The delicate balance of disease

Similar documents
Supplementary Online Content

Cardiologists and HbA1c: Novel Diabetes Drugs and Cardiovascular Disease Outcomes

egfr > 50 (n = 13,916)

No Increased Cardiovascular Risk for Lixisenatide in ELIXA

LEADER Liraglutide and cardiovascular outcomes in type 2 diabetes

LATE BREAKING STUDIES IN DM AND CAD. Will this change the guidelines?

Drug Class Monograph

Medical therapy advances London/Manchester RCP February/June 2016

Fasting or non fasting?

Drug Class Monograph

Oral Hypoglycemics and Risk of Adverse Cardiac Events: A Summary of the Controversy

Management of Type 2 Diabetes Cardiovascular Outcomes Trials Tom Blevins MD Texas Diabetes and Endocrinology Austin, Texas

Case Presentation. Rafael Bitzur The Bert W Strassburger Lipid Center Sheba Medical Center Tel Hashomer

Update on Diabetes Cardiovascular Outcome Trials

Top HF Trials to Impact Your Practice

ESC GUIDELINES ON DIABETES AND CARDIOVASCULAR DISEASES

Soo LIM, MD, PHD Internal Medicine Seoul National University Bundang Hospital

Clinical Trial Synopsis TL-OPI-518, NCT#

Can We Reduce Heart Failure by Treating Diabetes? CVOT Data on SGLT2 Inhibitors and GLP-1Receptor Agonists

Diabetes and Heart Failure: The Role of SGLT2 Inhibitors

Rikshospitalet, University of Oslo

New Strategies for Cardiovascular Risk reduction in Diabetes

OBJECTIVE RESEARCH DESIGN AND METHODS RESULTS CONCLUSIONS. Diabetes Care Volume 39, July CARDIOVASCULAR AND METABOLIC RISK

01/09/2017. Outline. SGLT 2 inhibitor? Diabetes Patients: Complex and Heterogeneous. Association between diabetes and cardiovascular events

Heart failure (HF) is a complex clinical syndrome that results in the. impairment of the heart s ability to fill or to pump out blood.

CANVAS Program Independent commentary

Update on Cardiovascular Outcome Trials in Diabetes Jay S. Skyler, MD, MACP

Updates in Diabetes and Cardiovascular Disease Management: Are You Making the Link?

The Clinical Unmet need in the patient with Diabetes and ACS

CARDIOVASCULAR SAFETY OF FEBUXOSTAT OR ALLOPURINOL IN PATIENTS WITH GOUT AND CARDIOVASCULAR DISEASE (The CARES Trial)

A: Epidemiology update. Evidence that LDL-C and CRP identify different high-risk groups

Diabete: terapia nei pazienti a rischio cardiovascolare

Antihypertensive Trial Design ALLHAT

Cardiovascular disease and diabetes Vascular harmony

Lowering blood pressure (BP) in patients with type 2

HFpEF, Mito or Realidad?

CV outcomes Studies and Implications for diabetes management. Seraj Abualnaja, MD, FRCPC Consultant Interventional cardiologist DSFH

HEART FAILURE AND DIABETES MELLITUS: DANGEROUS LIASONS MICHEL KOMAJDA, MD

Trial to Reduce. Aranesp* Therapy. Cardiovascular Events with

Type 2 diabetes affects an estimated 25.8 million

GALECTIN-3 PREDICTS LONG TERM CARDIOVASCULAR DEATH IN HIGH-RISK CORONARY ARTERY DISEASE PATIENTS

JUPITER NEJM Poll. Panel Discussion: Literature that Should Have an Impact on our Practice: The JUPITER Study

Impatto dei farmaci antidiabetici sullo scompenso cardiaco

Empagliflozin (Jardiance ) for the treatment of type 2 diabetes mellitus, the EMPA REG OUTCOME study

Clinical Relevance of Blood Pressure Lowering Effect of Modern Antidiabetic Drugs

Supplementary appendix

Online Appendix (JACC )

Diabetes and the Heart

CVD risk assessment using risk scores in primary and secondary prevention

GLP 1 agonists Winning the Losing Battle. Dr Bernard SAMIA. KCS Congress: Impact through collaboration

CARDIOVASCULAR SAFETY OF FEBUXOSTAT OR ALLOPURINOL IN PATIENTS WITH GOUT AND CARDIOVASCULAR DISEASE (The CARES Trial)

Diabetes and Cardiovascular Risk Management Denise M. Kolanczyk, PharmD, BCPS-AQ Cardiology

Causes of death in Diabetes

Metformin. Sulfonylurea. Thiazolidinedione. Insulin

Cardiovascular Benefits of Two Classes of Antihyperglycemic Medications

Cedars Sinai Diabetes. Michael A. Weber

Trials Enrolled subjects Findings Fox et al. 2014, SIGNIFY 1

Using DOACs in CAD Patients in Sinus Ryhthm Results of the ATLAS ACS 2, COMPASS and COMMANDER-HF Trials

Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes

Update on Cardiovascular Outcome Trials in Diabetes. Rury R. Holman, FMedSci NIHR Senior Investigator 11 th February 2013

HEART FAILURE IN WOMEN. Marian Limacher, MD Division of Cardiovascular Medicine University of Florida

Efficacy of beta-blockers in heart failure patients with atrial fibrillation: An individual patient data meta-analysis

Evaluating the Cardiovascular Benefits of Antidiabetic Medications

DPP-4 inhibitor use and risk of diabetic retinopathy: a new safety issue of a safe drug Nam Hoon Kim

Dapagliflozin and Outcomes in Patients with Peripheral Artery Disease: Insights from DECLARE-TIMI 58

Preventive Cardiology Scientific evidence

Dapagliflozin and cardiovascular outcomes in type 2

New evidences in heart failure: the GISSI-HF trial. Aldo P Maggioni, MD ANMCO Research Center Firenze, Italy

Cardiovascular Outcomes With Newer Diabetes Drugs: Results From The EMPA-REG and LEADER Trials

Clinical and Economic Value of Rivaroxaban in Coronary Artery Disease

The clinical trial information provided in this public disclosure synopsis is supplied for informational purposes only.

T. Suithichaiyakul Cardiomed Chula

7 th Munich Vascular Conference

CARDIOVASCULAR EFFECTS OF INCRETIN-BASED ANTIHYPERGLYCEMIC DRUGS RELATIVE TO TREATMENT ALTERNATIVES IN OLDER ADULTS. Mugdha Gokhale.

The Changing Landscape of Managing Patients with PAD- Update on the Evidence and Practice of Care in Patients with Peripheral Artery Disease

Methods. Background and Objectives STRADIVARIUS

Beta-blockers in Patients with Mid-range Left Ventricular Ejection Fraction after AMI Improved Clinical Outcomes

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output

New Drug Evaluation: lixisenatide injection, subcutaneous

What oral antiplatelet therapy would you choose? a) ASA alone b) ASA + Clopidogrel c) ASA + Prasugrel d) ASA + Ticagrelor

GSK Medicine: Study Number: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives:

Case Studies in Type 2 Diabetes Mellitus: Focus on Cardiovascular Outcomes Trials

John J.P. Kastelein MD PhD Professor of Medicine Dept. of Vascular Medicine Academic Medial Center / University of Amsterdam

2/11/2017. Weighing the Heavy Cardiovascular Burden of Obesity and the Obesity Paradox. Disclosures. Carl J. Lavie, MD, FACC, FACP, FCCP

PROCORALAN MAKING A STRONG ENTRY TO THE NEW ESC GUIDELINES FOR THE MANAGEMENT OF HEART FAILURE

Cardiovascular Complications of Diabetes

Prasugrel vs. Ticagrelor in ACS/PCI Which one to choose? V. Voudris MD FESC FACC 2 nd Cardiology Division Onassis Cardiac Surgery Center

Management of Cardiovascular Disease in Diabetes

Type 2 diabetes and cardiovascular risk: the role of GLP-1

Cardiac Pathophysiology

Topic Page: congestive heart failure

Antiplatelet Therapy in Primary CVD Prevention and Stable Coronary Artery Disease. Καρακώστας Γεώργιος Διευθυντής Καρδιολογικής Κλινικής, Γ.Ν.

Diabetes and Heart Failure: Challenges and Opportunities

The JUPITER trial: What does it tell us? Alice Y.Y. Cheng, MD, FRCPC January 24, 2009

Managing Dyslipidemia in Disclosures. Learning Objectives 03/05/2018. Speaker Disclosures

Lipid Management 2013 Statin Benefit Groups

Diabetic Patients: Current Evidence of Revascularization

SUPPLEMENTAL MATERIAL

Is Lower Better for LDL or is there a Sweet Spot

Disclosures. Dr. Scirica has also served as a consultant for Lexicon, Arena, Gilead, and Eisai.

Transcription:

Play of Chance Versus Concerns Regarding Dipeptidyl Peptidase-4 Inhibitors: Heart Failure and Diabetes Vani P. Sanon, MD, Saurabh Sanon, MD, Son V. Pham, MD, FACC, and Robert Chilton, DO, FACC The delicate balance of disease management versus off-target effects of treatment continues to be a vital concern to both patients and physicians. This article offers a brief overview of heart failure in diabetes and comments on the recent outcome trials of dipeptidyl peptidase-4 (DPP-4) inhibitors, with a closer look at a few pathobiological concerns. The importance of safe antidiabetic treatments becomes apparent when one considers the increasing obesity and diabetes pandemics. Approximately 150,000 patients with moderate-high cardiovascular (CV) risk factor profiles are currently enrolled in trials of antidiabetic agents. Establishing the CV safety of newer antidiabetic agents, especially with respect to heart failure, remains crucial. Heart failure syndrome is a symptom complex composed of worsening shortness of breath, orthopnea, paroxysmal nocturnal dyspnea, fatigue, and the well-known manifestation of ankle edema. The syndrome is characterized by physical findings of fluid retention (dependent edema), a third heart sound, rales sounds, and distension of the neck veins. In addition, heart failure is associated with chronic inflammation and a prothrombotic state. Endothelial dysfunction and proteomic and neurohormonal activation occur many months before development of the syndrome complex. 1,2 Newer areas of basic science research have identified potential prognostic indicators in chronic heart failure (mir126 and mir508-5p) that might be used as novel markers leading to earlier diagnosis and treatment of heart failure. 3,4 Heart failure has several etiologies ranging from mechanical and electrical dysfunction to structural and valvular abnormities. Moreover, the consequences of heart failure are multi-systemic and adversely affect the liver, kidneys, bone marrow, and muscle. Recent data from the Olmstead County population study 5 showed that patients with diabetes had equal amounts of systolic and diastolic dysfunction. Patients with diabetes frequently have preserved leftventricular function (a normal ejection fraction) but with a poorly compliant left ventricle that is very sensitive to volume changes. For example, people with type 2 diabetes who are exposed to an extra salt and fluid load could experience enough of an increase in circulating blood volume to place them into symptomatic heart failure. Autonomic dysfunction, glucose toxicity, and oxidative stress are believed to play a role in the development of heart failure in people with diabetes (Figure 1). The occurrence of CV events and mortality in patients with diabetes is frequently underestimated when considering heart failure in diabetes. Notably, myocardial infarction (MI), non-st elevation MI, and stroke are the leading primary endpoints of most current antidiabetic drug trials. However, heart failure may Figure 1. Diabetes and heart failure: a complex pathophysiological association. Clinical Diabetes Volume 32, Number 3, 2014 121

Figure 2. This figure illustrates the importance of heart failure consideration in primary endpoint trials with hypoglycemic agents. A retrospective cohort study 6 with nearly 50 million lives found a high incidence of heart failure compared to the classic primary endpoints in most diabetes trials. Adapted from Ref. 6. Figure 3. This pooled data from 11 prospective cohort studies with 650,386 white adults found a significant correlation in all-cause mortality when waist circumference was combined with BMI. Note that even at a low BMI, there is an increased risk for all-cause mortality with a waist circumference > 90 cm (36 inches). Adapted from Ref. 8. need to be added or considered as a principal secondary endpoint. Recently, Juhaeri et al. 6 reported in a retrospective study encompassing > 50 million lives from Medicaid, Medicare, and 60 health maintenance organizations the incidence of heart failure, MI, and stroke in type 2 diabetes patients on insulin. The highest incidence was for heart failure (Figure 2). In addition, Bertoni et al. 7 evaluated 151,738 Medicare beneficiaries with diabetes with practically a 10-fold increase in heart failure mortality versus patients with diabetes who were free of heart failure at 60 months. In summary, the heart failure syndrome in diabetes carries an ominous outlook, and, with an increasing number of antidiabetic drugs to reduce blood glucose levels, newer trials should consider heart failure as one of the major clinical endpoints. In addition to an increasing BMI, which is frequently associated with diabetes, waist circumference should also be evaluated, even for patients with a normal weight (Figure 3). 8 Despite advances in medical and surgical therapy for the management of patients with diabetes, lifestyle modification leading to weight loss alone affords improvement in the CV risk profile, as shown in Table 1. It is possible that interventional procedures such as endobarrier or gastric bypass surgery may carry less risk for markedly obese patients who are at high risk for diabetes or who have diabetes, but these procedures also carry some degree of surgical risk. SAVOR and EXAMINE Trials Two recent DPP-4 inhibitor trials have increased discussion about hospitalizations for heart failure even though basic science studies have not noted significant heart failure concerns. The SAVOR (Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus [TIMI-53]) trial 9 evaluated the safety and efficacy of saxagliptin on CV outcomes in patients with diabetes who are at risk for CV events. The trial was designed as a superiority trial. However, a closed testing hierarchy prespecified that a test for noninferiority of the primary composite endpoint should be completed first to preserve the alpha level, followed by a test for superiority. A total of 16,492 diabetes patients were prospectively randomized to saxagliptin 5 mg daily (2.5 mg if glomerular filtration rate [GFR] was < 50 ml/min/1.73 m 2 ) or placebo, with a mean follow-up of 2.1 years. Demographic data are shown in Table 2. The primary end- 122 Volume 32, Number 3, 2014 Clinical Diabetes

Table 1. Effects of Diabetes Management Strategies on Known Classic CV Risk Factors Management Strategy CRP LDL BP PPG Weight Loss Decrease in CV Events? Side Effects? SGLT-2 inhibitor? Yes Statin 0? 0 Yes (ARR 3 4%) Yes TZD ++ +/ Yes DPP-4 inhibitor + + 0 No (HF?) Yes Weight loss of 10% Yes (ARR 1 2%) Hunger Endobarrier?? +?? Yes Gastric bypass Yes/SOS Yes ARR, absolute risk reduction; BP, blood pressure; CRP, C-reactive protein; LDL, LDL cholesterol; PPG, postprandial glucose; SGLT-2, sodium glucose co-transporter 2; SOS, Swedish Obese Subjects study; TZD, thiazolidinedione. Table 2. Comparison of Baseline Demographics from the SAVOR 9 and EXAMINE 10 Trials SAVOR (Stable CAD) EXAMINE (ACS) Saxagliptin Control Alogliptin Control BMI (kg/m 2 ) 31 31 28 28 Duration of diabetes (years) 10.3 10.3 7.1 7.3 Hypertension (%) 81 82 82 83 Prior heart failure (%) 12.8 12.8 28 27 Prior MI (%) 38 37 77 77 Prior revascularization (%) 43 43 74 74 Mean A1C (%) 8.0 8.0 8.0 8.0 GFR > 60 ml/min/1.73 m 2 (%) 84 84 71 70 Aspirin therapy (%) 75 76 91 91 Statin therapy (%) 78 78 90 90 ACE inhibitor therapy (%) 82 82 82 82 ACS, acute coronary syndrome; CAD, coronary artery disease. point was a composite of CV death, MI, or ischemic stroke. The primary endpoint occurred in 613 patients in the saxagliptin group and 609 patients in the placebo group (7.3 and 7.2%, NS). The 2-year Kaplan-Meier estimate for superiority was not achieved (hazard ratio [HR] with saxagliptin 1.00, 95% CI 0.89 1.12, P = 0.99). However, noninferiority was significant at P < 0.001. The major composite secondary endpoints of CV death, MI, stroke, hospitalization for unstable angina, coronary revascularization, and heart failure was 12.8% in the treatment arm and 12.4% in the placebo arm (2-year Kaplan-Meier estimate HR 1.02, 95% CI 0.94 1.11, P = 0.66, NS). Unfortunately, hospitalization for heart failure was significantly increased in the saxagliptin arm by 27% (HR 1.27, 95% CI 1.07 1.51, P < 0.007). The risk for primary and secondary endpoints among patients who received saxagliptin was comparable to that among patients without a history of heart failure (primary endpoint HR in the saxagliptin group 1.13, 95% CI 0.89 1.43, vs. 0.97, 95% CI 0.85 1.10, in the comparison group; secondary endpoint HR in the saxagliptin group 1.06, 95% CI 0.89 1.27, vs. 1.01, 95% CI 0.91 1.11, in the comparison group). The rate of acute and chronic pancreatitis was similar in the saxagliptin and placebo groups: 0.3 vs. 0.2% for acute pancreatitis and < 0.1 vs. 0.1% for chronic pancreatitis. The absolute risk for hospitalization for heart failure was highest among patients with a history of heart failure. However, the relative risk among patients assigned to saxagliptin was similar regardless of baseline history of heart failure (HR 1.21, 95% CI 0.93 1.58, vs. 1.32, 95% CI 1.04 1.65). In summary, the DPP-4 inhibitor saxagliptin did not reduce CV events in diabetes Clinical Diabetes Volume 32, Number 3, 2014 123

Figure 4. The possible off-target effect of increased heart failure hospitalizations from saxagliptin in the SAVOR trial. Higher N-terminal pro-b-type natriuretic peptide levels predicted increased risk for heart failure hospitalizations. The highest levels significantly increased this risk, but did not increase mortality. Most of the patients had a history of heart failure. Adapted from References 9 and 11. Figure 5. Patient deaths in the SAVOR trial. There was no increase in total deaths or deaths from heart failure. More patients suffered sudden cardiac death than death from heart failure. The reassuring finding of no difference in cancer deaths was supportive of safety with regard to malignancy. Adapted from Ref. 9. patients. The apparent off-target effect of increased risk for hospitalization for heart failure (best predicted by history of heart failure) will remain a question for future trials to answer in patients with stable CV disease and diabetes (Figures 4 and 5). The EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care) trial 10 was a double-blinded noninferiority trial comparing placebo to alogliptin and evaluating the impact of treatment on major CV events in patients with type 2 diabetes and acute coronary syndrome within 15 90 days before randomization. Demographic data are shown in Table 2. The primary CV endpoint was a composite of death from CV causes, nonfatal MI, and nonfatal stroke. A total of 5,380 patients underwent randomization with a follow-up of up to 40 months (median 18 months). The primary endpoint occurred in 305 patients (11.3%) assigned to alogliptin and in 316 patients (11.8%) assigned to placebo (HR 0.96, upper boundary of the one-sided repeated confidence interval 1.16, P < 0.001 for noninferiority, P = 0.32 for superiority) at 36 months of follow-up. Table 3 shows the components of the primary endpoint and additional exploratory adjudicated components. The EXAMINE trial did not find significantly increased hospitalizations for heart failure. However, there were more patient hospitalizations for heart failure in the alogliptin arm than in the placebo arm. The principal secondary endpoints of death from CV causes, nonfatal MI, nonfatal stroke, and urgent revascularization because of unstable angina were not significant between placebo and alogliptin (13.4% [n = 359] vs. 12.7% [n = 344], P < 0.26). Hospitalization for heart failure in the alogliptin treatment arm was 106 of 2,701 events compared to 89 of 2,679 events in the placebo arm (odds ratio 1.19, 95% CI 0.89 1.58). Figure 6 provides a comparison of the rates of hospitalization for heart failure between the SAVOR and EXAMINE trials. However, comparing these two trials in terms of heart failure may be misleading. The first concern is whether the patients in these studies had preserved left-ventricular function (low or high ejection fractions). Many patients with type 2 diabetes have preserved left-ventricular function but diastolic dysfunction. Other patients have ischemic heart disease with reduced left-ventricular function or a combination of both conditions. Understanding of heart failure in these two studies remains obscure; more data are required to fully understand the relationship between DPP-4 inhibitor therapy and heart failure. 124 Volume 32, Number 3, 2014 Clinical Diabetes

Conclusion Both of the SAVOR 9 and EXAMINE 10 trials failed to find CV event reduction in patients with diabetes using DPP-4 inhibitor therapy. Moreover, there was a significant increase in hospitalizations for heart failure with saxagliptin, but not with alogliptin. The reason for increased heart failure admissions with saxagliptin remains unclear, and it is possible this finding could be by Table 3. Components of the Primary Endpoint and Additional Exploratory Adjudicated Components in the EXAMINE Trial Primary endpoint: death from CV causes, non-fatal MI, and nonfatal stroke (%) Alogliptin Placebo HR 11.3 11.8 NS CV death (%) 3.3 4.1 NS Non-fatal MI (%) 6.39 6.5 NS Non-fatal stroke (%) 1.1 1.2 NS Exploratory adjudicated components: All-cause death (%) Heart failure hospitalization [% (n)] History of heart failure (%) 3.9 3.1 (106) 18.1 4.9 2.9 (89) 22.3 NS NS NS Figure 6. Comparison of rates of hospitalization for heart failure in the SAVOR 9 and EXAMINE 10 trials. play of chance rather than the result of other unknown off-target effects. Resolution of this issue awaits future studies to determine whether this is a problem with the DPP-4 inhibitor class, the characteristics of the specific drug within the class, or play of chance. Pending large trials such as TECOS (Trial Evaluating Cardiovascular Outcomes with Sitagliptin) and CAROLINA (Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes) 12,13 will help to answer some questions related to the possible link between hospitalization for heart failure and DPP-4 inhibitor therapy. Unfortunately, these trials have not included heart failure as a primary or principal secondary endpoint (Table 4). Potential beneficial pleotropic effects of DPP-4 inhibitors on the CV system are outlined in Figure 7. Translational consideration findings have ranged from improvement in cardiac function to increased circulating blood volume caused by neuropeptide Y mediated vasoconstriction of the microcirculation. 14 The optimal management of patients with diabetes who remain at risk for heart failure in addition to a plethora of other CV problems deserves due attention. Additional research will be Table 4. Ongoing, Prospective Clinical Trials of DPP-4 Inhibitors With CV Outcomes DPP-4 Inhibitor Trial Design Patient Characteristics Linagliptin CAROLINA n = 6,000 5 mg glimepiride vs. 1 4 mg linagliptin Noninferiority and superiority trial Sitagliptin TECOS n = 14,000 50 or 100 mg sitagliptin vs. placebo Noninferiority trial A1C 6.5 8.5%, high CV risk A1C 6.5 8.0%, history of cardiovascular disease Primary Endpoint Time to first occurrence of nonfatal MI, nonfatal stroke, hospitalization for unstable angina, or CV death Time to first confirmed CV event (nonfatal MI, nonfatal stroke, or hospitalization for unstable angina) Clinical Diabetes Volume 32, Number 3, 2014 125

Figure 7. Potential beneficial cellular pleotropic effects of DPP-4 inhibitors. Antithrombotic, anti-inflammatory, and atheroprotective effects are key players in the CV arena. *Makdissi A, Ghanim H, Vora M, Green K, Abuaysheh S, Chaudhuri A, Dhindsa S, Dandona P: Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab 97:3333 3341, 2012. required to clarify the role of novel agents such as DPP-4 inhibitors. References 1 McMurray JJ: Clinical practice: systolic heart failure. N Engl J Med 362:228 238, 2010 2 McMurray JJ, Pfeffer MA: Heart failure. Lancet 365:1877 1889, 2005 3 Qiang L, Hong L, Ningfu W, Huaihong C, Jing W: Expression of mir-126 and mir-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int J Cardiol 168:2082 2088, 2013 4 Wang HW, Huang TS, Lo HH, Huang PH: Deficiency of the microrna-31 microrna-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease. Arterioscler Thromb Vasc Biol 34:857 869, 2014 5 Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH: The prevalence of diabetic cardiomyopathy: a population based study in Olmsted County, MN. J Card Fail. Electronically published ahead of print on 24 February 2014 (doi: 10.1016/j.cardfail.2014.02.007) 6 Juhaeri J, Gao S, Dai WS: Incidence rates of heart failure, stroke, and acute myocardial infarction among type 2 diabetic patients using insulin glargine and other insulin. Pharmacoepidemiol Drug Saf 18:497 503, 2009 7 Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr: Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 27:699 703, 2004 8 Cerhan JR, Moore SC, Jacobs EJ: A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin Proc 89:335 345, 2014 9 Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I, for the SAVOR-TIMI 53 Steering Committee and Investigators: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317 1326, 2013 10 White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, for the EXAMINE Investigators: Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327 1335, 2013 11 Bhatt DL, on behalf of the SAVOR- TIMI 53 Steering Committee and Investigators: Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR) TIMI 53. Presentation delivered at the European Association for the Study of Diabetes 49th annual meeting on 26 September 2013 in Barcelona, Spain 12 Sitagliptin cardiovascular outcome study (MK-0431-082) (TECOS). Available from http://clinicaltrials.gov/ct2/show/nct 00790205?term=NCT00790205&rank=1. Accessed 15 April 2014 13 CAROLINA: Cardiovascular Outcome Study of Linagliptin Versus Glimeperide in Patients with Type 2 Diabetes. Available from http://clinicaltrials.gov/ct2/show/nct012434 24?term=NCT01243424&rank=1. Accessed 15 April 2014 14 Evanson KW, Stone AJ, Hammond AL, Kluess HA: Neuropeptide Y overflow and metabolism in skeletal muscle arterioles. J Physiol 589:3309 3318, 2011 Vani P. Sanon, MD, is a fellow in the Division of Cardiology at the University of Texas Health Science Center in San Antonio. Saurabh Sanon, MD, is an interventional fellow in the Division of Cardiovascular Diseases at the Mayo Clinic in Rochester, Minn. Son V. Pham, MD, FACC, is the chief of cardiology at the Audie L. Murphy Veterans Affairs Hospital in San Antonio. Robert Chilton, DO, FACC, is a professor in the Division of Cardiology at the University of Texas Health Science Center and the Audie L. Murphy Veterans Affairs Hospital in San Antonio. 126 Volume 32, Number 3, 2014 Clinical Diabetes