Epidemiology of Aneurysmal Subarachnoid Hemorrhage in Australia and New Zealand

Similar documents
Triggers of Subarachnoid Hemorrhage

Trigger factors for rupture of intracranial aneurysms in relation to patient and aneurysm characteristics

Cigarette smoking is the most important preventable cause

Mortality from cerebrovascular disease in

Risk Factors for Aneurysmal Subarachnoid Hemorrhage in a Prospective Population Study The HUNT Study in Norway

First-Year Results of a Community-Based Study of Stroke Incidence in Umbria, Italy

Epidemiology And Treatment Of Cerebral Aneurysms At An Australian Tertiary Level Hospital

Rehospitalization for Stroke among Elderly TIA Patients

Supplementary Online Content

A Population Study of Stroke in West Ukraine. Incidence, Stroke Services, and 30-Day Case Fatality

Stroke incidence and case-fatality among Indigenous and non-indigenous populations in the Northern Territory of Australia,

Referral bias in aneurysmal subarachnoid hemorrhage

Chapter 4: High Blood Pressure

Treatment of Acute Hydrocephalus After Subarachnoid Hemorrhage With Serial Lumbar Puncture

Passive smoking as well as active smoking increases the risk of acute stroke

Studies of the epidemiology of subarachnoid hemorrhage

Risk Factors for Ischemic Stroke: Electrocardiographic Findings

Guideline scope Subarachnoid haemorrhage caused by a ruptured aneurysm: diagnosis and management

Nontraumatic subarachnoid hemorrhage

<INSERT COUNTRY/SITE NAME> All Stroke Events

Supplementary Online Content

Prognostic studies in stroke medicine focus on the risks of

Aneurysmal subarachnoid hemorrhage (SAH) used to be

The Impact of Smoking on Acute Ischemic Stroke

The Risks of Hip Fracture in Older People from Private Homes and Institutions

I have no conflicts of interest

Clinical Features and Subtypes of Ischemic Stroke Associated with Peripheral Arterial Disease

Subarachnoid Haemorrhage and Sports

DISCLOSURE STATEMENT

Suicide Facts. Deaths and intentional self-harm hospitalisations

Papers. Abstract. Methods. Introduction

Primary Stroke Center Quality & Performance Measures

Stroke 101. Maine Cardiovascular Health Summit. Eileen Hawkins, RN, MSN, CNRN Pen Bay Stroke Program Coordinator November 7, 2013

Tennessee Department of Health in collaboration with Tennessee State University and University of Tennessee Health Science Center

A trial fibrillation (AF) is a common arrhythmia that is

Clinical Decision Rules to Rule Out Subarachnoid Hemorrhage for Acute Headache FREE

Natural History of Stroke in Rochester, Minnesota, 1955 Through 1969: An Extension of a Previous Study, 1945 Through 1954

The stroke mortality rate in Finland has declined steadily

Stroke patients constitute an increasing challenge

Lothian Audit of the Treatment of Cerebral Haemorrhage (LATCH)

WHITE PAPER: A GUIDE TO UNDERSTANDING SUBARACHNOID HEMORRHAGE

JUSTUS WARREN TASK FORCE MEETING DECEMBER 05, 2012

Canadian Best Practice Recommendations for Stroke Care. (Updated 2008) Section # 3 Section # 3 Hyperacute Stroke Management

2. Morbidity. Incidence

It has been speculated that the true natural course of

Blood pressure and total cholesterol level are critical risks especially for hemorrhagic stroke in Akita, Japan.

who quit cigarette smoking

Supplementary appendix

Adelaide Stroke Incidence Study Declining Stroke Rates but Many Preventable Cardioembolic Strokes

Original Contributions. Prospective Comparison of a Cohort With Asymptomatic Carotid Bruit and a Population-Based Cohort Without Carotid Bruit

SHORT COMMUNICATION. G. Joshy & P. Dunn & M. Fisher & R. Lawrenson

Prevalence of cerebrovascular accidents (CVA) in obese hypertensives among inpatients of Govt.General Hospital, Guntur

The New England Journal of Medicine A POPULATION-BASED STUDY OF SEIZURES AFTER TRAUMATIC BRAIN INJURIES

Modelling Reduction of Coronary Heart Disease Risk among people with Diabetes

Recombinant Factor VIIa for Intracerebral Hemorrhage

Supplement Table 1. Definitions for Causes of Death

Population-based stroke registries are the most important

Fatal primary malignancy of brain. Glioblasatoma, histologically

REPORT FROM THE CANADIAN CHRONIC DISEASE SURVEILLANCE SYSTEM:

Outcomes of patients with transient ischaemic attack after hospital admission or discharge from the emergency department

Method Hannah Shotton

ETHNIC AND CLINICAL FEATURES OF FEMALE STROKE PATIEN ADMITTED TO THE PENANG GENERAL HOSPITAL DURING A ONE YEAR PERIOD

Cancer survival and prevalence in Tasmania

The incidence of aneurysmal subarachnoid hemorrhage

GSK Medicine: Study Number: Title: Rationale: Study Period: Objectives: Indication: Study Investigators/Centers: Data Source:

The Importance of Cerebral Aneurysms in Childhood Hemorrhagic Stroke A Population-Based Study

Chapter 6: Combined Cardiovascular Risk Factors

Survivors of acute stroke are at a considerable risk of

Long-Term Excess Mortality After Aneurysmal Subarachnoid Hemorrhage Patients With Multiple Aneurysms at Risk

Summary of some of the landmark articles:

List of Exhibits Adult Stroke

A recent longitudinal study indicates that the incidence of new-onset epilepsy has remained

Thunderclap. Making Evidence Matter

TARGETS To reduce the age-standardised mortality rate from cervical cancer in all New Zealand women to 3.5 per or less by the year 2005.

A common clinical dilemma. Ischaemic stroke or TIA with atrial fibrillation MRI scan with blood-sensitive imaging shows cerebral microbleeds

Coronary event and case fatality rates in an English population: results of the Oxford myocardial infarction incidence study

Impact of Completeness of Ascertainment of Minor Stroke on Stroke Incidence Implications for Ideal Study Methods

Use of CT in minor traumatic brain injury. Lisa Ayoub-Rodriguez, MD Bert Johansson, MD Michael Lee, MD

INTRACEREBRAL HEMORRHAGE FOLLOWING ENUCLEATION: A RESULT OF SURGERY OR ANESTHESIA?

JAMA, January 11, 2012 Vol 307, No. 2

Cerebrovascular Disorders. Blood, Brain, and Energy. Blood Supply to the Brain 2/14/11

Practicing Traditional Chinese medicine in New Zealand: The views and experiences of Auckland-based TCM practitioners

Data Brief: Cardiovascular Diseases among American Indians and Alaska Natives in Washington State

Cancer in Australia: Actual incidence data from 1991 to 2009 and mortality data from 1991 to 2010 with projections to 2012

Changes in Number of Cigarettes Smoked per Day: Cross-Sectional and Birth Cohort Analyses Using NHIS

Stroke is a major noncommunicable disease of increasing

Stroke incidence and case fatality in Shiga, Japan

C aring for patients with interstitial lung disease is an

Strokes in young adults are relatively uncommon;

NIH Public Access Author Manuscript J Am Coll Radiol. Author manuscript; available in PMC 2013 June 24.

INTRACEREBRAL HAEMORRHAGE:

Time-Dependent Test Characteristics of Head Computed Tomography in Patients Suspected of Nontraumatic Subarachnoid Hemorrhage

STUDY OF C-REACTIVE PROTEIN IN ACUTE ISCHEMIC STROKE Medhini V. J 1, Hally Karibasappa 2

National Cervical Screening Programme. Annual Report 2014

Acute ischemic stroke is a major cause of morbidity

Supratentorial cerebral arteriovenous malformations : a clinical analysis

Baldness and Coronary Heart Disease Rates in Men from the Framingham Study

Transcription:

Epidemiology of Aneurysmal Subarachnoid Hemorrhage in Australia and New Zealand Incidence and Case Fatality From the Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS) The ACROSS Group Background and Purpose More data on the epidemiology of subarachnoid hemorrhage (SAH) are required to increase our understanding of etiology and prevention. This study sought to determine the incidence and case fatality of SAH from 4 prospective, population-based registers in Australia and New Zealand. Methods We identified all cases of aneurysmal SAH from November 1995 to June 1998 in Adelaide, Hobart, Perth (Australia), and Auckland (New Zealand), a total population of approximately 2.8 million, using standard diagnostic criteria and uniform community-wide surveillance and data extraction procedures. Results A total of 436 cases of SAH were registered, including 432 first-ever events and 4 recurrent events. The mean age of cases was 57 years (range, 16 to 94 years), and 62% were female. From the 400 first-ever events registered over whole years, the crude annual incidence for the total population was 8.1 per 100 000 (95% CI, 7.4, 9.0), with rates higher for females (9.7; 95% CI, 8.6, 11.0) than for males (6.5; 95% CI, 5.5, 7.6). Age-specific rates showed a continuous upward trend with age, although the shape and strength of this association differed between the sexes. Standardized annual incidence of SAH varied across centers, being highest in Auckland largely because of the high rate in Maori and Pacific people. The 28-day case fatality rate for the total population was 39% (95% CI, 34%, 44%), with little variation in ratios across centers. Conclusions There is variation in the incidence of SAH in Australia and New Zealand, but the rates are consistently higher for females. A monotonic increase in incidence with age suggests that exposures with cumulative effects and long induction times may be less relevant in the etiology of SAH. (Stroke. 2000;31:1843-1850.) Key Words: Australia epidemiology incidence prognosis subarachnoid hemorrhage Subarachnoid hemorrhage (SAH), due to rupture of intracerebral aneurysms, accounts for approximately 4% of all strokes, but its impact is relatively greater because it tends to affect younger adults in good health, often with devastating consequences. 1,2 Despite improvements in surgery and medical care for the condition, case fatality and morbidity remain high, 2 4 with a significant proportion of deaths occurring before any specific treatment can be contemplated. Although there has been a decline in mortality rates from SAH since the 1970s, 5,6 it is uncertain how much of this reflects declines in incidence and case fatality during this period. 1,6 A better understanding of the incidence of and important causal risk factors for SAH could lead to improvements in prevention and treatment of the condition. Many epidemiological studies of SAH have used hospital-based surveillance or prospective case ascertainment in tertiary referral centers. 7,8 These studies, however, are confounded by referral bias, in particular the exclusion of patients who die early or who are unsuitable for surgical intervention. A population-based registry can overcome this deficiency provided that a comprehensive surveillance system is used to ensure complete ascertainment of cases in a defined population. 9 Although a number of welldesigned population-based studies of SAH have been undertaken, the small numbers of patients registered have prevented firm conclusions regarding age- and sex-specific rates and secular trends in incidence. 9 Moreover, they do not provide reliable evidence about important causal factors other than a strong association with cigarette smoking. 10 The Australasian Cooperative Research on Subarachnoid Hemorrhage Study (ACROSS) was initiated as a large prospective, multicenter, population-based, case- control study in Australia and New Zealand to determine incidence, risk factors, and prognosis of SAH; factors of importance in triggering the event; and management and long-term outcome of SAH. We present here the incidence and early case fatality for SAH. Received March 6, 2000; final revision received May 3, 2000; accepted May 3, 2000. A list of all ACROSS participants is given in the Appendix. Correspondence to Craig S. Anderson, PhD, Clinical Trials Research Unit, University of Auckland, Private Bag 92019, Auckland, New Zealand. E-mail c.anderson@ctru.auckland.ac.nz 2000 American Heart Association, Inc. Stroke is available at http://www.strokeaha.org 1843

1844 Stroke August 2000 TABLE 1. Notification and Assessment Times and Sources of Information on SAH Events Adelaide (n 158) Hobart (n 35) Perth (n 151) Auckland (n 92) All (n 436) Response times, median (IQR), d Onset to event notification 2 (1 9) 7 (2 24) 7 (7 541) 1 (1 4) 2 (1 25) 0.0001 Onset to patient assessment 3 (1 11) 10 (3 26) 5 (1 15) 5 (2 9) 4 (1 14) 0.0001 First source of notification Hospital admissions records 12 (7.6) 8 (22.9) 53 (35.1) 4 (4.3) 77 (17.7) 0.0001 Ward referrals 14 (8.9) 21 (60.0) 25 (16.6) 61 (66.3) 121 (27.8) Radiology lists 49 (31.0) 0 (0.0) 0 (0.0) 7 (7.6) 56 (12.8) Hospital discharge records 9 (5.7) 5 (14.3) 37 (24.5) 3 (3.3) 54 (12.4) Death certificates 10 (6.3) 0 (0.0) 26 (17.2) 5 (5.4) 41 (9.4) Coroner s records 2 (1.3) 0 (0.0) 2 (1.3) 1 (1.1) 5 (1.1) Other 62 (39.2) 1 (2.9) 8 (5.3) 11 (12.0) 82 (18.8) Sources of information* Patient 53 (33.5) 11 (31.4) 42 (27.8) 24 (26.1) 130 (29.8) 0.57 Relative 103 (65.2) 7 (20.0) 56 (37.1) 18 (19.6) 184 (42.2) 0.0001 Medical records 147 (93.0) 33 (94.3) 132 (87.4) 79 (85.9) 391 (89.7) 0.17 Necropsy 2 (1.3) 0 (0.0) 1 (0.7) 12 (13.0) 15 (3.4) 0.0001 Values are number (%) unless otherwise stated. IQR indicates interquartile range. *Categories are not mutually exclusive. P Subjects and Methods Study Population ACROSS used population-based registers in 4 major centers of Australia and New Zealand: Adelaide (South Australia), Hobart (Tasmania), Perth (Western Australia), and Auckland (New Zealand). These cities are ideally suited for epidemiological studies of SAH because the populations are well defined and have similar healthcare systems, which include regional neurosurgical services for SAH located at tertiary care public teaching hospitals. In addition, Perth and Auckland have well-established systems for assessing trends in the incidence of stroke. 11,12 Population figures for those residents aged 15 years and older are available from a 1996 census for each city. With the exception of Hobart, the cities are of comparable size: Adelaide (inner metropolitan region, 870 965), Hobart (153 397), Perth (1 021 770), and Auckland (823 890), for a total study population of approximately 2.8 million. The surveillance time periods varied across the centers but included whole years: November 1, 1995, to March 31, 1998, for Adelaide (29 months); December 1, 1996, to January 31, 1998, for Hobart (26 months); December 1, 1996, to February 28, 1998, for Perth (27 months); and June 23, 1997, to June 22, 1998, for Auckland (12 months). Case Ascertainment Experienced trained nurses scrutinized daily the medical records of all persons with any of specific clinical diagnoses stroke, intracerebral hemorrhage, SAH, and headache who presented to the accident and emergency departments or were admitted to any of the acute public teaching hospitals in each of the study centers. In addition, these nurses made twice weekly visits of neurosurgical or medical wards in the hospitals, checked hospital discharge records, both public and private, and reviewed all death certificates and coroners reports for a diagnosis of SAH as either the underlying or a contributing cause of death. Final checks for completeness of ascertainment were made by reviewing computerized hospital separation data for hospitals within and surrounding the study areas with the use of the International Classification of Diseases, Ninth Revision code 430 for SAH as either a primary or secondary diagnosis and by searching official mortality statistics with key words for SAH. Definitions SAH was defined, according to standard criteria, 13 as an abrupt onset of severe headache and/or loss of consciousness, with or without focal neurological signs, with CT, necropsy, or lumbar puncture evidence of focal or generalized blood in the subarachnoid space. We excluded patients in whom the hemorrhage was found definitely to originate from sources other than an intracranial aneurysm, including primary intracerebral hemorrhage, arteriovenous malformations, trauma, infections, bleeding diathesis, and neoplasms. Those patients in whom an aneurysm could not be identified by cerebral angiography, necropsy, or the presence of a localized collection of blood in a fissure on CT were included but analyzed separately. Attention was given to diagnosing cases with a perimesencephalic pattern of hemorrhage on CT and normal 4-vessel angiography. 14 Patients with CT alone and no specific pattern of hemorrhage were classified as uncertain aneurysmal SAH, while those with acute severe headache followed by death within hours were classified as probable SAH. Each event during the study period was further classified as being the patient s first-ever or a recurrent SAH. For patients with multiple events, the index event was defined as that event which occurred nearest to the time when the patient was first registered. A case managed in hospital was one in which admission involving an overnight stay occurred within 28 days of the onset of the event. Twenty-eight-day case fatality was defined as the proportion of all events resulting in death within 28 days of onset. Efforts were made to maintain uniform diagnostic standards, and study nurses discussed difficult cases with the study neurologist in each of the centers. Data Collection As soon as possible after notification, the study nurses undertook face-to-face interviews with patients or, when the patient was deceased or disabled, the partner or next of kin. A structured questionnaire was used to obtain information regarding demographics, clinical features, investigations and management, medical and family history, health behavior, health status, and risk factors. General practitioners and hospital medical records were reviewed to obtain more information about each event and about previous illnesses. To ensure standard procedures, all study nurses attended an initial start-up meeting and had their first 10 interviews checked by tape recorder. Information about the study was provided at regular

Anderson et al Incidence of Subarachnoid Hemorrhage 1845 TABLE 2. Patient Characteristics, Investigation, Management and 28-Day Case Fatality of Cases of SAH Adelaide (n 158) Hobart (n 35) meetings with collaborating hospital staff by the study team. The protocol for ACROSS was approved by all relevant institutional ethics committees in each of the study centers, as outlined in the Appendix. Consent from next of kin was obtained for patients who were severely ill, unconscious, or deceased. Statistical Analyses Crude incidence, together with 95% CI, was calculated for each age, sex, and city category by the exact approach 15 and with 1996 census population data for Australia and New Zealand. In view of seasonal variability in the incidence of SAH, 9,16 rates were derived only for whole years of surveillance (1996 and 1997 for Adelaide, Hobart, and Perth; mid-1997 to mid-1998 for Auckland). Given the high incidence of SAH among Maori and Pacific people in Auckland, 17 the rates were recalculated separately for these groups, with appropriate adjustment of the population denominator. Standardized rates were derived by the direct method and 10-year age groupings ( 15 years) of Segi s world 18 and estimated Australasian populations as the external reference. Rates are presented as 10-year age- and sex-specific rates per 100 000 person-years. The effects of age and sex on incidence were estimated with a Poisson regression model. Data were analyzed for heterogeneity across centers by 1-way ANOVA for continuous variables that were approximately normally distributed and the Kruskal-Wallis test for continuous variables with evidence of nonnormal distribution. Categorical variables were compared with the 2 test. All calculations were performed with the use of SAS 19 and SPSS for Windows software. 20 Results Overall, 1609 possible cases of SAH were registered over the full 29-month study period. After review of clinical data and Perth (n 151) Auckland (n 92) All (n 436) Age, mean SD, y 57 17 51 20 59 16 54 16 57 17 0.01 Female 90 (57.0) 25 (71.4) 102 (67.5) 53 (57.6) 270 (61.9) 0.13 Ethnicity Caucasian 151 (95.6) 33 (94.3) 144 (95.4) 64 (69.6) 392 (89.9) 0.0001 Maori/Pacific... (0.0)... (0.0)... (0.0) 25 (27.2) 25 (5.7) Chinese/Asian 3 (1.9) 1 (2.9) 5 (3.3) 1 (1.1) 10 (2.3) Indian 2 (1.3)... (0.0) 2 (1.3) 2 (2.2) 6 (1.4) Other 2 (1.3) 1 (2.9)... (0.0)... (0.0) 3 (0.7) Managed in hospital 145 (91.8) 35 (100) 139 (92.1) 81 (88.0) 400 (91.7) 0.19 Diagnostic investigations* CT 145 (91.8) 35 (100) 135 (89.4) 79 (85.9) 394 (90.4) 0.10 Angiography 99 (62.7) 25 (71.4) 98 (64.9) 64 (69.6) 286 (65.6) 0.62 Lumbar puncture 19 (12.0) 5 (14.3) 14 (9.3) 16 (17.4) 54 (12.4) 0.32 Necropsy 14 (8.9) 1 (2.9) 14 (9.3) 13 (14.1) 42 (9.6) 0.09 Diagnosis of cerebral aneurysm Confirmed 110 (69.6) 32 (91.4) 109 (72.2) 79 (85.9) 330 (75.7) 0.02 Unconfirmed 35 (22.2) 2 (5.7) 34 (22.5) 10 (10.9) 81 (18.6) Uncertain 13 (8.2) 1 (2.9) 8 (5.3) 3 (3.3) 25 (5.7) 28-day case fatality 70 (44.3) 9 (25.7) 59 (39.1) 32 (34.8) 170 (39.0) 0.30 Values are number (%) unless otherwise stated. *Categories are not mutually exclusive. Cerebral aneurysm confirmed or unconfirmed by angiography, necropsy, or characteristic pattern on CT; uncertain indicates that neither angiography nor necropsy was undertaken or that the CT appearance did not indicate an aneurysmal location of the hemorrhage. The unconfirmed category includes 13 cases of perimesencephalic SAH; the uncertain category includes 3 cases of probable SAH on the basis of clinical criteria alone. other information, 1055 of these patients were excluded either because they were not residents of one of the study centers or the diagnosis was not SAH. A final diagnosis of SAH was confirmed in 554 cases, but this included 39 (7%) due to arteriovenous malformations and 79 (14%) secondary to head trauma. In addition, 3 patients had a past history of idiopathic SAH, and 1 patient experienced a recurrent event during the study period. Thus, a total of 432 cases were registered with a final diagnosis of first-ever SAH (62% female; mean SD age, 57 17 years). Table 1 outlines the patterns of notification and first sources of information regarding events across the centers. Although there were significant differences in the onset-to-notification and onset-to-assessment times across the centers, mainly because of delayed notifications in Hobart and Perth, overall these were short, with median times of 2 (interquartile range, 1 to 25) and 4 (interquartile range, 1 to 14) days for these intervals, respectively. There were also significant differences in the first source of notification across centers, probably reflecting local hot-pursuit strategies, but the profile still reflects the importance of using multiple sources of case ascertainment in such studies. Overall, SAH was verified by CT in 394 (90.4%) or by necropsy alone in 42 (9.6%), as shown in Table 2. There were 330 patients (76%) who had the aneurysmal origin of the SAH diagnosed by angiography, surgery, or at autopsy. In P

1846 Stroke August 2000 TABLE 3. Age- and Sex-Specific Annual Incidence of First-Ever SAH per 100 000 Population in Australian and New Zealand, 1996 1998* Adelaide (2 y) Hobart (2 y) Perth (2 y) Person-Years n Rate (95% CI) Person-Years n Rate (95% CI) Person-Years n Rate (95% CI) Male 15 24 159 550 2 1.3 (0.3, 5.0) 29 194 1 3.4 (0.5, 24.3) 206 072 1 0.5 (0.1, 3.4) 25 34 165 748 4 2.4 (0.9, 6.4) 27 502 2 7.3 (1.8, 29.1) 202 884 2 1.0 (0.2, 3.9) 35 44 161 362 9 5.6 (2.9, 10.7) 29 586 5 16.9 (7.0, 40.6) 201 036 7 3.5 (1.7, 7.3) 45 54 136 976 23 16.8 (11.2, 25.3) 24 246 0 0.0 N/A 171 322 14 8.2 (4.8, 13.8) 55 64 90 506 5 5.5 (2.3, 13.3) 15 710 2 12.7 (3.2, 50.9) 103 440 7 6.8 (3.2, 14.2) 65 74 81 056 7 8.6 (4.1, 18.1) 13 372 0 0.0 N/A 76 306 8 10.5 (5.2, 21.0) 75 84 40 234 6 14.9 (6.7, 33.2) 6 662 0 0.0 N/A 35 180 5 14.2 (5.9, 34.1) 85 8 248 4 48.5 (18.2, 129.2) 1 406 0 0.0 N/A 8 088 2 24.7 (6.2, 98.9) Crude 843 680 60 7.1 (5.5, 9.2) 147 678 10 6.8 (3.6, 12.6) 1 004 328 46 4.6 (3.4, 6.1) Std 5.7 (4.3, 7.6) 6.7 (3.6, 12.6) 3.8 (2.7, 5.2) Std 5.8 (4.3, 8.0) 6.7 (3.6, 12.5) 3.9 (2.7, 5.7) Female 15 24 155 006 1 0.6 (0.1, 4.6) 29 058 1 3.4 (0.5, 24.4) 200 598 1 0.5 (0.1, 3.5) 25 34 163 978 6 3.7 (1.6, 8.1) 28 728 2 7.0 (1.7, 27.8) 202 922 3 1.5 (0.5, 4.6) 35 44 166 388 10 6.0 (3.2, 11.2) 31 108 6 19.3 (8.7, 42.9) 207 320 9 4.3 (2.3, 8.3) 45 54 140 280 9 6.4 (3.3, 12.3) 24 434 5 20.5 (8.5, 49.2) 165 682 27 16.3 (11.2, 23.8) 55 64 94 774 14 14.8 (8.7, 24.9) 16 578 2 12.1 (3.0, 48.2) 103 432 16 15.5 (9.5, 25.3) 65 74 94 922 16 16.9 (10.3, 27.5) 15 574 1 6.4 (0.9, 45.6) 86 024 16 18.6 (11.4, 30.4) 75 84 61 804 16 25.9 (15.9, 42.3) 10 304 5 48.5 (20.2, 116.6) 54 154 16 29.5 (18.1, 48.2) 85 21 098 2 9.5 (2.4, 37.9) 3 332 2 60.0 (15.0, 240.0) 19 080 6 31.4 (14.1, 70.0) Crude 898 250 74 8.2 (6.6, 10.3) 159 116 24 15.1 (10.1, 22.5) 1 039 212 94 9.0 (7.4, 11.1) Std 5.9 (4.5, 7.7) 10.7 (6.6, 17.5) 6.9 (5.5, 8.8) Std 6.1 (4.6, 8.1) 10.9 (6.5, 18.4) 7.1 (5.5, 9.2) Total 15 24 314 556 3 1.0 (0.3, 3.0) 58 252 2 3.4 (0.9, 13.7) 406 670 2 0.5 (0.1, 2.0) 25 34 329 726 10 3.0 (1.6, 5.6) 56 230 4 7.1 (2.7, 19.0) 405 806 5 1.2 (0.5, 3.0) 35 44 327 750 19 5.8 (3.7, 9.1) 60 694 11 18.1 (10.0, 32.7) 408 356 16 3.9 (2.4, 6.4) 45 54 277 256 32 11.5 (8.2, 16.3) 48 680 5 10.3 (4.3, 24.7) 337 004 41 12.2 (9.0, 16.5) 55 64 185 280 19 10.3 (6.5, 16.1) 32 288 4 12.4 (4.6, 33.0) 206 872 23 11.1 (7.4, 16.7) 65 74 175 978 23 13.1 (8.7, 19.7) 28 946 1 3.5 (0.5, 24.5) 162 330 24 14.8 (9.9, 22.1) 75 84 102 038 22 21.6 (14.2, 32.7) 16 966 5 29.5 (12.3, 70.8) 89 334 21 23.5 (15.3, 36.1) 85 29 346 6 20.4 (9.2, 45.5) 4 738 2 42.2 (10.6, 168.8) 27 168 8 29.4 (14.7, 58.9) Crude 1 741 930 134 7.7 (6.5, 9.1) 306 794 34 11.1 (7.9, 15.5) 2 043 540 140 6.9 (5.8, 8.1) Std 5.8 (4.8, 7.1) 8.8 (5.9, 12.9) 5.4 (4.4, 6.5) Std 6.0 (4.9, 7.4) 8.9 (5.9, 13.4) 5.6 (4.5, 6.9) N/A indicates not applicable. *Rates were calculated for first-ever events recorded over whole years. Age standardized rates by the direct method to the Segi world population ( 15 years). Age standardized rates by the direct method to the Australasian population ( 15 years). addition, 3 patients were included who met the clinical criteria alone because they died before investigations could be done (they were classified as probable SAH), and there were 13 cases (3%) of perimesencephalic hemorrhage. There was little variation in the proportional frequencies of relevant investigations across the centers (Table 2). The proportion of patients who underwent angiography varied from 63% (Adelaide) to 71% (Hobart), while lumbar puncture and necropsy were undertaken in 54 (12%) and 42 (10%) cases overall, respectively. The great majority of patients (92%) were managed in hospital during the acute phase, and 255 (59%) had neurosurgical intervention, usually within 48 hours of onset (n 175, 69%). Table 3 shows the age- and sex-specific incidence of SAH, by center and for the total population, estimated from the subgroup of 400 cases registered over whole years. The crude annual incidence of first-ever SAH in the total population (aged 15 years) in 1996 1998 was 8.1 (95% CI, 7.4, 9.0)

Anderson et al Incidence of Subarachnoid Hemorrhage 1847 Auckland (1 y) Total Person-Years n Rate (95% CI) Person-Years n Rate (95% CI) 80 460 1 1.2 (0.2, 8.8) 475 276 5 1.1 (0.4, 2.5) 88 137 2 2.3 (0.6, 9.1) 484 271 10 2.1 (1.1, 3.8) 78 948 9 11.4 (5.9, 21.9) 470 932 30 6.4 (4.5, 9.1) 62 955 12 19.1 (10.8, 33.6) 395 499 49 12.4 (9.4, 16.4) 39 582 5 12.6 (5.3, 30.3) 249 238 19 7.6 (4.9, 12.0) 29 358 6 20.4 (9.2, 45.5) 200 092 21 10.5 (6.8, 16.1) 14 031 3 21.4 (6.9, 66.3) 96 107 14 14.6 (8.6, 24.6) 3 027 1 33.0 (4.7, 234.5) 20 769 7 33.7 (16.1, 70.9) 396 498 39 9.8 (7.2, 13.5) 2 392 184 155 6.5 (5.5, 7.6) 8.7 (6.2, 12.3) 5.4 (4.5, 6.4) 9.1 (6.3, 13.2) 5.6 (4.6, 6.8) 81 459 0 0.0 N/A 466 121 3 0.6 (0.2, 2.0) 94 308 8 8.5 (4.2, 17.0) 489 936 19 3.9 (2.5, 6.1) 83 904 7 8.3 (4.0, 17.5) 488 720 32 6.5 (4.6, 9.3) 64 563 14 21.7 (12.8, 36.6) 394 959 55 13.9 (10.7, 18.1) 39 696 9 22.7 (11.8, 43.6) 254 480 41 16.1 (11.9, 21.9) 33 429 8 23.9 (12.0, 47.9) 229 949 41 17.8 (13.1, 24.2) 22 416 5 22.3 (9.3, 53.6) 148 678 42 28.2 (20.9, 38.2) 7 617 2 26.3 (6.6, 105.0) 51 127 12 23.5 (13.3, 41.3) 427 392 53 12.4 (9.5, 16.2) 2 523 970 245 9.7 (8.6, 11.0) 11.0 (8.2, 14.8) 7.5 (6.5, 8.6) 11.3 (8.4, 15.4) 7.7 (6.6, 9.0) 161 919 1 0.6 (0.1, 4.4) 941 397 8 0.8 (0.4, 1.7) 182 445 10 5.5 (2.9, 10.2) 974 207 29 3.0 (2.1, 4.3) 162 852 16 9.8 (6.0, 16.0) 959 652 62 6.5 (5.0, 8.3) 127 518 26 20.4 (13.9, 29.9) 790 458 104 13.2 (10.9, 15.9) 79 278 14 17.7 (10.5, 29.8) 503 718 60 11.9 (9.2, 15.3) 62 787 14 22.3 (13.2 37.6) 430 041 62 14.4 (11.2, 18.5) 36 447 8 21.9 (11.0, 43.9) 244 785 56 22.9 (17.6, 29.7) 10 644 3 28.2 (9.1, 13.7) 71 896 19 26.4 (16.9, 41.4) 823 890 92 11.2 (9.1, 13.7) 4 916 154 400 8.1 (7.4, 9.0) 9.9 (7.9, 12.4) 6.5 (5.8, 7.2) 10.3 (8.1, 13.0) 6.7 (5.9, 7.5) per 100 000 (6.5 per 100 000 in males and 9.7 per 100 000 in females). When age- and sex-adjusted by the direct method to the 1996 Australasian population, the annual incidence was 6.7 per 100 000 (5.6 per 100 000 in males and 7.7 per 100 000 in females). Standardized by the direct method to the world population of Segi, the annual rate was 6.5 (95% CI, 5.8, 7.2) per 100 000. Across the centers, the rates were highest in Auckland (9.1 per 100 000 for males and 11.3 per 100 000 for females), intermediate for Hobart, and lowest in Perth and Adelaide (for males in Perth, 3.9 per 100 000; for females in Adelaide, 6.1 per 100 000). Recalculation of rates for the major ethnic groups with the use of revised population denominators in Auckland showed that the higher rates in this center could be accounted for in part by the high rate of disease in Maori and Pacific people (Table 4). The Figure shows the age-specific crude incidence for each sex. Females showed a continuously rising trend of incidence with age, while for males, the trend appears bimodal, with peaks in younger adults (groups aged 34 to 44 and 45 to 54 years) and in the oldest old (group aged 85 years). These age-specific incidence curves for males and females were generally consistent across centers, as was the higher rate of disease in females. Table 4 shows the truncated age-

1848 Stroke August 2000 TABLE 4. Age-Standardized Sex-Specific Incidence and Crude Rate Ratios Across Centers, Including Rates for Combined Maori/Pacific People Separate From Other Ethnic Groups in Auckland Auckland Maori/Pacific People Only Maori/Pacific People Excluded Adelaide Hobart Perth All Total Standardized rates* Female 6.1 10.9 7.1 11.3 25.0 8.8 7.7 Male 5.8 6.7 3.9 9.1 17.2 8.0 5.6 Female:male crude rate ratios (95% CI) All age groups 1.2 2.6 2.1 1.5 1.6 1.2 1.6 (0.8, 1.6) (1.3, 5.5) (1.5, 3.0) (1.0, 2.2) (0.7, 3.6) (0.7, 1.9) (1.3, 2.0) 15 54 y 0.8 1.8 1.7 1.3 1.8 1.0 1.2 (1.1, 2.9) (0.8, 4.3) (1.0, 2.7) (0.7, 2.2) (0.7, 4.8) (0.5, 1.9) (0.9, 1.5) 55 y 0.7 6.4 2.9 1.9 0.5 1.3 2.3 (1.1, 2.9) (1.4, 29.2) (1.8, 4.7) (1.0, 3.7) (0.1, 2.2) (0.6, 2.7) (1.7, 3.1) *Incidence rates standardized to the 1996 Australasian population. Using Poisson models of age-specific crude rates. standardized incidence rates and female:male crude incidence rate ratios obtained from Poisson regression. The incidence in females was 60% greater than that for males (rate ratio, 1.6; 95% CI, 1.3, 2.0) in the total population (P 0.001), although there was variability in the rate ratios across centers. Modeling the interaction age sex indicates that the higher rate of disease applied only to older females ( 55 years) (P 0.001), whereas the sex-specific rates were comparable in the younger age groups (15 to 54 years). Among Maori and Pacific people, however, the reverse applied, with the highest relative rate of disease among younger females (Table 4). The overall 28-day case fatality was 39% (170/436) for all cases and 38% (152/400) for first-ever SAH recorded over whole years. The corresponding ratios for deaths within 7 days of onset were 29% and 28%. There was no significant difference in case fatality ratios across the centers (Table 2). Discussion In this investigation, by far the largest population-based study to date, we have shown that aneurysmal SAH has a unique Age-specific annual incidence of first-ever SAH. incidence profile. In contrast to the other subtypes of stroke (and cardiovascular disease, in general) in which rates increase exponentially with age, the incidence of SAH shows a monotonic increase with age, although the shape and strength of these curves differ between the sexes. For males, agespecific rates tend to be bimodal in distribution, whereas among females, the trend of increasing rates with age appears attenuated after the menopause ( 55 years). These data contradict many previous epidemiological studies of SAH that show a flattening, or even a decline, in age-specific rates in older people. 1,21,22 Small numbers and logistic difficulties in verifying the diagnosis, particularly among older people, are important limitations in these earlier studies. Saying that advancing knowledge on the etiology and pathogenesis of a particular disease requires coordinated contributions from epidemiology and the basic sciences is usually a statement of the obvious, but it is certainly true for SAH. Research findings from epidemiology, genetics, molecular biology, and other basic sciences have been mutually reinforcing in suggesting risk (and protective) factors for SAH. Epidemiological observations, in particular, are consistent with the hypothesis that cerebral aneurysms are acquired abnormalities that are likely to form and rupture as a result of the effects of cardiovascular risk factors, especially cigarette smoking and probably hypertension. 23 Despite recent progress, however, it is uncertain whether the decline in the incidence of cardiovascular disease over recent decades, brought about in part by the reduction in these cardiovascular risk factors, has translated into a reduction in the incidence of SAH. Apart from 1 large population-based series over 10 years, 24 a meta-analysis of well-defined studies did not confirm a decline in the incidence of SAH over the last 30 years. 25 The paucity of population-based data on the incidence, risk factors, and outcome of SAH within various countries has been a major impediment to identifying etiologic clues. 24 A fundamental problem is that most incidence studies have been

Anderson et al Incidence of Subarachnoid Hemorrhage 1849 based on small numbers of patients and therefore lacked statistical power for detecting trends in rates and associations related to all but the most common of exposures. A systematic overview may overcome the problem of imprecise results from small studies, but the approach requires careful attention to the sources, quality, and timing of the data collected in each investigation. In a recent reanalysis of pooled existing data from 15 non-finnish and 3 Finnish prospective population-based studies, the incidence of SAH was 10.5 (95% CI, 9.9, 11.2) per 100 000 person-years (7.8; 95% CI, 7.2, 8.4 for non-finnish studies) and higher in females (7.1; 95% CI, 5.4, 8.7) than males (4.5; 95% CI, 3.1, 5.8). 24 However, there was considerable regional variation in incidence, particularly in Finland, and the precision of the estimates is unreliable because only 3 of these 18 studies involved 100 patients, and in the only study of 400 patients, less than half had CT confirmation of the diagnosis. Our study, on the other hand, used prospective, multicenter, population-based disease registries to enlarge the study size, thus enabling more precise estimates of the incidence of SAH and associations with demographics, lifestyle, and other factors. To satisfy a set of well-established ideal criteria for population-based incidence studies of stroke, 9 it was crucial that the case ascertainment procedures were standardized to ensure that any variation across centers could not be attributed to registration artifacts. Unlike many other studies, we were able to achieve a uniformly high proportion of CT-confirmed (and/or necropsy-confirmed) cases of SAH across centers, since it is well known that it is not possible to differentiate subtypes of stroke reliably on clinical grounds alone. 25 Moreover, radiological confirmation of the aneurysmal origin of the SAH in a large proportion of cases will allow future analyses of risk factors specifically for aneurysmal SAH, excluding possible or other (including perimesencephalic) forms of the condition. 14,23 While incomplete identification of nonhospitalized cases may lead to a lower apparent incidence and higher observed case fatality for other subtypes of stroke, our data indicate that routine sources of data (death certificates and hospital separation lists) are effective for the surveillance of SAH in these populations. Since our study was also concerned with the assessment of exposures by direct interview, the protocol required continuous prospective surveillance of hospitals and early assessment of cases. The hot-pursuit methods were tailored to systems and resources in each population, as reflected in regional variation in the timing and sources used for data collection. If there were major differences in ascertainment of mild cases across the centers, however, this would have been reflected in the figures for case fatality. Yet, this parameter was similar across the centers. Although the crude annual incidence of SAH (8.1 per 100 000) was quite high, our results do not differ from those of other studies (except in Scandinavian countries, where the rates are very high 1,9,24 ) when adjustments were made for the age distribution of our population. The high rate in Auckland could be largely attributed to the high rate of disease among Maori and Pacific people, as documented elsewhere. 17 The role of modifiable and nonmodifiable risk factors (ie, familial or genetic factors) as explanations for these differing rates is not completely understood. Future analyses of these data are planned. What does an increase in incidence with age indicate in relation to etiology of SAH? For the vast majority of chronic diseases, both vascular and neoplastic, incidence increases exponentially with age because of the compounding effects of antecedent exposure (ie, exposure in one s 20 s interacts with exposure in one s 30 s, which interacts with exposure in one s 40 s, etc). However, a monotonically increasing relationship between incidence and age may suggest that SAH is triggered in susceptible individuals (genetically or otherwise) and that the increase in incidence with age exactly reflects the increase in the risk of exposure with age. A plausible hypothesis is that most aneurysms form over a relatively short time (hours, days, or weeks), 26 and the trigger might be an acute increase (or rapid fluctuations) in blood pressure. 3 For example, compared with younger, normotensive, active individuals, it may be more likely for a transient increase in systolic blood pressure to occur among sedentary older people with high resting blood pressure. Perhaps the transient decline in the risk of SAH among males with respect to females after middle age could relate to the higher competing risk of cardiovascular disease from shared chronic and acute exposures. 27,28 In summary, our data, compiled with the use of a unique multicenter registry, show regional differences in the incidence of SAH between Perth (low), Hobart, Adelaide, and Auckland (high) that can be explained in part by ethnic differences in disease risk. For both sexes, attack rates increase with age, but for males the association appears bimodal, with peak rates among younger adults and the oldest old. For females, rates increase continuously with age, although the trend is attenuated after the menopause. These data suggest that exposures with cumulative effects and long induction times may be less relevant in the etiology of SAH. Further analyses of the case-control component of ACROSS may help to unravel the puzzle. Appendix The following are the committee members, principal investigators, and study coordinators of ACROSS: Steering Committee: C. Anderson (study chair); N. Anderson, R. Bonita, D. Dunbabin, G. Hankey, K. Jamrozik. Writing Committee: C. Anderson, G. Hankey, K. Jamrozik, D. Dunbabin. Data Management and Statistics: D. Bennett, R. Broadhurst, J. Duncan, C. Ni Mhurchu, S. Rubenach. Study Coordinators: J. Bennett (Study Manager), D. Healy, S. Rubenach (Adelaide); J. Sansom and J. Flecker (Hobart); J. Harvey, J. Linto, G. Mann, K. White (Perth); and S. Hawkins and C. Mulholland (Auckland). Neurosurgical Investigators: B. Brophy (Flinders Medical Center), J. Liddell (Royal Hobart Hospital), E. Mee (Auckland Hospital), G. McCulloch (Queen Elizabeth Hospital), N. Knuckey (Sir Charles Gairdner Hospital), and P. Reilly (Royal Adelaide Hospital). Clinical Centers: Ashord Hospital, Flinders Medical Center, Memorial Hospital, Repatriation General Hospital, Queen Elizabeth Hospital, and the Royal Adelaide Hospital (Adelaide, South Australia); the Royal Hobart Hospital, Calvary Hospital, and St Helen s Private Hospital (Hobart, Tasmania); Fremantle Hospital, Royal Perth Hospital, St John of God Hospital Subiaco, St John of God Hospital Murdoch, and Sir Charles Gairdner Hospital (Perth, Western Australia); Auckland Hospital, North Shore Hospital, Middlemore Hospital, and Waitakare Hospital (Auckland, New Zealand).

1850 Stroke August 2000 Acknowledgments This study was supported by grants from the National Health and Medical Research Council of Australia, the Health Research Council of New Zealand, and the Sylvia and Charles Viertel Charitable Foundation of Queensland, Australia. We thank Anthony Rodgers, Gary Whitlock, and Valery Feigin for reviewing earlier drafts of this article. We are indebted to the study investigators and coordinators for their dedication and performance; Janet Bennett for her efforts; the support of the coroner s department in each center; the assistance of the Australian Bureau of Statistics and Statistics New Zealand; and the help provided from nursing, administration, and medical records staff of the clinical centers. References 1. Ingall TI, Wiebers DO. Natural history of subarachnoid hemorrhage. In: Whisnant JP, ed. Stroke: Populations, Cohorts, and Clinical Trials. Boston, Mass: Butterworth-Heinemann Ltd; 1993:174 186. 2. Bonita R, Thomson S. Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome. Stroke. 1985;16:591 594. 3. Longstreth WT, Koepsell TD, Yerby MS, van Belle G. Risk factors for subarachnoid hemorrhage. Stroke. 1985;16:377 385. 4. Longstreth WT Jr, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in King County, Washington. Neurology. 1993;43:712 718. 5. Ingall TJ, Whisnant JP, Wiebers DO, O Fallon WM. Has there been a decline in subarachnoid hemorrhage mortality? Stroke. 1989;20: 1150 1155. 6. Truelsen T, Bonita R, Duncan J, Anderson N, Mee E. Changes in subarachnoid hemorrhage mortality, incidence, and case fatality in New Zealand between 1981 1983 and 1991 1993. Stroke. 1998;29: 2298 2303. 7. Østbye T, Levy AR, Mayo NE. Hospitalization and case-fatality rates for subarachnoid hemorrhage in Canada from 1982 through 1991: the Canadian Collaborative Study Group of Stroke Hospitalizations. Stroke. 1997;28:793 798. 8. Juvela S, Hillbom M, Numminen H, Koskinen P. Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke. 1993;24:639 646. 9. Sudlow CLM, Warlow CP. Comparing stroke incidence worldwide: what makes studies comparable. Stroke. 1996;27:550 558. 10. Longstreth WT Jr, Nelson LM, Koepsell TD, van Belle G. Cigarette smoking, alcohol use, and subarachnoid hemorrhage. Stroke. 1992;23: 1242 1249. 11. Bonita R, Anderson C, Broad J, Jamrozik K, Stewart-Wynne E, Anderson N. The incidence and case fatality of stroke in Australasia: comparison of the Perth and Auckland population-based stroke registers. Stroke. 1994; 25:552 557. 12. Bonita R, Broad JB, Beaglehole R. Changes in stroke incidence and case-fatality in Auckland, New Zealand. Lancet. 1993;342:1470 1473. 13. Vermeulen M, van Gijn J. The diagnosis of subarachnoid hemorrhage. J Neurol Neurosurg Psychiatry. 1996;243:496 501. 14. Rinkel GJE, Wijdicks EFM, Vermeulen M, Hasan D, Brouwers PJAM, van Gijn J. The clinical course of perimesencephalic nonaneurysmal subarachnoid hemorrhage. Ann Neurol. 1991;29:463 468. 15. Clayton D, Hills M. Statistical Models in Epidemiology. Oxford, England: Oxford University Press; 1993. 16. Elliott WJ. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke. 1998;29:992 996. 17. Bonita R, Broad JB, Beaglehole R. Ethnic variations in stroke incidence and case fatality: the Auckland Stroke Study. Stroke. 1997;28:758 761. 18. Waterhouse J, Muir CS, Correa P, Powell J. Cancer Incidence in Five Continents. Vol 3. Lyon, France: International Agency for Research on Cancer; 1976:456. 19. Statistical Analysis System Institute Inc. SAS Version 6.0. Cary, NC: SAS Inc; 1991. 20. SPSS for Windows, Version 7.5.1. Chicago, Ill: SPSS Inc; 1996. 21. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. A prospective study of acute cerebrovascular disease in the community: the Oxfordshire Community Stroke Project 1981 86, II: incidence, case fatality rates and overall outcome at one year of cerebral infarction, primary intracerebral hemorrhage and subarachnoid hemorrhage. J Neurol Neurosurg Psychiatry. 1990;53:16 22. 22. Broderick JP, Brott T, Tomsick T, Miller R, Huster G. Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J Neurosurg. 1993;78:188 191. 23. Teunissen LL, Rinkel GJE, Algra A, van Gijn J. Risk factors for subarachnoid hemorrhage: a systematic review. Stroke. 1996;27:544 549. 24. Linn FHH, Rinkel GJE, Algra A, van Gijn J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computerized tomography: a meta-analysis. Stroke. 1996;27:625 629. 25. Sandercock PAG, Allen CMC, Corston RN, Harrison MJG, Warlow CP. Clinical diagnosis of intracranial hemorrhage using Guys Hospital Score. BMJ. 1985;291:1675 1677. 26. Wiebers DO, Feigin VL, Brown RD. Cerebrovascular Disease in Clinical Practice. New York, NY: Little, Brown & Co; 1997. 27. Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. N Engl J Med. 1993;329:1677 1683. 28. Willich SN, Lewis M, Löwel H, Arntz H-R, Schubert F, Schröder R. Physical exertion as a trigger of acute myocardial infarction. N Engl J Med. 1993;329:1684 1690.