mir 375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression

Similar documents
HEK293FT cells were transiently transfected with reporters, N3-ICD construct and

A polymorphism site in the pre mir 34a coding region reduces mir 34a expression and promotes osteosarcoma cell proliferation and migration

MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells

The inhibitory effect of mir-375 targeting sp1 in colorectal cancer cell proliferation

Soft Agar Assay. For each cell pool, 100,000 cells were resuspended in 0.35% (w/v)

MOLECULAR MEDICINE REPORTS 12: 93-98, LEI KUANG, GUOHUA LV, BING WANG, LEI LI, YULIANG DAI and YAWEI LI

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

MOLECULAR MEDICINE REPORTS 11: , YULIN XIONG, CHANGJIANG ZHANG, JING YUAN, YAN ZHU, ZHAOXIA TAN, XUEMEI KUANG and XIAOHONG WANG

MiRNA-202 impacts proliferation and apoptosis of granulose cells

microrna 181 promotes prostate cancer cell proliferation by regulating DAX 1 expression

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Research Communication

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Expression and clinical significance of ADAM17 protein in esophageal squamous cell carcinoma

microrna Presented for: Presented by: Date:

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

ONCOLOGY LETTERS 15: , 2018

Original Article mir-338-3p inhibits the proliferation and migration of gastric cancer cells by targeting ADAM17

Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma

Original Article Differential expression profile analysis of mirnas with HER-2 overexpression and intervention in breast cancer cells

Original Article mir-181 regulation of BAX controls cisplatin sensitivity of prostate cancer cells

mir-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by targeting JAK2

Knockdown of Long Noncoding RNA LUCAT1 Inhibits Cell Viability and Invasion by Regulating mir-375 in Glioma

Original Article Reduced expression of mir-506 in glioma is associated with advanced tumor progression and unfavorable prognosis

MiR-1397 Regulates Chicken CARP Gene Expression at Post-transcriptional Level

microrna-200b and microrna-200c promote colorectal cancer cell proliferation via

MicroRNA 98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k Ras/Raf/MEK/ERK signaling pathway

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

microrna 761 regulates glycogen synthase kinase 3β expression and promotes the proliferation and cell cycle of human gastric cancer cells

Influence of RNA Interference Targeting Rab5a on Proliferation and Invasion of Breast Cancer Cell Line MCF-7

MicroRNA 761 is downregulated in colorectal cancer and regulates tumor progression by targeting Rab3D

Supplementary data Supplementary Figure 1 Supplementary Figure 2

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

mir 483-5p promotes prostate cancer cell proliferation and invasion by targeting RBM5

mir-542-3p targets sphingosine-1-phosphate receptor 1 and regulates cell proliferation and invasion of breast cancer cells

Increased mir-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis

LncRNA LET function as a tumor suppressor in breast cancer development

Prevalence and characterization of somatic mutations in Chinese aldosterone-producing adenoma. patients. Supplemental data. First author: Baojun Wang

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

Original Article microrna-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Supplementary Material

CH Cho *, J Yu, WKK Wu 1,2

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

Supplementary Materials and Methods

Hepatitis B virus upregulates the expression of kinesin family member 4A

Downregulation of microrna-196a inhibits human liver cancer cell proliferation and invasion by targeting FOXO1

mir-367 promotes uveal melanoma cell proliferation and migration by regulating PTEN

EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: , 2015

Supplementary webappendix

CHAPTER 4 RESULTS. showed that all three replicates had similar growth trends (Figure 4.1) (p<0.05; p=0.0000)

mir-187 inhibits the growth of cervical cancer cells by targeting FGF9

Posttranscriptional upregulation of HER3 by HER2 mrna induces trastuzumab resistance in breast cancer

SUPPLEMENTARY INFORMATION

KDR gene silencing inhibits proliferation of A549cells and enhancestheir sensitivity to docetaxel

Online Data Supplement. Anti-aging Gene Klotho Enhances Glucose-induced Insulin Secretion by Upregulating Plasma Membrane Retention of TRPV2

INTERNATIONAL JOURNAL OF ONCOLOGY 54: , 2019

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the

Protection against doxorubicin-induced myocardial dysfunction in mice by cardiac-specific expression of carboxyl terminus of hsp70-interacting protein

Clinical significance of serum mir-21 in breast cancer compared with CA153 and CEA

Supplementary information

Published online 17 July 2010 Nucleic Acids Research, 2010, Vol. 38, No doi: /nar/gkq637

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

Association of mir-21 with esophageal cancer prognosis: a meta-analysis

MicroRNA and Male Infertility: A Potential for Diagnosis

Supplementary Information Titles Journal: Nature Medicine

mir-132 inhibits lung cancer cell migration and invasion by targeting SOX4

IMMP8-1. Different Mechanisms of Androg and IPAD on Apoptosis Induction in Cervical Cancer Cells

RESEARCH ARTICLE. MiR-130a Overcomes Gefitinib Resistance by Targeting Met in Non-Small Cell Lung Cancer Cell Lines

MiR-136 triggers apoptosis in human gastric cancer cells by targeting AEG-1 and BCL2

Acute myocardial infarction (MI) on initial presentation was diagnosed if there was 20 minutes

MicroRNA-338-3p inhibits glucocorticoidinduced osteoclast formation through RANKL targeting

MicroRNA-663 Targets TGFB1 and Regulates Lung Cancer Proliferation

Long Non-Coding RNA TUG1 Promotes Proliferation and Inhibits Apoptosis of Osteosarcoma Cells by Sponging mir-132-3p and Upregulating SOX4 Expression

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

Original Article MicroRNA-506 suppresses growth and metastasis of oral squamous cell carcinoma via targeting GATA6

Supplementary Information

Editorial New guidelines for HER2 pathological diagnostics in gastric cancer

TITLE: MiR-146-SIAH2-AR Signaling in Castration-Resistant Prostate Cancer

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Supporting Information

MiR-181a promotes epithelial to mesenchymal transition of prostate cancer cells by targeting TGIF2

Cellular Physiology and Biochemistry

SUPPLEMENTARY INFORMATION. Supplementary Figures S1-S9. Supplementary Methods

Reduced mirna-218 expression in pancreatic cancer patients as a predictor of poor prognosis

FOXO Reporter Kit PI3K/AKT Pathway Cat. #60643

Original Article Overexpression of mir-96 promotes cell proliferation by targeting FOXF2 in prostate cancer

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Circ_ /PHDLA1 suppresses gastric cancer progression by sponging mir 101 3p.1

Pleiotrophin, a target of mir-384, promotes proliferation, metastasis and lipogenesis in HBV-related hepatocellular carcinoma

mir-101, downregulated in retinoblastoma, functions as a tumor suppressor in human retinoblastoma cells by targeting EZH2

Figure S1. Reduction in glomerular mir-146a levels correlate with progression to higher albuminuria in diabetic patients.

m 6 A mrna methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

Analysis of small RNAs from Drosophila Schneider cells using the Small RNA assay on the Agilent 2100 bioanalyzer. Application Note

York criteria, 6 RA patients and 10 age- and gender-matched healthy controls (HCs).

Transcription:

EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: 1757-1761, 2014 mir 375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression ZHI YONG SHEN *, ZI ZHEN ZHANG *, HUA LIU, EN HAO ZHAO and HUI CAO Department of General Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201112, P.R. China Received November 6, 2013; Accepted March 6, 2014 DOI: 10.3892/etm.2014.1627 Abstract. MicroRNAs (mirnas) are small non coding RNA molecules that regulate the expression of targeted genes in a post transcriptional manner. Increasing evidence indicates that mirnas play important roles in cancer pathogenesis, including apoptosis, proliferation and differentiation, as oncogenes or tumor suppressors. Previously, mir 375 was shown to be involved in human gastric cancer, however, the mechanism remains poorly understood. In the present study, mir 375 was shown to be downregulated in gastric cancer tissues, particularly human epidermal growth factor receptor 2 (ERBB2) positive gastric cancer tissues. Identified by dual luciferase assays and western blot analysis, ERBB2 was demonstrated to be a target gene of mir 375. In addition, mir 375 overexpression suppressed the proliferation of human gastric cancer cells in vitro and the suppression effect was restored by ERBB2 overexpression. Thus, the results of the present study indicate that mir 375 is associated with human gastric carcinogenesis by targeting ERBB2. Therefore, mir 375 may be used as a potential clinical classification marker and therapeutic target for human gastric cancer. Introduction Gastric cancer is the fourth most common type of cancer causing ~800,000 mortalities worldwide each year (1). In general, gastric cancer has a 5 year survival rate of ~15% and for patients with advanced gastric cancer, the median overall survival is <1 year (2,3). Considering these statistics, increased research into potential preventative methods for gastric cancer Correspondence to: Dr Hui Cao, Department of General Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201112, P.R. China E mail: caohuishcn@163.com * Contributed equally Key words: gastric cancer, microrna, human epidermal growth factor receptor 2, proliferation is required, as well as improved early detection and more effective treatments. Human epidermal growth factor receptor 2 (ERBB2) is an important biomarker not only for breast cancer, but for other types of cancer prognosis and patient treatment decisions as well. ERBB2 is a member of the epidermal growth factor receptor (EGFR) family that is associated with increased proliferation of tumor cells. As determined by various studies, between 6 and 35% of patients with gastric and gastroesophageal junction cancers exhibit ERBB2 gene amplification and protein overexpression (3-6). MicroRNAs (mirnas) are short non coding RNA molecules that suppress the expression of protein coding genes by partial complementary binding, particularly to 3' untranslated regions (UTRs) of mrnas. Alterations in mirna expression are involved in the initiation, progression and metastasis of human cancer and it has been hypothesized that mirnas function as tumor suppressors and oncogenes in cancer development (7,8). Based on 160 paired samples of non tumor mucosa and cancer cells, Ueda et al reported that 22 mirnas were upregulated and 13 mirnas were downregulated in gastric cancer, indicating that specific mirnas are associated with the progression and prognosis of gastric cancer (9). A number of studies have revealed that the expression of mir 375 is reduced in several human cancers, including head and neck squamous cell carcinoma, esophageal cancer and hepatocellular carcinoma (10-12). In addition, previous studies have indicated that mir 375 may be one of the most important mirnas involved in the progression of gastric cancer (13,14). Therefore, in the present study, the expression and mechanisms of mir 375 were investigated in gastric cancer with the aim of providing a novel candidate for the diagnosis and treatment of human gastric cancer. Materials and methods Tissue samples. For mir 375 detection, 30 paired gastric tissue samples were collected (cancer lesions and adjacent non tumor mucosae) from patients that had undergone gastrectomy at Renji Hospital (Shanghai, China) from March 2011 to January 2013. All the samples were collected in the same manner and snap frozen immediately in liquid nitrogen. The samples were stored at 80 C until required for RNA and protein extraction. Since microdissection is difficult to perform in diffuse type

1758 SHEN et al: mir-375 TARGETS ERBB2 IN GASTRIC CARCINOGENESIS gastric cancer, bulk tissue was used in all the cases for technical uniformity. Approval for the study was provided by the Ethics Committee of Renji Hospital and every patient provided written informed consent. Diagnosis of gastric cancer was confirmed by at least two pathologists and staging was based on pathological observations according to the 7th American Joint Committee on Cancer guidelines (15). Gastric cancer cell lines. The BGC 823 human gastric adenoma cell line was purchased from the Cell Bank of Shanghai (Shanghai, China). Cells were routinely cultured in RPMI 1640 medium, supplemented with 10% fetal bovine serum (Hyclone, Logan, UT, USA), at 37 C in a humidified atmosphere with 5% CO 2. ERBB2 expression vector construction. The full length coding region of human ERBB2 was amplified by reverse transcription polymerase chain reaction (PCR) and cloned into the pcdna3.1 vector (Invitrogen, Carlsbad, CA, USA), which was then designated as pcdna3.1 ERBB2. This vector and the control vector, pcdna3.1, were transfected into cells using Lipofectamine 2000 (Invitrogen Life Technologies, Carlsbad, CA, USA), according to the manufacturer's instructions. 3' UTR luciferase reporter assays. To generate the 3' UTR luciferase reporter, the full length of the 3' UTR from ERBB2 was cloned into the downstream region of the firefly luciferase gene using the pgl3 control vector (Promega Corporation, Madison, WI, USA). Mutant mir 375 target sites in the 3' UTR of ERBB2 were used as corresponding controls. An mir 375 mimic and inhibitor were synthesized by Shanghai GenePharma Co., Ltd (Shanghai, China) and a prl TK plasmid (Promega), containing Renilla luciferase, was cotransfected for data normalization. For the luciferase reporter assays, BGC 823 cells were seeded in 48 well plates. Luciferase reporter vectors were cotransfected with mir 375 mimic or mir 375 inhibitor using Lipofectamine 2000. After two days, the cells were harvested and assayed with the Dual Luciferase Assay (Promega Corporation). Experiments were performed in triplicate and the results are expressed as relative luciferase activity (Firefly luciferase activity/renilla luciferase activity). Western blot analysis. Protein extracts were boiled in SDS/β mercaptoethanol sample buffer, and 30 µg protein samples were loaded into each lane of the 8% polyacrylamide gels. Proteins were separated by electrophoresis and then blotted onto polyvinylidene fluoride membranes (Amersham Pharmacia Biotech, Amersham, UK) by electrophoretic transfer. The membranes were incubated with mouse anti ERBB2 (Abcam, Cambridge, MA, USA) or mouse anti β actin monoclonal antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) for 1 h at 37 C. Specific protein antibody complexes were then detected using horseradish peroxidase conjugated rabbit anti mouse secondary IgG. Detection was performed using an enhanced chemiluminescence kit (Pierce Manufacturing, Inc., Appleton, WI, USA) and the β actin signal was used as a loading control. RNA extraction and mir 375 expression detection. Quantitative PCR analysis was used to determine the relative expression levels of mir 375. Total RNA was extracted from the tissue samples using TRIzol reagent (Invitrogen Lift Technologies), according to the manufacturer's instructions. The expression level of mir 375 was detected using TaqMan mirna quantitative PCR. Single stranded cdna was synthesized using a TaqMan microrna reverse transcription kit (Applied Biosystems, Inc., Foster City, CA, USA), which was then amplified using TaqMan Universal PCR Master Mix (Applied Biosystems, Inc.) with mirna specific TaqMan minor groove binder probes (Applied Biosystems, Inc.). U6 spliceosomal RNA was used for normalization. Each sample was measured in triplicate for the detection of mir 375 expression. Cell proliferation assays. BGC 823 cells were seeded in 96 well plates at a low density of 5x10 3 cells/well in Dulbecco's modified Eagle's medium (Hyclone) and allowed to attach overnight. The cells were then transfected with mir 375 mimic or mir 375 mimic plus pcdna3.1 ERBB2, with nonsense short RNA and mir 375 plus pcdna 3.1 used as controls. Next, 20 µl MTT (5 mg/ml; Sigma Aldrich, St. Louis, MO, USA) was added to each well 48 h following transfection and the cells were incubated for a further 4 h. Absorbance was recorded at 570 nm with a 96 well plate reader following the addition of dimethyl sulfoxide. Statistical analysis. Data were analyzed using SPSS software, version 16 (SPSS, Inc., Chicago, IL, USA). Results from the independent groups were analyzed using the t test. Tissue mir 375 expression levels were analyzed using the Mann Whitney U test. P<0.05 was considered to indicate a statistically significant difference. Results mir 375 is downregulated in gastric cancer tissues, particularly ERBB2 positive tissues. Quantitative PCR was used to compare the expression levels of mir 375 among 30 cases of normal and gastric cancer tissue samples. Each tumor and normal sample was derived from a single patient specimen. For the majority of cases, the expression level of mir 375 was significantly decreased in the gastric cancer tissues when compared with the corresponding non cancerous tissues (Fig. 1A and B). In addition, mir 375 expression levels were markedly reduced in ERBB2 positive gastric cancer tissues (Fig. 1C). ERBB2 is the target gene of mir 375. mirna is an important post transcriptional negative regulator for protein coding genes. Thus, to explore the association between reduced mir 375 expression levels and ERBB2 overexpression, mir 375 targets were predicted using the online bioinformatic tools, TargetScan (http://www.targetscan.org/) and miranda (http://www.microrna.org/microrna/home.do). According to the results of the online prediction, mir 375 targets ERBB2 directly. Therefore, to validate whether ERBB2 is the target gene of mir 375, the full length of the 3' UTR of human ERBB2 was cloned into the downstream region of the firefly luciferase reporter gene using the pgl3 control vector (pgl3 ERBB2) for the dual luciferase assay (Fig. 2A). Human gastric adenoma BGC 823 cells were cotransfected

EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: 1757-1761, 2014 1759 A B C Figure 1. Expression levels of mir 375 were downregulated in gastric cancer, particularly ERBB2-positive gastric cancer tissues. Detection of mir 375 expression levels in normal and (A) ERBB2 negative and (B) positive gastric cancer tissue samples. (C) Comparison between mir 375 expression levels in ERBB2 negative and positive gastric cancer tissues. ERBB2, human epidermal growth factor receptor 2; mir 375, microrna 375. * P<0.05, ** P<0.01. with pgl3 ERBB2 and mir 375 mimic or inhibitor (Fig. 2B). Compared with the mirna control, luciferase activity was significantly suppressed with mir 375 by ~34.5% (P<0.05). Furthermore, luciferase activity was significantly upregulated by ~21.7% (P<0.05) with the mir 375 inhibitor, as compared with the anti mir control. These results indicate that mir 375 targets the 3' UTR of ERBB2, leading to a change in firefly luciferase translation. A seed sequence mutation clone was also used to further confirm the binding site for mir 375 (Fig. 2A). A putative mir 375 binding region in the 3' UTR of ERBB2 with four mutant nucleotides (pgl3 ERBB2 Mu) and the pgl3 empty vector were used as controls. The histogram in Fig. 2C indicates that enzyme activity was reduced by ~56.1% in cells that had been cotransfected with mir 375 mimic and pgl3 ERBB2, as compared with pgl3 ERBB2 Mu (P<0.01). These results indicate that mir 375 suppresses gene expression by binding to the seed sequence at the 3' UTR of ERBB2, thus, ERBB2 may be a direct target of mir 375. mir 375 regulates endogenous ERBB2 expression in human gastric cancer cells. Although ERBB2 was identified as a target gene for mir 375, whether mir 375 regulated endogenous ERBB2 expression was unknown. Thus, BGC 823 cells were transfected with mir 375 mimic or inhibitor to determine whether the dysregulation of mir 375 expression affected endogenous ERBB2 expression. Compared with the corresponding control, the level of ERBB2 protein expression was significantly suppressed by mir 375 mimic and upregulated by mir 375 inhibitor (Fig. 2D). mir 375 overexpression suppresses gastric cancer cell proliferation. To further investigate whether mir 375 exhibits tumor suppressive functions by targeting ERBB2, the effect of ERBB2 on mir 375 mediated cell proliferation was investigated. BGC 823 cells that had been transfected with mir 375 demonstrated a lower capacity of proliferation compared with cells that had been transfected with the mirna control, indicating that mir 375 suppresses gastric cancer cell proliferation. When the cells were cotransfected with the ERBB2 expression vector and mir 375 mimic, the cell proliferation ability was partially restored, as compared with the control, indicating that mir 375 overexpression mediates the suppression of cell growth through inhibiting ERBB2 expression. Discussion mir 375 was first identified in murine pancreatic β cells and the expression was also shown to be enriched in human pancreatic islet cells. However, mir 375 is not a tissue specific molecule, as it has also been detected in other tissues, including

1760 SHEN et al: mir-375 TARGETS ERBB2 IN GASTRIC CARCINOGENESIS A B C D Figure 2. ERBB2 is a target gene of mir 375. (A) Schematic diagram for constructing the predicted mir 375 binding site in the pgl3 control vector. (B) Confirmation that ERBB2 is the target gene of mir 375. BGC 823 cells were cotransfected with pgl3 ERBB2 and mirna control, mir 375 mimic, anti mir control or mir 375 inhibitor for the dual luciferase assays. A prl TK plasmid containing Renilla luciferase was cotransfected with the 3' UTR of ERBB2 for data normalization. (C) Mutation analysis of the mir 375 binding site. When four nucleotides in the binding site of mir 375 in the 3' UTR of ERBB2 were mutated (pgl3 ERBB2 Mu), luciferase activity significantly decreased in the BGC 823 cells that had been cotransfected with mir 375 mimic and pgl3 ERBB2, as compared with cells transfected with pgl3 ERBB2 Mu or pgl3. (D) ERBB2 protein expression levels in mir 375 mimic or inhibitor treated BGC 823 cells, as detected by western blot analysis. ERBB2, human epidermal growth factor receptor 2; mir 375, microrna 375; UTR, untranslated region. * P<0.05, ** P<0.01. Figure 3. Gastric cancer cell proliferation was partially suppressed by mir 375 through targeting ERBB2. Cells were transfected with mir 375 mimic or mir 375 mimic plus pcdna3.1 ERBB2, with mirna control and mir 375 plus pcdna 3.1 as controls. The MTT method was used to detect the cell proliferation ability. ERBB2, human epidermal growth factor receptor 2; mir 375, microrna 375. * P<0.05, ** P<0.01. the brain and lungs, where it is important for maintaining normal function. Low expression levels of mir 375 were first reported by three studies in 2010 (9,13,14), which hypothesized that mir 375 was associated with gastric carcinogenesis. In the present study, the expression levels of mir 375 were detected in 30 paired cases of normal and gastric cancer tissue samples. The results demonstrated that mir 375 was downregulated in almost all the gastric cancer tissues. Notably, the expression level of mir 375 was significantly lower in ERBB2 positive gastric cancer tissues as compared with ERBB2 negative gastric cancer tissues. In addition, mir 375 was shown to suppress ERBB2 expression by directly targeting the 3' UTR of ERBB2, and overexpression of mir 375 was shown to partially inhibit gastric cancer cell proliferation through the ERBB2 pathway. ERBB2 is a member of the EGFR family that is associated with increased proliferation of tumor cells. Between 6

EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: 1757-1761, 2014 1761 and 35% of patients with gastric and gastroesophageal junction cancers exhibit ERBB2 gene amplification and protein overexpression (3). ERBB2 expression is also an important predictor of gastric cancer patient classification, which is used for further specific therapies. However, defined by immunohistochemistry, ERBB2 quantification remains imprecise. The results of the present study indicate that ERBB2 expression level detection, associated with quantified mir 375, may be used to enhance the accuracy of clinical gastric cancer classification (16). In conclusion, the present study has partially clarified the associations between mir 375 and ERBB2 positive gastric cancer. To the best of our knowledge, this is the first study to demonstrate that mir 375 is associated with ERBB2 positive gastric cancer. Therefore, mir 375 is a candidate tumor suppressor mirna molecule in gastric cancer and may be a potential clinical classification marker and therapeutic target for human gastric cancer. Acknowledgements The study was supported by grants from the National Natural Science Foundation of China (nos. 81272743 and 81302094) and the Shanghai Committee of Science and Technology, China (nos. 11411950800 and 13XD1402500). References 1. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ and Ezzati M; Comparative Risk Assessment collaborating group (Cancers): Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366: 1784 1793, 2005. 2. Delaunoit T: Latest developments and emerging treatment options in the management of stomach cancer. Cancer Manag Res 3: 257 266, 2011. 3. Bang YJ: Advances in the management of HER2 positive advanced gastric and gastroesophageal junction cancer. J Clin Gastroenterol 46: 637 648, 2012. 4. Hofmann M, Stoss O, Shi D, et al: Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology 52: 797-805, 2008. 5. Park YS, Hwang HS, Park HJ, et al: Comprehensive analysis of HER2 expression and gene amplification in gastric cancers using immunohistochemistry and in situ hybridization: which scoring system should we use? Hum Pathol 43: 413-422, 2012. 6. Fassan M, Mastracci L, Grillo F, et al: Early HER2 dysregulation in gastric and oesophageal carcinogenesis. Histopathology 61: 769-776, 2012. 7. Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J and Sung JJ: MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29: 5761 5771, 2010. 8. Nicoloso MS, Spizzo R, Shimizu M, Rossi S and Calin GA: MicroRNAs the micro steering wheel of tumour metastases. Nat Rev Cancer 9: 293 302, 2009. 9. Ueda T, Volinia S, Okumura H, Shimizu M, et al: Relation between microrna expression and progression and prognosis of gastric cancer: a microrna expression analysis. Lancet Oncol 11: 136 146, 2010. 10. Avissar M, Christensen BC, Kelsey KT and Marsit CJ: MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res 15: 2850 2855, 2009. 11. Mathé EA, Nguyen GH, Bowman ED, Zhao Y, et al: MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 15: 6192 6200, 2009. 12. Liu AM, Poon RT and Luk JM: MicroRNA 375 targets Hippo signaling effector YAP in liver cancer and inhibits tumor properties. Biochem Biophys Res Commun 394: 623 627, 2010. 13. Ding L, Xu Y, Zhang W, Deng Y, et al: MiR 375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 20: 784 793, 2010. 14. Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, et al: MicroRNA 375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14 3 3zeta. Cancer Res 70: 2339 2349, 2010. 15. Washington K: 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol 17: 3077-3079, 2010. 16. Rüschoff J, Hanna W, Bilous M, Hofmann M, et al: HER2 testing in gastric cancer: a practical approach. Mod Pathol 25: 637 650, 2012.