Percutaneous closure of large VSD using a home-made fenestrated atrial septal occluder in 18-year-old with pulmonary hypertension

Similar documents
Congenital heart disease. By Dr Saima Ali Professor of pediatrics

Jian Fang 1, Shaobo Xie 2, Lunchao Ma 2, Chao Yang 2. Original Article

Follow-up after VSD closure- what to look for?

Pathophysiology: Left To Right Shunts

Percutaneous VSD closure

Pathophysiology: Left To Right Shunts

Perimembranous VSD: When Do We Ask For A Surgical Closure? LI Xin. Department of Cardiothoracic Surgery Queen Mary Hospital Hong Kong

ΔΙΑΧΕΙΡΙΣΗ ΑΣΘΕΝΩΝ ΜΕ ΜΕΣΟΚΟΛΠΙΚΗ ΕΠΙΚΟΙΝΩΝΙΑ ΖΑΧΑΡΑΚΗ ΑΓΓΕΛΙΚΗ ΚΑΡΔΙΟΛΟΓΟΣ ΗΡΑΚΛΕΙΟ - ΚΡΗΤΗ

Adult Echocardiography Examination Content Outline

Predictors of unfavorable outcome after atrial septal defect closure in adults

Closing ASDs with pulmonary hypertension. Shakeel A Qureshi Evelina Children s Hospital London

Hybrid Muscular VSD Closure in Small Weight Children

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

For Personal Use. Copyright HMP 2013

Repair of very severe tricuspid regurgitation following detachment of the tricuspid valve

Glenmark Cardiac Centre Mumbai, India

Atrial Septal Defect Closure. Stephen Brecker Director, Cardiac Catheterisation Labs

Percutaneous atrial septal defect closure with the Occlutech Figulla Flex ASD Occluder.

2) VSD & PDA - Dr. Aso

A pulmonary vascular resistance of 8 Woods units per meter squared defines operablity in congenital heart disease

Transcatheter closure of right coronary artery fistula to the right ventricle

Device closure of congenital ventricular septal defects with Amplatzer devices: first experiences in Turkey

5.8 Congenital Heart Disease

Congenital heart disease: When to act and what to do?

Case submission for CSI Asia-Pacific Case 2

Anatomy & Physiology

Giovanni Di Salvo MD, PhD, FESC Second University of Naples Monaldi Hospital

Perimembranous ventricular septal defects (pmvsds) are

Transcatheter Closure of Secundum Atrial Septal Defect in Patients Over 60 Years Old

Risk Factors and Outcomes of Post-Procedure Heart Blocks After Transcatheter Device Closure of Perimembranous Ventricular Septal Defect

Case Report. Martin L. Bocks, MD and Aimee K. Armstrong, MD

Type Size AP/PS RP/RS Qp/Qs. Ia Resistive <0.3 < Ib Resistive <0.3 < IIa Resistive <0.5 >2

A case report: Percutaneous transcatheter treatment of Lutembacher syndrome

Uptofate Study Summary

Diversion of the inferior vena cava following repair of atrial septal defect causing hypoxemia

Transcatheter Closure of Acute Myocardial Infarction VSD

Ventricular septal defects (VSD) are one of the most

CONGENITAL HEART DEFECTS IN ADULTS

2:1 Block with Wenckebach Mechanism in Children Due to Different Etiologies F Laloğlu 1, N Ceviz 1, H Keskin 2, H Olgun 1 ABSTRACT

Adult Congenital Heart Disease: What All Echocardiographers Should Know Sharon L. Roble, MD, FACC Echo Hawaii 2016

Implantation of Cardioverter Defibrillator After Percutaneous Closure of Atrial Septal Defect

The production of murmurs is due to 3 main factors:

CONGENITAL HEART DISEASE (CHD)

Bogdan A. Popescu. University of Medicine and Pharmacy Bucharest, Romania. EAE Course, Bucharest, April 2010

CARDIAC INTERVENTIONS IN PEDIATRIC CARDIOLOGY: THE FUTURE

Transcatheter closure of the patent ductus arteriosus using the new Amplatzer duct occluder: Initial clinical applications in children

Transcatheter Closure of Atrial Septal Defects in a Center With Limited Resources: Outcomes and Short Term Follow-Up

Candice Silversides, MD Toronto Congenital Cardiac Centre for Adults University of Toronto Toronto, Canada

For Personal Use. Copyright HMP 2013

How to assess an adult with a Ventricular Septal Defect. When it should be closed and how?

Perventricular Closure of Muscular VSD s

(2013 ) ACHD ACHD

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy.

Trans catheter closure of large ductus arteriosus in patients with severe pulmonary hypertension: safety and efficacy of test occlusion

Secundum atrial septal defect (ASD) is a common congenital heart disease and

UNMH Pediatric Cardiology Clinical Privileges. Name: Effective Dates: From To

Case Report Sinus Venosus Atrial Septal Defect as a Cause of Palpitations and Dyspnea in an Adult: A Diagnostic Imaging Challenge

Device Closure of ASD in Children Using the Amplatzer Devices: Indications and catheter preparations, technique, and outcome [15]

A challenging case of successful ASD closure without echocardiographic guidance in an 86-year old with severe kyphoscoliosis and platypnoeaorthodeoxia

2/4/2011. Nathan Kerner, M.D.

2010 년순환기관련학회춘계통합학술대회. Kim, Soo-Jin. Sejong General Hospital, Sejong Cardiovascular center

Objectives. Diastology: What the Radiologist Needs to Know. LV Diastolic Function: Introduction. LV Diastolic Function: Introduction

Transcatheter Closure of Secundum Atrial Septal Defects in the Elderly

Echocardiographic Guidance During Placement of the Buttoned Double-Disk Device for Atrial Septa1 Defect Closure

Intracardiac echocardiography: an ideal guiding tool for device closure of interatrial communications

IMAGES. in PAEDIATRIC CARDIOLOGY

Clinicians and Facilities: RESOURCES WHEN CARING FOR WOMEN WITH ADULT CONGENITAL HEART DISEASE OR OTHER FORMS OF CARDIOVASCULAR DISEASE!!

AMPLATZER Septal Occluder

Outcomes Associated with the Off-label Use of Medical Devices in Congenital Heart Disease at a Single Institute

Clinical material and methods. Fukui Cardiovascular Center, Fukui, Japan

Interventions in Adult Congenital Heart Disease: Role of CV Imaging. Associate Professor. ACHD mortality. Pillutla. Am Heart J 2009;158:874-9

Paediatrics Revision Session Cardiology. Emma Walker 7 th May 2016

Pulmonary Hypertension Associated with Congenital Heart Disease. Amiram Nir Hadassah, Jerusalem

Paediatrica Indonesiana

Echocardiographic assessment in Adult Patients with Congenital Heart Diseases

TGA atrial vs arterial switch what do we need to look for and how to react

Delayed Infective Endocarditis with Mycotic Aneurysm Rupture below the Mechanical Valved Conduit after the Bentall Procedure

Transcatheter closure of atrial septal defects with transthoracic echocardiography

Antithrombotic therapy for patients with congenital heart disease. George Giannakoulas, MD, PhD AHEPA University Hospital Thessaloniki

Original Policy Date

Absent Pulmonary Valve Syndrome

Transcatheter Closure Versus Repeat Surgery for the Treatment of Postoperative Left-to-Right Shunts: A Single Center 15-Year Experience

ECHOCARDIOGRAPHIC APPROACH TO CONGENITAL HEART DISEASE: THE UNOPERATED ADULT

Transcatheter closure of interatrial

Journal of Pediatric Sciences

Percutaneous occluder device closure through femoral vein guidance by transthoracic echocardiography in adult atrial septal defect patients

1. CARDIOLOGY. These listings cannot be correctly interpreted without reference to the Preamble. Anes. $ Level

Case Report Successful Treatment of Double-Orifice Mitral Stenosis with Percutaneous Balloon Mitral Commissurotomy

Patient guide: pfm Nit-Occlud PDA coil occlusion system. Catheter occlusion of. Patent Ductus Arteriosus. with the

Common Codes for ICD-10

Doppler-echocardiographic findings in a patient with persisting right ventricular sinusoids

IMAGES. in PAEDIATRIC CARDIOLOGY. Abstract

Anomalous muscle bundle of the right ventricle

Rotation: Echocardiography: Transthoracic Echocardiography (TTE)

Percutaneous VSD closure: Problems in the mid- and long-term

Ischemic Ventricular Septal Rupture

Stepwise Approach Using Combined Management in Patients with Congenital Heart Disease and Borderline Pulmonary Vascular Disease

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Chapter 24: Diagnostic workup and evaluation: eligibility, risk assessment, FDA guidelines Ashwin Nathan, MD, Saif Anwaruddin, MD, FACC Penn Medicine

Transcription:

Kamali et al. BMC Cardiovascular Disorders 2014, 14:74 CASE REPORT Percutaneous closure of large VSD using a home-made fenestrated atrial septal occluder in 18-year-old with pulmonary hypertension Hacer Kamali 1, Turkay Saritas 1,3*, Abdullah Erdem 1, Celal Akdeniz 2 and Volkan Tuzcu 2 Open Access Abstract Background: Hemodynamically significant muscular ventricular septal defects in children after the infantile period are a rare occurrence and ideal for transcatheter closure. In cases of severe concomitant pulmonary hypertension, it may be necessary to fenestrate the device. In this report, we present an 18-year old patient with a large midtrabecular ventricular septal defect and severe pulmonary hypertension that underwent percutaneous closure of the defect with a home-made fenestrated atrial septal occluder. Case presentation: An 18-year-old female patient referred to us with complaints of dyspnea (NYHA score of 2 3). Physical examination revealed an apical rumble and a harsh second heart sound. Echocardiographic examination revealed a large mid-trabecular ventricular septal defect with bidirectional shunt and the widest diameter measuring 22 mm on 2D echocardiography. Left and right heart cavities were enlarged. Before and after the vasoreactivity test performed during cardiac catheterization, average aortic pressure was 65 86 mmhg, average pulmonary artery pressure: 58 73 mmhg, Qp/Qs: 1.6 3.2, PVR: 4.6 4.3 Wood/U/m 2 and PVR/SVR: 0.5 0.2. On left-ventricular angiocardiogram, the largest end-diastolic defect diameter was 21 mm. The closure procedure was performed with transthoracic echocardiographic guidance, using a 24 mm Cera septal occluder and a 14 F sheath dilator to make a 4.5-5 mm opening. Measured immediately after the procedure and during cardiac catheterization one month later, average aortic pressure was 75 75 mmhg, average pulmonary artery pressure: 66 30 mmhg, Qp/Qs 1.5 1.4, PVR: 4.4 2.9 Wood/U/m 2 and PVR/SVR: 0.4 0.2. Transthoracic echocardiographic examination performed 24 hours after the procedure showed a max 35 40 mmhg gradient between the left and right ventricles through the fenestration. After the procedure, we observed sporadic early ventricular systoles and a nodal rhythm disorder that started after approximately 12 hours and spontaneously reverted to normal 9 days later. Conclusion: In patients with large ventricular septal defects, large atrial septal occluders may be used. In cases with risk of pulmonary vascular disease, a safer option would be to close the defect using a manually fenestrated device. Keywords: Transcatheter closure, Home-made fenestration, Muscular ventricular septal defect Background Hemodynamically significant muscular ventricular septal defects (VSD) in children after the infantile period are a rare occurrence and ideal for transcatheter closure [1]. Depending on the type, size, location and number of defects, it may be necessary to use an off-label device or multiple * Correspondence: turkaysaritas@yahoo.com 1 Department of Pediatric Cardiology, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey 3 Goztepe Mh. Dr. Rifat Pasa Sk. No: 21/33, 34730, Goztepe, Kadikoy, Istanbul, Turkey Full list of author information is available at the end of the article devices [2-4]. Additionally, in cases of severe concomitant pulmonary hypertension (PHT), it may be necessary to fenestrate the device [5]. In this report, we present an 18-year old patient with a large mid-trabecular VSD and severe PHT that underwent percutaneous closure of the defect with a home-made fenestrated atrial septal occluder (ASO). Case presentation An 18-year-old female patient referred to us with complaints of dyspnea (NYHA score of 2 3). An apical rumble and a harsh second heart sound were heard in physical examination. Echocardiographic examination revealed a 2014 Kamali et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kamali et al. BMC Cardiovascular Disorders 2014, 14:74 Page 2 of 5 Figure 1 Diameters of VSD on transthoracic echocardiogram. large mid-trabecular VSD with bidirectional shunt and the widest diameter measuring 22 mm on 2D echocardiography (ECHO) (Figure 1; Additional file 1). The defect was located 9 mm proximal to the moderator band. Left and right heart cavities were enlarged; left ventricle, left atrium and right ventricle end-diastolic diameters were respectively 68 mm (Z score: +8.23), 44 mm (Z score: +6.22) and 41 mm (Z score: +10.3). Pulmonary artery diastolic pressure, which we were able to measure due to pulmonary insufficiency, was 58 mmhg. Before and after the vasoreactivity test with inhaled iloprost performed during cardiac catheterization, average aortic pressure was 65 86 mmhg, average pulmonary artery pressure: 58 73 mmhg, Qp/Qs: 1.6 3.2, PVR: 4.6 4.3 Wood/U/m 2 and PVR/SVR: 0.5 0.2 (Table 1). On left-ventricular angiocardiogram, the largest enddiastolic defect diameter was 21 mm. The closure procedure was performed with transthoracic echocardiographic guidance, using a 24 mm Cera septal occluder (CSO, Lifetech Scientific Co., ltd, Shenzhen, China) and a 14 F sheath dilator to make a 4.5-5 mm opening (Figures 2 and 3). Measured immediately after the procedure and during cardiac catheterization one month later, average aortic pressure was 75 75 mmhg, average pulmonary artery pressure: 66 30 mmhg, Qp/Qs 1.5 1.4, PVR: 4.4 2.9 Wood/U/m 2 and PVR/SVR: 0.4 0.2 (Table 1). Transthoracic echocardiographic examination performed 24 hours after the procedure showed a max 35 40 mmhg gradient between the left and right ventricles through the fenestration. At the follow-up examination one month later, the gradient level was the same and there was a 50 drop in pulmonary artery diastolic pressure compared to the preprocedure value. The patient had a normal sinus rhythm prior to the procedure. After the procedure, we observed sporadic early ventricular systoles and a nodal rhythm disorder that started after approximately 12 hours and spontaneously reverted to normal 9 days later. The patient was put on dexamethasone for the nodal rhythm. Propranolol was started after Holter ECG showed intermittent non-sustained ventricular tachycardia (VT) attacks. When the initially intermittent nodal rhythm became permanent, the patient was switched to sotalol. The last ECG and Holter ECG showed a normal sinus rhythm with sporadic early ventricular systoles and no VT attacks (Figures 4 and 5). Holter ECG performed 1 month later showed no early ventricular systoles. The patient was closely monitored for hemolysis due to the fenestration of the device, but none was observed. The patient s dyspnea (NYHA score 2 3 upon admission) started to recede on the 4-5 th day after the procedure and was graded as 1 2 in the follow-up examination 1monthlater. Discussion Transcatheter closure of congenital and acquired VSDs is a procedure that has gained widespread use in the recent Table 1 Hemodynamic parameters during the vasoreactivity test, immediately after the procedure and one month later Before vasoreactivity test After vasoreactivity test Immediately after closure One month later Mean systemic pressure (mmhg) 65 86 75 75 Mean PA pressure (mmhg) 58 73 66 30 Qp/Qs 1.6 3.2 1.5 1.4 PVR (WU/m 2 ) 4.6 4.3 4.4 2.9 PVR/SVR 0.5 0.2 0.4 0.2 PA: Pulmonary artery; Qp/Qs: Pulmonary to systemic flow ratio; PVR: Pulmonary vascular resistance; WU: Wood Unit; PVR/SVR: Pulmonary vascular resistance to systemic vascular resistance ratio.

Kamali et al. BMC Cardiovascular Disorders 2014, 14:74 Page 3 of 5 Figure 2 Fenestration procedure and the fenestrated ASD device. years. Initially, VSD closure was performed using devices designed for atrial septal defects (ASD), but eventually special devices intended for closure of muscular and perimembranous defects were developed [6,7]. Although there has been remarkable progress in production of specifically designed occlusion devices, demand for off-label or custommade devices suitable for various types of defects remains high [2,3,8]. Transcatheter closure of postinfarction, traumatic or residual postoperative VSDs is mainly performed using ASOs [3,9]. As ECHO and angiocardiographic measurements showed a large defect size in our patient, we elected to use a 24 mm ASO, a device 2 3 mm larger than the defect. The defect could have been closed using a 24 mm muscular VSD occluder or a post-myocardial infarction muscular VSD occluder as well; however, we preferred the ASO as it would allow for more convenient manual fenestration. Long-term pulmonary hypertension may lead to a fixed increase in pulmonary vascular resistance. In some patients that have undergone VSD closure, pulmonary hypertension may persist or regress very slowly, in which case there may Figure 3 2D imaging of device after the procedure. be hypertensive crisis-like exacerbations requiring long-term ventilation and specific treatment. In VSD cases with high pulmonary resistance, post-operative pulmonary hypertensive crises as well as acute congestive heart failure and respiratory failure may prove fatal. For these reasons, surgeons nowadays are instructed to leave an opening in the VSD patch or to use a flap patch that allows for left-to-right shunt [10]. For the same reasons, fenestration is now performed on transcatheter occluder devices. Home-made fenestrated devices have been safely used in cases of ASD with severe PHT under the assumption that fenestrated occluders reduce left-to-right shunt and in the long run, lower pulmonary arterial pressure [5]. Bruch et al. reported using a homemade fenestrated ASO that allowed for a minor to moderate bidirectional shunt in elderly patients with PHT and/or right heart failure. While the authors did not see any deterioration of right or left heart failure in their patient group, they observed an impressive symptomatic benefit [11]. As our patient was an 18-year-old with a large VSD and severe PHT, we performed a vasoreactivity test in order to assess whether the defect could be closed. The patient s left heart cavities were found to be enlarged, the pulmonary artery flow velocity was high and the response to the vasoreactivity test was positive, so the patient was deemed a suitable candidate for transcatheter closure. However, as the patient was a young adult with bidirectional shunt and an enlarged right ventricle and pulmonary artery, we debated whether or not to fenestrate the device. A review of literature did not reveal any cases with manually fenestrated devices used for closure of VSDs in patients with severe PHT. However, based on the Bruch study mentioned above and others that used fenestrated ASOs, we assumed that such a device in our case would allow for bidirectional shunt and could possibly reduce PHT in the long run. While no satisfactory reduction in pulmonary artery pressure was seen immediately after the procedure, transthoracic ECHO performed 24 hours later showed leftto-right gradient of 35 40 mmhg through the fenestration.

Kamali et al. BMC Cardiovascular Disorders 2014, 14:74 Page 4 of 5 Figure 4 Nodal rhythm (top strip) on ECG and non-sustained VT attack (bottom strip) on 24-hour Holter ECG. Figure 5 Patient ECG on day 9.

Kamali et al. BMC Cardiovascular Disorders 2014, 14:74 Page 5 of 5 In the follow-up examination 1 month later, the gradient value was the same, average aortic pressure was 75 mmhg, average pulmonary artery pressure was 30 mmhg and PVR/SVR was 0.2. Both minor and major complications such as hemolysis, cardiac perforation, device malposition, thromboembolism, temporary or permanent rhythm disorders, endocarditis and death may occur during, immediately after or in the follow-up of transcatheter defect closure [4,12]. In our case, a nodal rhythm started 12 hours after the procedure and spontaneously reverted to normal 9 days later. Temporary junctional rhythms following closure of muscular VSDs have also been reported in the literature [12,13]. Heart block occurring after placement of an oversized device can be attributed to the expansion of the device against the conducting tissue. Even if the device is not oversized, it may cause an inflammatory reaction or formation of scarring in the conduction tissue, in which case steroid therapy may be useful [14]. The nodal rhythm in our patient can be attributed to the fact that an ASO has a larger left disc and a narrower gap between the discs than a VSD device, which may have put pressure on the conduction system or the neighboring tissues. Conclusion In patients with large VSDs, large ASDs may be used as well as large muscular VSD occluders or post-myocardial infarction muscular VSD occluders. In cases with risk of pulmonary vascular disease, a safer option would be to close the defect using a manually fenestrated device. Consent Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal. Additional file Additional file 1: 2D and color flow echocardiographic imaging of VSD. Abbreviations VSD: Ventricular septal defects; PHT: Pulmonary hypertension; ASO: Atrial septal occluder; ECHO: Echocardiography; VT: Ventricular tachycardia; ASD: Atrial septal defects. Acknowledgements We thank Layla Rahimov who provided medical writing of this report in English. Author details 1 Department of Pediatric Cardiology, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey. 2 Department of Pediatric and Genetic Arrhythmia, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey. 3 Goztepe Mh. Dr. Rifat Pasa Sk. No: 21/33, 34730, Goztepe, Kadikoy, Istanbul, Turkey. Received: 23 March 2014 Accepted: 30 May 2014 Published: 9 June 2014 References 1. Arora R, Trehan V, Thakur AK, Mehta V, Sengupta PP, Nigam M: Transcatheter closure of congenital muscular ventricular septal defect. J Interv Cardiol 2004, 17:109 115. 2. Baspinar O, Irdem A, Kilinc M: Off-label use of Amplatzer devices in congenital heart disorders during childhood. Acta Cardiol 2013, 68:31 35. 3. Marinakis A, Vydt T, Dens J, Gewillig M, Van Deyk K, Budts W: Percutaneous transcatheter ventricular septal defect closure in adults with Amplatzer septal occluders. Acta Cardiol 2007, 62:391 395. 4. Holzer R, Balzer D, Cao QL, Lock K, Hijazi ZM: Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a U.S. registry. J Am Coll Cardiol 2004, 43:1257 1263. 5. Dell avvocata F, Rigatelli G, Cardaioli P, Giordan M: Home-made fenestrated amplatzer occluder for atrial septal defect and pulmonary arterial hypertension. J Geriatr Cardiol 2011, 8:127 129. 6. Michel-Behnke I, Le TP, Waldecker B, Akintuerk H, Valeske K, Schranz D: Percutaneous closure of congenital and acquired ventricular septal defects considerations on selection of the occlusion device. J Interv Cardiol 2005, 18:89 99. 7. Fu YC: Transcatheter device closure of muscular ventricular septal defect. Pediatr Neonatol 2011, 52:3 4. 8. Rohit MK, Gupta A: Transcatheter closure of large patent ductus arteriosus using custom made devices. Catheter Cardiovasc Interv 2014, 00:00 00. 9. Suh WM, Kern MJ: Transcatheter closure of a traumatic VSD in an adult requiring an ASD occluder device. Catheter Cardiovasc Interv 2009, 74:1120 1125. 10. Rao PS, Raju V, Narayana M: Flap valved closure of ventricular septal defects with increased pulmonary vascular resistance. Interact Cardiovasc Thorac Surg 2010, 11:577 580. 11. Bruch L, Winkelmann A, Sonntag S, Scherf F, Rux S, Grad MO, Kleber FX: Fenestrated occluders for treatment of ASD in elderly patients with pulmonary hypertension and/or right heart failure. J Interv Cardiol 2008, 21:44 49. 12. Chessa M, Carminati M, Cao QL, Butera G, Giusti S, Bini RM, Hijazi ZM: Transcatheter closure of congenital and acquired muscular ventricular septal defects using the Amplatzer device. J Invasive Cardiol 2002, 14:322 327. 13. Hijazi ZM, Hakim F, Al-Fadley F, Abdelhamid J, Cao QL: Transcatheter closure of single muscular ventricular septal defects using the amplatzer muscular VSD occluder: initial results and technical considerations. Catheter Cardiovasc Interv 2000, 49:167 172. 14. Butera G, Chessa M, Carminati M: Percutaneous closure of ventricular septal defects. Cardiol Young 2007, 17:243 253. doi:10.1186/1471-2261-14-74 Cite this article as: Kamali et al.: Percutaneous closure of large VSD using a home-made fenestrated atrial septal occluder in 18-year-old with pulmonary hypertension. BMC Cardiovascular Disorders 2014 14:74. Competing interests The authors declare that they have no financial and/or non-financial competing interests. Authors contributions AE and TS performed the transcatheter intervention. HK gathered patient data. CA and VT treated the patient s arrhythmia, and contributed to the conception of the report. TS wrote the report. AE checked the report in terms of English grammar. All authors gave their final acceptance to the submission of this report. All authors read and approved the final manuscript.