to humans through the air, but by drinking water and shellfish that are contaminated by the bacteria.

The credit for proving that specific germs cause specific diseases is usually given to the French scientist Louis Pasteur. In the 19 th century, silk (which comes from silkworms) was used for clothing. But the silkworms were suffering from a mysterious disease; they were dying in large numbers and the ones that survived couldn t spin silk thread. The silk producers asked Pasteur to find a solution. When Pasteur studied the silkworms under a microscope, he found two different disease-causing microbes. These germs were passed from silk moths to their eggs, and then from the droppings of silkworms onto leaves that the silkworms ate. Pasteur had identified the specific cause of the disease. He had also identified how it was spread from one silkworm to another. Pasteur and other scientists soon realized that they needed to apply the same methods to discover the causes of human diseases. Within a few decades, the microbes responsible for many deadly diseases had been identified. Scientists began to look for vaccines and cures a process that continues today. In the old days, surgeons didn t wash their hands before performing surgery and as a result about half their patients died of infections. The surgeons were picking up germs from one patient and spreading them to another. When they began cleaning their hands and keeping operating rooms and equipment sterile, death rates decreased.

This one-celled microbe is a real pest. Giardia can get into your gut if you drink contaminated water and cause a disease called giardiasis. The major symptom is diarrhea. Ugh. Giardia have four pairs of flagella (the little pink whips), and they use these to move around. Although Leeuwenhoek discovered Giardia under his microscope in the 1600s, it wasn t until about 1910 that scientists realized Giardia caused disease. Today, giardiasis can be treated with antibiotics. One of the most dangerous single-celled organisms in the world is one that causes malaria. Plasmodium falciparum is a protozoan that hitches a ride in the bodies of mosquitoes before getting into its real target: vertebrate animals. When a mosquito infected with the malaria parasite sips the blood of a human, the parasites slip into the human s bloodstream, quickly ride the bloodstream to the human s liver, and infect the liver cells. The parasite multiplies inside each cell until tens of thousands of new parasites burst the cell and move on to invade red blood cells, where they reproduce again. All this wreaks havoc on the human body, resulting in chills and fever and in some cases death. While there are medicines to help cure malaria, scientists are still searching for a vaccine that will prevent Plasmodium from making people sick.

Seen through an electron microscope, a malaria microbe invades a red blood cell. In many parts of the world, people sleep with mosquito nets around their beds to protect against mosquito bites and the diseases mosquitoes carry, such as malaria and dengue fever.

Tiny and very dangerous, the pill shapes among the yellow-green goo are Yersinia pestis, the bacteria that cause the bubonic plague. Another deadly single-celled organism is the Yersinia pestis. This bacteria caused the Bubonic Plague also called the Black Death that killed over 25 million people during the Middle Ages. The Yersinia pestis bacteria live in the guts of fleas. Rats carried these fleas into the homes of humans, and the plague would be passed along from rat to human through a flea bite. Because people did not know what caused the plague, the disease spread far and wide, resulting in sickness and death all over Europe.

Of course, not all microbes cause disease. In fact, plenty of them mind their own business, and others are downright amazing. Extremophiles are single-celled microbes that can live in very weird places places that scientists used to think were impossible for life to survive. They live underneath glaciers, inside rocks, and in the ocean next to boiling-hot deep sea vents. There is more life on Earth, in more places on Earth, than we ever imagined! This hot spring in Yellowstone National Park is full of extremophiles that like living in high temperatures. Two hundred degrees feels just right to them. The orange rings at the edge of the spring are actually mats of single-celled extremophiles. The different shades of orange are different species of extremophiles.