Analysis of Fetal Stress Developed from Mother Stress and Classification of ECG Signals

Similar documents
An Efficient Method for Fetal Electrocardiogram Extraction from the Abdominal Electrocardiogram Signal

Separation of fetal electrocardiography (ECG) from composite ECG using adaptive linear neural network for fetal monitoring

ECG Signal Characterization and Correlation To Heart Abnormalities

ECG Rhythm Analysis by Using Neuro-Genetic Algorithms

Assessment of Reliability of Hamilton-Tompkins Algorithm to ECG Parameter Detection

ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network

Automatic Detection of Heart Disease Using Discreet Wavelet Transform and Artificial Neural Network

A Review on Arrhythmia Detection Using ECG Signal

PROCESSING THE ABDOMINAL FETAL ECG USING A NEW METHOD. Zentralinstitut fur Biomedizinische Technik der Universitat Erlangen-Nurnberg, FRG

Temporal Analysis and Remote Monitoring of ECG Signal

Enhancement of Twins Fetal ECG Signal Extraction Based on Hybrid Blind Extraction Techniques

POWER EFFICIENT PROCESSOR FOR PREDICTING VENTRICULAR ARRHYTHMIA BASED ON ECG

ECG Signal Analysis for Abnormality Detection in the Heart beat

MULTI-MODAL FETAL ECG EXTRACTION USING MULTI-KERNEL GAUSSIAN PROCESSES. Bharathi Surisetti and Richard M. Dansereau

PCA Enhanced Kalman Filter for ECG Denoising

CHAPTER 5 WAVELET BASED DETECTION OF VENTRICULAR ARRHYTHMIAS WITH NEURAL NETWORK CLASSIFIER

An ECG Beat Classification Using Adaptive Neuro- Fuzzy Inference System

Interpreting Electrocardiograms (ECG) Physiology Name: Per:

Heart Rate Calculation by Detection of R Peak

Comparison of Different ECG Signals on MATLAB

Signal Processing of Stress Test ECG Using MATLAB

Heart Abnormality Detection Technique using PPG Signal

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 10, April 2013

Keywords: Adaptive Neuro-Fuzzy Interface System (ANFIS), Electrocardiogram (ECG), Fuzzy logic, MIT-BHI database.

Wavelet Decomposition for Detection and Classification of Critical ECG Arrhythmias

CARDIAC ARRYTHMIA CLASSIFICATION BY NEURONAL NETWORKS (MLP)

Simulation Based R-peak and QRS complex detection in ECG Signal

Artificial Neural Networks in Cardiology - ECG Wave Analysis and Diagnosis Using Backpropagation Neural Networks

IJRIM Volume 1, Issue 2 (June, 2011) (ISSN ) ECG FEATURE EXTRACTION FOR CLASSIFICATION OF ARRHYTHMIA. Abstract

Comparison of ANN and Fuzzy logic based Bradycardia and Tachycardia Arrhythmia detection using ECG signal

Performance Identification of Different Heart Diseases Based On Neural Network Classification

SEPARATION OF ABDOMINAL FETAL ELECTROCARDIOGRAMS IN TWIN PREGNANCY 1. INTRODUCTION

DETECTION OF HEART ABNORMALITIES USING LABVIEW

ECG SIGNAL PROCESSING USING BPNN & GLOBAL THRESHOLDING METHOD

Genetic Algorithm based Feature Extraction for ECG Signal Classification using Neural Network

Keywords : Neural Pattern Recognition Tool (nprtool), Electrocardiogram (ECG), MIT-BIH database,. Atrial Fibrillation, Malignant Ventricular

Neural Network based Heart Arrhythmia Detection and Classification from ECG Signal

LABVIEW based expert system for Detection of heart abnormalities

Testing the Accuracy of ECG Captured by Cronovo through Comparison of ECG Recording to a Standard 12-Lead ECG Recording Device

Body Surface and Intracardiac Mapping of SAI QRST Integral

Delineation of QRS-complex, P and T-wave in 12-lead ECG

Automatic Detection of Abnormalities in ECG Signals : A MATLAB Study

II. NORMAL ECG WAVEFORM

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

HST-582J/6.555J/16.456J-Biomedical Signal and Image Processing-Spring Laboratory Project 1 The Electrocardiogram

FPGA BASED FETAL ECG DENOISING AND EXTRACTION FORMEDICAL DIAGNOSIS

SPPS: STACHOSTIC PREDICTION PATTERN CLASSIFICATION SET BASED MINING TECHNIQUES FOR ECG SIGNAL ANALYSIS

Extraction of Unwanted Noise in Electrocardiogram (ECG) Signals Using Discrete Wavelet Transformation

Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering

Simulation of T-Wave Alternans and its Relation to the Duration of Ventricular Action Potentials Disturbance

MORPHOLOGICAL CHARACTERIZATION OF ECG SIGNAL ABNORMALITIES: A NEW APPROACH

Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique

DISEASE CLASSIFICATION USING ECG SIGNAL BASED ON PCA FEATURE ALONG WITH GA & ANN CLASSIFIER

Available online at ScienceDirect. Procedia Computer Science 70 (2015 ) Carmelaram, Bengaluru , India

REVIEW ON ARRHYTHMIA DETECTION USING SIGNAL PROCESSING

Various Methods To Detect Respiration Rate From ECG Using LabVIEW

A MULTI-STAGE NEURAL NETWORK CLASSIFIER FOR ECG EVENTS

Powerline Interference Reduction in ECG Using Combination of MA Method and IIR Notch

PERFORMANCE CALCULATION OF WAVELET TRANSFORMS FOR REMOVAL OF BASELINE WANDER FROM ECG

Robust Detection of Atrial Fibrillation for a Long Term Telemonitoring System

Removal of Baseline wander and detection of QRS complex using wavelets

Real-time Heart Monitoring and ECG Signal Processing

: Biomedical Signal Processing

An SVD-ANFIS Based Dynamic Pattern Recognition System for Cardiac Signal Classification

Design and implementation of IIR Notch filter for removal of power line interference from noisy ECG signal

Spatiotemporal Cardiac Activation Sites Localization Using ECG Precordial Leads

DIFFERENCE-BASED PARAMETER SET FOR LOCAL HEARTBEAT CLASSIFICATION: RANKING OF THE PARAMETERS

A RECOGNITION OF ECG ARRHYTHMIAS USING ARTIFICIAL NEURAL NETWORKS

Classification of heart signal using wavelet haar and backpropagation neural network

SPECTRAL ANALYSIS OF LIFE-THREATENING CARDIAC ARRHYTHMIAS

VLSI Implementation of the DWT based Arrhythmia Detection Architecture using Co- Simulation

Electrocardiography I Laboratory

EEG, ECG, EMG. Mitesh Shrestha

IDENTIFICATION OF NORMAL AND ABNORMAL ECG USING NEURAL NETWORK

Cardiovascular Authentication: Fusion of Electrocardiogram and Ejection Fraction

Wavelet Neural Network for Classification of Bundle Branch Blocks

Combination Method for Powerline Interference Reduction in ECG

This presentation will deal with the basics of ECG description as well as the physiological basics of

Classification of electrocardiographic ST-T segments human expert vs artificial neural network

Vital Responder: Real-time Health Monitoring of First- Responders

RASPBERRY PI BASED ECG DATA ACQUISITION SYSTEM

SSRG International Journal of Medical Science ( SSRG IJMS ) Volume 4 Issue 1 January 2017

Removal of Baseline Wander from Ecg Signals Using Cosine Window Based Fir Digital Filter

Multi Resolution Analysis of ECG for Arrhythmia Using Soft- Computing Techniques

ECG classification and abnormality detection using cascade forward neural network

Classification of ECG Data for Predictive Analysis to Assist in Medical Decisions.

The Use of Artificial Neural Network to Detect the Premature Ventricular Contraction (PVC) Beats

Biceps Activity EMG Pattern Recognition Using Neural Networks

Science in Sport. 204a ECG demonstration (Graph) Read. The Electrocardiogram. ECG Any 12 bit EASYSENSE. Sensors: Loggers: Logging time: 10 seconds

QRS Complex Boundaries Location for Multilead Electrocardiogram

ECG Enhancement and Heart Beat Measurement

Logistic Regression Multinomial for Arrhythmia Detection

ECG DE-NOISING TECHNIQUES FOR DETECTION OF ARRHYTHMIA

Epileptic seizure detection using EEG signals by means of stationary wavelet transforms

1, 2, 3 * Corresponding Author: 1.

Comparative Analysis of QRS Detection Algorithms and Heart Rate Variability Monitor Implemented on Virtex-4 FPGA

Lab #3: Electrocardiogram (ECG / EKG)

ADVANCES in NATURAL and APPLIED SCIENCES

An Enhanced Approach on ECG Data Analysis using Improvised Genetic Algorithm

USING CORRELATION COEFFICIENT IN ECG WAVEFORM FOR ARRHYTHMIA DETECTION

Transcription:

22 International Conference on Computer Technology and Science (ICCTS 22) IPCSIT vol. 47 (22) (22) IACSIT Press, Singapore DOI:.7763/IPCSIT.22.V47.4 Analysis of Fetal Stress Developed from Mother Stress and Classification of ECG Signals R.Sivakumar +, R.Tamilselvi, S.Dhanalakshmi, A.M.Ezhilarasi, A.Indhumathi Department of Electronics and Communication Engineering, R.M.K.Engineering college, Kavaraipettai, Tamilnadu, India tamil_ct@rediffmail.com Abstract. Recent works have shown that the fetal electrocardiogram (ECG) allows detecting cardiac pathologies or stressing conditions of the fetus by the continuous registration of the fetal heart activity. In this paper we propose a simple method to detect the presence of stress on the fetus developed due to the mother s stress. This is carried out by the analysis of mother s abdominal electrocardiogram. Our method allows to extract the fetal ECG in a noninvasive way. ECG signals are classified using Back propagation (BPN) network.. Introduction The electrocardiogram (ECG) is used in cardio logical diagnosis, like tachycardia, arrhythmia and other disorders in the heart activation. Generally, this diagnosis is only based on the close study of the ECG waveform.ecg is generated by the bio electromagnetic fields that the heart produces during its activity; in particular the ECG records the overlapping of the bioelectric activities generated by the depolarization and repolarization processes that occur in the atrial and ventricular muscles. A complete ECG can be obtained by the placement of ten electrodes on the body [].The electrocardiography can also be used to evaluate the fetal heart muscle activity; in particular the authors show that a close study of the fetal electrocardiogram (FECG) allows to detect cardiac pathologies or stress conditions of the fetus [2]. The routine for obtaining the significant information about fetal condition during pregnancy is fetal heart rate (FHR) monitoring. The characteristics of the FECG, such as heart rate and waveform are convenient in determining the fetal life, fetal development, fetal maturity, and existence of fetal distress or congenital heart disease. This can also be performed by detecting the ECG signal generated by the heart of the fetus, which is complicated. In this paper, we propose a simple methodology to determine the heart rate of the fetus using FECG which is extracted from the mother s abdominal ECG(AECG). After the extraction of FECG, the heart rate is calculated. From this, the condition for hypoxia (reduction in oxygen flow from heart to brain) is examined. The next phase involves the classification of various ECG signals using Back propagation network (BPN). The features used for this classification are heart rate, R-R interval, QRS amplitude and QRS duration of AECG. 2. Abdominal ECG The ECG signal can be obtained by placing the electrodes on the body. The ECG signal recorded in the thorax region consists of heart pulses of the mother. The ECG signal can also be obtained from the abdominal part of the mother, which includes the fetal ECG. This resultant ECG can be termed as abdominal + Corresponding author. Tel.: + 9888392599 E-mail address: hod.ece@rmkec.ac.in 29

ECG (AECG). A sample AECG signal obtained from the database, which is recorded during the sixth week of pregnancy is shown in Fig.2.. 24 22 2 ECG signal (2 bits 72Hz 28 26 24 22 2 98 2 3 4 5 6 t (sec) Fig.2. Real ECG loaded from MIT Database. The processing was performed by MATLAB. The electrodes placed on the mother abdomen are the key to success. Fig.2.2 is showing AECG as the combination of MECG and FECG. This fact can be used to extract the FECG from the obtained AECG. 3. Fetal ECG Fig.2.2 AECG showing both mother and fetal signals Biomedical signal means a collective electrical signal acquired from any organ that represents a physical variable of interest where the signal is considered in general a function of time and is describable in terms of its amplitude, frequency and phase. FECG is a biomedical signal that gives electrical representation of FHR to obtain the vital information about the condition of the fetus during pregnancy from the recordings on the mother's body surface [3]. The FECG is very much related to the adult ECG, containing the same basic waveforms including the P-wave, the QRS complex, and the T-wave. The PQRST wave is composed of three parts; firstly, The P-wave occurs at the beginning of atrial contraction. Secondly, the QRS-complex is associated with the contraction of the ventricles. Due to the magnitude of the R-wave, it is extremely reliable. Finally, the T-wave, which corresponds to the repolarisation phase follows in each heart contraction. 4. FECG Extraction Processing the AECG to detect the MECG and extract FECG for measuring the FHR and MHR is the most crucial part. Many different techniques have been developed for FECG extraction and enhancement from the AECG signal. For FECG extraction, the AECG signal has to be devoid of noise. Hence the preprocessing of the AECG has to be carried out before the FECG extraction. 22

fetal part.9.8.7.6.5.4.3.2..2.4.6.8 2 2.2 2.4 2.6 2.8 3 Fig.4. Fetal part extracted from AECG This pre-processing stage involves removal of DC components, followed by normalization. The normalized signal is filtered to make it smoother. Then the FECG signal can be extracted from the AECG by means of Thresholding. The resultant FECG signal is shown in Fig.4.. 5. FHR Monitoring From the extracted FECG, the peaks are detected for the calculation of heart rate. The heart rate calculation requires the determination of number of pulses in the FECG signal. The pulses are calculated for the duration of 2 seconds. To find it for one minute it has to be multiplied by 5 as given in the following equation. Heart rate = (NO of pulses/2)*5 Fig.5. shows the number of peaks as a function of time. The length of the plot gives the number of pulses, from which the heart rate can be determined[4]. We can conclude the presence of hypoxia in fetus, if this heart rate is found to be greater than 8 beats per minute. From this information, the remedial measures can be taken to avoid fetal abnormalities and death. 3 x 4 number steps equals to peaks 2.5 2.5.5 5 5 2 25 3 35 6. Back Propagation Fig.5..plot showing the peaks The back propagation is a systematic method for training multilayer artificial neural network. The typical back propagation network shown in Fig.6. has an input layer, an output layer and at least one hidden layer. Each layer is fully connected to the succeeding layer. The back-propagation network has been used because it requires a desired output in order to learn. The goal of this type of network is to create a model that correctly maps the input to the output using historical data so that the model can then be used to produce the output when the desired output is unknown[5]. A graphical representation of back-propagation network is shown. With back propagation, the input data is repeatedly presented to the neural network [6]. With each presentation, the output of the neural network is compared to the desired output and an error is computed. This error is then fed back (back propagated) to the neural network and used to adjust the weights such that 22

the error decreases with each iteration and the neural model gets closer and closer to producing the desiredd output. This process is known as training. The network is initialized with the following settings: net.trainparam.show = 2 net.trainparam.epochs = 4 net.trainparam.goal =. In the network, for every 2 iteration, the error is displayed once. The maximum epoch for training is 4 and the goal is to reach error at.. Fig.6..BPN architecture For each training session, the training stops when reaches either maximum epochs or goal error. The features that are given as inputs are QRS amplitude, heart rate, QRS duration and R-R interval. Initially, the weight of input layer, hidden layer and bias values are considered randomly. The weight and bias values are saved for each training session. When the simulations are not satisfactory, the network is trained one more time with the last saved weight and bias values. This improves the network and reduces the number of times of training. After the inputs are applied, the network is trained to produce the desiredd output, from which the signal classification can be done successfully. 7. Results The recorded ECG signals are obtained from MIT database. The signals are recorded during the sixth week of pregnancy. The algorithm has been tested using several AECG signals. One of the tested signals has been shown: 22 AECG 2 8 2 3 4 5 6 FECG - 2 3 4 5 6 peaks of FECG.5 2 3 4 5 6 Fig.7..Results obtained in matlab In this figure, the AECG signal contains the MECG and FECG. Our developed algorithm is able to extract FECG from the AECG completely. We have used the thresholding to extract the FECG from the AECG signal. Afterwards, the R-peak in FECG signals are also detected using the same procedure. From Fig.7. it can be said that the FECG signal is extracted efficiently (%) from AECG signal. From thesee peaks, heart rate is calculated, whichh is useful in determining the stress condition (Hypoxia) of fetus. Various 222

features such as QRS amplitude, heart rate, QRS duration and R-R interval of the recorded signals are applied to the BPN, based on which signals are classified as stressed or unstressed. 8. Conclusion An efficient method of FECG extraction and R-peak detection from AECG signal has been successfully developed. The results obtained from the MATLAB simulation shows that the developed algorithm can separate FECG accurately from AECG and can detect R-peak in FECG for FHR monitoring. The presence of stress is detected from the calculated heart rate. Although the other research methods used by previous researchers accurately extract FECG from AECG, still all of them suffer from familiar limitations and not efficient enough for FHR monitoring. Using the proposed method, FECG extraction and R-peak detection are perfect enough even though, the FECG and MECG are overlapped in the AECG. In addition, the proposed method does not require constructing the full MECG signal template to extract FECG from AECG. This research is a non invasive approach therefore the problem for the invasive approach also had been solved. Also using Back Propagation Network, various signals are analyzed for stress in an easy way. 9. References [] Jaakko Malmivuo, Robert Plonsey, Bioelectromagnetism Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York, 995, pp. 277-289, 32-335. [2] K.G. Rosén, I. Amer-Wahlin, R. Luzietti, and H. Norén, Fetal ECG waveform analysis, Best Practice & Research Clinical Obstetrics and Gynaecology, Vol. 8, No. 3, pp. 485 54, June 24. [3] Fabio La Foresta, Nadia Mammone and Francesco Carlo Morabito, Bioelectric Activity Evaluation of Fetal Heart Muscle by Mother ECG Processing. [4] Ibrahimy, M. I., Ahmed, F., Ali, M. M. A., Zahedi, E.: Real-Time Signal Processing for Fetal Heart Rate Monitoring, IEEE Transactions on Biomedical Engineering, February 23, 5(2): 258 6. [5] M. A. Hasan, M. B. I. Reaz and M. I. Ibrahimy, Fetal Electrocardiogram Extraction and R-Peak Detection for Fetal Heart Rate Monitoring using Artificial Neural Network and Correlation. [6] Hassoun, M. H.: Fundamentals of Artificial Neural networks, MIT press, 995. 223