Case Report T-Cell Lymphoblastic Leukemia/Lymphoma: Relapse 16 Years after First Remission

Similar documents
Relapsed acute lymphoblastic leukemia. Lymphoma Tumor Board. July 21, 2017

Acute Lymphoblastic Leukemia (ALL) Ryan Mattison, MD University of Wisconsin March 2, 2010

Case Report T-Cell Lymphoblastic Lymphoma in a Child Presenting as Rapid Thyroid Enlargement

LYMPHOMA Joginder Singh, MD Medical Oncologist, Mercy Cancer Center

LEUKAEMIA and LYMPHOMA. Dr Mubarak Abdelrahman Assistant Professor Jazan University

Adult T-cell lymphoblastic leukemia/lymphoma. Lymphoma Tumor Board. September 8, 2017

1 Introduction. 1.1 Cancer. Introduction

MANAGEMENT OF ACUTE LYMPHOBLASTIC LEUKEMIA. BY Dr SUBHASHINI 1 st yr PG DEPARTMENT OF PEDIATRICS

NON HODGKINS LYMPHOMA: INDOLENT Updated June 2015 by Dr. Manna (PGY-5 Medical Oncology Resident, University of Calgary)

Large cell immunoblastic Diffuse histiocytic (DHL) Lymphoblastic lymphoma Diffuse lymphoblastic Small non cleaved cell Burkitt s Non- Burkitt s

Summary. Olga Zając, Katarzyna Derwich, Katarzyna Stefankiewicz, Jacek Wachowiak. Rep Pract Oncol Radiother, 2007; 12(5):

Outcome of adult patients with acute

Acute myeloid leukemia. M. Kaźmierczak 2016

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Case Report Denosumab Chemotherapy for Recurrent Giant-Cell Tumor of Bone: A Case Report of Neoadjuvant Use Enabling Complete Surgical Resection

Case Report Two Cases of Small Cell Cancer of the Maxillary Sinus Treated with Cisplatin plus Irinotecan and Radiotherapy

Lugano classification: Role of PET-CT in lymphoma follow-up

Pediatric Oncology. Vlad Radulescu, MD

Research Article Stromal Expression of CD10 in Invasive Breast Carcinoma and Its Correlation with ER, PR, HER2-neu, and Ki67

Adult ALL: NILG experience

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

R. F. Falkenstern-Ge, 1 S. Bode-Erdmann, 2 G. Ott, 2 M. Wohlleber, 1 and M. Kohlhäufl Introduction. 2. Histology

Mantle Cell Lymphoma

Long-Term Survival after T-cell Lymphoblastic Lymphoma Treated with One Cycle of Hyper-CVAD Regimen

Improved outcome in childhood ALL with intensive consolidation and hematopoietic stem cell transplant

2011: ALL Pre-HCT. Subsequent Transplant

HAEMATOLOGICAL MALIGNANCY

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

Update: Non-Hodgkin s Lymphoma

Research Article Outcome of Adolescents with Acute Lymphoblastic Leukemia Treated by Pediatrics versus Adults Protocols

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC

Non-Hodgkin lymphomas (NHLs) Hodgkin lymphoma )HL)

Non-Hodgkin s Lymphoma

Elisabeth Koller 3rd Medical Dept., Center for Hematology and Oncology, Hanusch Hospital, Vienna, Austria

Supplementary appendix

Case Report A Case of Primary Non-Hodgkin s Lymphoma of the External Auditory Canal

Case Report Mantle Cell Lymphoma Mimicking Rectal Carcinoma

First relapsed childhood ALL Role of chemotherapy

Head and Neck: DLBCL

Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation

Case Report A Case of Primary Submandibular Gland Oncocytic Carcinoma

Case Report Precursor B Lymphoblastic Lymphoma Involving the Stomach

NON HODGKINS LYMPHOMA: AGGRESSIVE Updated June 2015 by Dr. Manna (PGY-5 Medical Oncology Resident, University of Calgary)

NIH Public Access Author Manuscript Pediatr Blood Cancer. Author manuscript; available in PMC 2010 March 1.

Indium-111 Zevalin Imaging

Mandana Moosavi 1 and Stuart Kreisman Background

What is a hematological malignancy? Hematology and Hematologic Malignancies. Etiology of hematological malignancies. Leukemias

Aggressive Lymphomas - Current. Dr Kevin Imrie Physician-in-Chief, Sunnybrook Health Sciences Centre

Correspondence should be addressed to Anas Khanfar;

Case Report A Case of Cutaneous Plasmablastic Lymphoma in HIV/AIDS with Disseminated Cryptococcus

Indolent Lymphomas. Dr. Melissa Toupin The Ottawa Hospital

Case Report Multiple Giant Cell Tumors of Tendon Sheath Found within a Single Digit of a 9-Year-Old

SAMPLE. Survivorship Care Plan for Lymphoma (Diffuse Large B-Cell) General Information. Care team

Instructions for Chronic Lymphocytic Leukemia Post-HSCT Data (Form 2113)

Significance of myeloid antigen expression in precursor T lymphoblastic lymphoma

Aggressive NHL and Hodgkin Lymphoma. Dr. Carolyn Faught November 10, 2017

B-cell lymphoma vaccine (BiovaxID) for follicular non-hodgkin s lymphoma

Research Article Predictions of the Length of Lumbar Puncture Needles

Prophylactic Cranial Irradiation in Acute Lymphoblastic Leukemia: Is there still an indication? Celine Bicquart, MD Radiation Medicine May 5, 2010

Clinical Commissioning Policy: Bendamustine with rituximab for relapsed and refractory mantle cell lymphoma (all ages)

Blood Cancers. Blood Cells. Blood Cancers: Progress and Promise. Bone Marrow and Blood. Lymph Nodes and Spleen

The Lymphomas. An overview..

CLINICAL MEDICAL POLICY

Pediatric Acute Lymphoblastic Leukemia Protocol 2008 (PALL08)

Case Report Renal Cell Carcinoma Metastatic to Thyroid Gland, Presenting Like Anaplastic Carcinoma of Thyroid

WHAT ARE PAEDIATRIC CANCERS

Solomon Graf, MD February 22, 2013

Differential diagnosis of hematolymphoid tumors composed of medium-sized cells. Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

Lymphatic System Disorders

Extramedullary precursor T-lymphoblastic transformation of CML at presentation

Extranodal natural killer/t-cell lymphoma with long-term survival and repeated relapses: does it indicate the presence of indolent subtype?

Isolated Central Nervous System Relapse of Acute Lymphoblastic Leukemia

The probability of curing children with acute. brief report

Case Report A Rare Cutaneous Adnexal Tumor: Malignant Proliferating Trichilemmal Tumor

Case Report PET/CT Imaging in Oncology: Exceptions That Prove the Rule

Research Article Myeloid Sarcoma: Clinicopathologic, Cytogenetic, and Outcome Analysis of 21 Adult Patients

Clinical Commissioning Policy Proposition: Bendamustine with rituximab for relapsed indolent non-hodgkin s lymphoma (all ages)

Clinical Commissioning Policy: Bendamustine with rituximab for relapsed and refractory mantle cell lymphoma (all ages) NHS England Reference: P

What are the hurdles to using cell of origin in classification to treat DLBCL?

Hiroshi Tsujimoto, 1 Shinji Kounami, 1 Yasuyuki Mitani, 2 Takashi Watanabe, 2 and Katsunari Takifuji Case Presentation. 1.

Lymphoma (Lymphosarcoma) by Pamela A. Davol

Change Summary - Form 2018 (R3) 1 of 12

Case Report Pseudothrombocytopenia due to Platelet Clumping: A Case Report and Brief Review of the Literature

ALL-RELAPSE GROUP Päivi Lähteenmäki on behalf of the group

Correspondence should be addressed to Alicia McMaster;

Treatment results in ALL

Treatment of Adults With Acute Lymphoblastic Leukemia: Do the Specifics of the Regimen Matter?

Acute Lymphoblastic and Myeloid Leukemia

Case Report New Primary Malignancy Masquerading as Metastatic Prostate Adenocarcinoma

2012 by American Society of Hematology

Targeting CD20 and CD22 in B-cell ALL Daniel J. DeAngelo, MD, PhD

Lymphocyte Predominant Hodgkin s Lymphoma. Case Presentation. How would you treat the patient?

Indolent Lymphomas: Current. Dr. Laurie Sehn

Lymphoma Read with the experts

Case #16: Diagnosis. T-Lymphoblastic lymphoma. But wait, there s more... A few weeks later the cytogenetics came back...

Who should get what for upfront therapy for MCL? Kami Maddocks, MD The James Cancer Hospital The Ohio State University

Case Report Pitfalls in the Diagnosis of Anaplastic Large Cell Lymphoma with a Small Cell Pattern

Department of Pharmacy, Georgia Health Sciences University, Augusta, GA, USA 3

Transcription:

Case Reports in Hematology, Article ID 359158, 4 pages http://dx.doi.org/10.1155/2014/359158 Case Report T-Cell Lymphoblastic Leukemia/Lymphoma: Relapse 16 Years after First Remission Lauren Elreda, 1 Manpreet Sandhu, 1 Xinlai Sun, 2 Wondwessen Bekele, 3 Alice J. Cohen, 1 and Maya Shah 1 1 Department of Medicine, Hematology/Oncology, Newark Beth Israel Medical Center, Saint Barnabas Health Care System, 2 Department of Laboratory Medicine and Pathology, Newark Beth Israel Medical Center, Saint Barnabas Health Care System, 3 Department of Pediatrics, Hematology/Oncology, Newark Beth Israel Medical Center, Saint Barnabas Health Care System, Correspondence should be addressed to Lauren Elreda; lelreda@gmail.com Received 10 July 2013; Accepted 19 August 2013; Published 14 April 2014 Academic Editors: D. J. Allsup, U. Dasgupta, K. Kawauchi, and A. Ohsaka Copyright 2014 Lauren Elreda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Little information is available regarding late relapse in patients with T-lymphoblastic leukemia/lymphoma (T-LBL). Because of the aggressive nature of this disease, relapse is common and often happens early. Late relapses are rare and generally occur within a few years after initial remission. The relapse rate after 3 years has been reported to steadily decrease over time yet does not parallel with cure. We report a case of a 26-year-old female with T-LBL and relapse 16 years after her first remission with successful treatment with HyperCVAD and L-asparaginase. 1. Introduction Lymphoblastic leukemia/lymphoma (LBL) is an aggressive subset of non-hodgkin s lymphoma (NHL) that is derived from B or T-lymphoid progenitors [1]. As a disease comparable to acute lymphoid leukemia (ALL), it represents 2% 4% of all adult NHL and the second most common subtype of NHL in children [2, 3]. With progress in chemotherapy in the past few decades, LBL/ALL has become a curable disease. However, there is still a population of patients who experience relapse and it frequently occurs within the first 2 years or during therapy. Late relapses of T-LBL are rare and have been reported to occur within 3 5 years after remission. In this report, we present a case of a young woman with T-LBL that has recurred 16 years after her first remission and is now successfully treated with HyperCVAD and L-asparaginase. 2. Case Report A 26-year-old female presented with complaints of right neck swelling for two weeks. She denied any fever, weight loss, or night sweats. On physical examination, right cervical and supraclavicular adenopathy had been present. Biopsy of a supraclavicular lymph node revealed complete loss of lymph node architecture and sheets of monotonous lymphoid cells with scanty cytoplasm that were positive for CD2, CD3, CD5, CD7, CD99, and TdT and negative for LCA by immunohistochemical stain (Figures 1(a), 1(b), and 1(c)) and 40% of cells demonstrated Ki-67 positivity. Focal necrosis was present. Flow cytometry and cytogenetic analysis of the lymph node biopsy were nondiagnostic due to the low viability of the cells. Bone marrow (BM) examination demonstrated focal involvement of precursor T-cells. BM flow cytometry detected 1.5% of T-cell lymphoblasts with similar immunophenotype of cells in the lymph node biopsy. Cytogenetic analysis of the BM was normal. These findings were consistent with T-LBL. Further staging workup included a lumbar puncture which was negative for malignant cells and apet/ctwhichrevealedmetabolicactivityinbothcervical and thoracic lymph nodes, as well as bilateral inguinal lymph nodes. The clinical stage was Stage IV T-LBL based on the Ann Arbor classification.

2 Case Reports in Hematology (a) (b) (c) Figure 1: Supraclavicular lymph node biopsy ((a) H&E, 40x; (b) IHC stain for CD3, 10x; (c) IHC stain for CD99, 10x). Her past medical history is significant for Stage IV TLBL, involving a right axillary lymph node and bilateral BM involvement, diagnosed at the age of 9. The lymph node biopsy showed malignant lymphoma, lymphoblastic (high grade). The immunophenotype was positive for CD2, CD3, CD5, CD7, TdT, and HLA-DR. The bilateral BM biopsy showed 55% lymphoblasts and 30% lymphoblasts in the right and left sided marrows, respectively. She was treated for a total of 18 months with the LSA2-L2 protocol [4]. This includes a 21-day induction phase with cyclophosphamide 1200 mg/m2 intravenously (IV) 1, daunomycin 60 mg/m2 IV 1, vincristine 2.25 mg/m2 IV 3, prednisone 60 mg/m2 orally (PO) 14 days, and intrathecal (IT) methotrexate 3. It is followed by a consolidation phase with cytarabine 150 mg/m2 IV 14 days, thioguanine 75 mg/m2 IV 14 days, L-asparaginase 6000 IU/m2 IV 11 days, carmustine 60 mg/m2 IV 1, and IT methotrexate 2 doses. Maintenance phase includes treatment with thioguanine, hydroxyurea, daunorubicin, both PO and IT methotrexate, and vincristine [4]. No radiation was administered. At the time of relapse, the patient was not in long-term follow-up. The treatment was initiated with the HyperCVAD protocol [2]. This includes 8 cycles of alternating chemotherapy. Odd cycles 1, 3, 5, and 7 are comprised of cyclophosphamide 300 mg/m2 IV every 12 hours 3 days with concurrent Mesna, vincristine 2 mg IV on days 4 and 11, doxorubicin 50 mg/m2 IV on day 4, and dexamethasone 40 mg PO days 1 4 and 11 14. Even cycles 2, 4, 6, and 8 are comprised of methotrexate 200 mg/m2 IV over 2 hours followed by methotrexate 800 mg/m2 IV over 22 hours on day 1. This is followed by a leucovorin rescue, dose dependent on the methotrexate levels, and cytarabine 3 g/m2 IV every 12 hours on days 2 and 3. IT methotrexate 12 mg was given on day 2 of every cycle and IT cytarabine 100 mg was given on day 8 of every cycle [2]. L-asparaginase 2500 mg/m2 IV was added to this regimen and given as the pegylated form with every cycle starting in the second cycle of HyperCVAD. Treatment was tolerated well with little to no adverse side effects. A followup bone marrow biopsy and PET/CT scan after treatment revealed no evidence of lymphoma. Maintenance therapy was initiated with POMP (6-mercaptopurine, methotrexate, vincristine, and prednisone) [4] and continued for 2 years. 3. Discussion Precursor lymphoid neoplasms include B- and T-lymphoblastic leukemia/lymphoma. The distinction between leukemia and lymphoma is arbitrary when a patient presents with a mass lesion and lymphoblasts in the BM. LBL is described to be a disease comparable to ALL and often difficult to distinguish from one another morphologically. The major distinction between LBL and ALL is that the degree of BM involvement is often greater in ALL [5]. Most precursor lymphoid neoplasms are B-cell phenotype, but 80 95% of LBL cases are of T-cell phenotype [2]. Our patient initially presented with axillary lymphadenopathy and the BM

Case Reports in Hematology 3 showed bilateral marrow involvement. Relapse occurred in a cervical lymph node and the BM involvement was minimal. Therefore a diagnosis of T-LBL was rendered. It has been reported that 20 25% of ALL/LBL patients experience relapse [6].Relapseinthesetwodiseasesisoften early and reflects an aggressive disease. In ALL, early relapse is often defined as occurring in the first 1.5 years from diagnosis whereas late relapse is defined as occurring after 3 years from diagnosis and these patients may represent a subset of patients with a distinct biology that follows a more quiescent course [3, 7]. In one long-term follow-up study of 505 children with relapsed ALL, 74% of relapses were observed within the first 3 years and 4% after 5 years. Only 1% of cases relapsed after 10 years and none of them were T-ALL [6]. Similarly, early relapse is much more common in T-LBL than B-LBL [6 8]. It is difficult to ascertain the overall rates of relapse in T-LBL, in particular late relapse, because of the limited data on this subset of patients. Biologic predictors of relapse have not been well characterizedinlblyetinall;earlyrelapsehasbeenrecently showntobeaconsequenceofadistinctivegeneoverexpression which leads to proliferation and survival of the resistant leukemia cell [8]. Also, epigenetic phenomenon such as the presence of TEL-AML1 silent fusion gene in residual dormant leukemia cells has been implicated as a possible cause of late relapse in ALL due to acquired changes that take place over time [9]. These changes have not been demonstrated in patients with LBL; however gene expression profiling has been used to distinguish whether certain subtypes of T-LBL are more favorable than others [10, 11]. The rate of bcl-2 expression seems to be linked to drug sensitivity. Patients with higher expression of bcl-2 have been identified to have TAL1 and LYL1 and demonstrate a drug resistance pattern while those expressing HOX11 have lower bcl-2 levels and a more favorable prognosis [10, 11]. The success of the initial treatment and the duration of the first clinical remission are very important predictors of prognosis [8]. BM involvement at initial diagnosis has a higher propensity for relapse. Survival for early BM relapse has been reported to range from 0 to15% [12], whereas those with late BM relapse range from 14 to 50% [13]. In addition, the type and intensity of the chemotherapeutic regimen given may also contribute to the overall outcomes of these patients. In earlier studies, the use of standard lymphoma regimens such as CHOP in patients with LBL yielded complete response (CR) rates ranging from 40 to 70% [14]. More recently, intensive pediatric ALL regimens have been utilized in patients with adult ALL and LBL. In earlier studies, the use of standard lymphoma regimens such as CHOP in patients with LBL yielded complete response (CR) rates ranging from 40 to 70% [14]. More recently, intensive pediatric ALL regimens have been utilized in patients with adult ALL and LBL. Thomas et al. describes the use of HyperCVAD in adult patients with predominant T-LBL [2]. CR was achieved in 91% of patients using this protocol. The 3-year progression free survival (PFS) and overall survival (OS) of 33 patients with LBL treated with HyperCVAD had been66%and70%,respectively.the3-yearpfsandos for patients with a T-cell phenotype in particular were 62% and 67%, respectively. Because of these encouraging results weelectedtousehypercvadinourpatient. L-asparaginase has been described to be an integral part of many pediatric regimens [15, 16]. Its antileukemic effect is thought to result from the reduction of circulating asparagine. GMALL 04/89 and GMALL 05/93 protocols [5] were modeled after pediatric ALL regimens and include asparaginase during the induction phase. Hoelzer et al. describes the use of these regimens in 45 adult patients with T-LBL [5].Overall,42outof45patients(93%)achieved acr. Estimated OS, continuous CR, and DFS at 7 years were 51%, 65%, and 62%, respectively. We incorporated L-asparaginase into the HyperCVAD regimen because of its fundamental use in pediatric ALL protocols and previous success in treatment of T-LBL [5]. Autologous stem cell transplant remains the standard approach for consolidation in first or second remission. This wasofferedtothepatientyetshedeclined. Toourknowledge,thiscaseisthelatestreportedrelapse of T-LBL at 16 years after the first clinical remission. The patient was successfully treated at relapse with HyperCVAD and L-asparaginase and now remains in second remission 5 years from first relapse. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. References [1] M. Onciu, Acute lymphoblastic leukemia, Hematology/Oncology Clinics of North America,vol.23,no.4,pp.655 674,2009. [2] D.A.Thomas,S.O Brien,J.Cortesetal., Outcomewiththe hyper-cvad regimens in lymphoblastic lymphoma, Blood, vol.104,no.6,pp.1624 1630,2004. [3] C. Rizzari, M. G. Valsecchi, M. Arico et al., Outcome of very late relapse in children with acute lymphoblastic leukemia, Haematologica,vol.89,no.4,pp.427 434,2004. [4] J. Mora, D. A. Filippa, J. Qin, and N. Wollner, Lymphoblastic lymphoma of childhood and the LSA2-L2 protocol: the 30-year experience at memorial sloan-kettering cancer center, Cancer, vol. 98, no. 6, pp. 1283 1291, 2003. [5] D. Hoelzer, N. Gökbuget, W. Digel et al., Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia, Blood,vol.99,no. 12, pp. 4379 4385, 2002. [6] J.M.Chessells,P.Veys,H.Kempskietal., Long-termfollow-up of relapsed childhood acute lymphoblastic leukaemia, British Haematology,vol.123,no.3,pp.396 405,2003. [7] K. Nguyen, M. Devidas, S.-C. Cheng et al., Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children s Oncology Group study, Leukemia,vol.22,no.12,pp. 2142 2150, 2008. [8] D. Bhojwani, H. Kang, N. P. Moskowitz et al., Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children s Oncology Group study, Blood, vol. 108, no. 2, pp. 711 717, 2006.

4 Case Reports in Hematology [9] A. M. Ford, K. Fasching, E. Renate Panzer-Grü, M. Koenig, O. A. Haas, and M. F. Greaves, Origins of late relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes, Blood, vol. 98, no. 3, pp. 558 564, 2001. [10] A. A. Ferrando, D. S. Neuberg, J. Staunton et al., Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia, Cancer Cell,vol.1,no.1,pp.75 87, 2002. [11] J. W. Sweetenham, Treatment of lymphoblastic lymphoma in adults, Oncology,vol.23,no.12,pp.1015 1020,2009. [12] W. A. Bleyer, H. Sather, and G. D. Hammond, Prognosis and treatment after relapse of acute lymphoblastic leukemia and non-hodgkin s lymphoma: 1985. A report from the Childrens Cancer Study Group, Cancer, vol. 58, no. 2, pp. 590 594, 1986. [13] J. M. Chessells, Relapsed lymphoblastic leukaemia in children: a continuing challenge, British Haematology,vol.102, no. 2, pp. 423 438, 1998. [14] D. Thomas and H. Kantarjian, Lymphoblastic lymphoma, in Hematology/Oncology Clinics of North America: Advances in Treatment of Adult Leukemia, vol.15,partii,pp.51 95,WB Saunders, Philadelphia, Pa, USA, 2001. [15] L. A. Clavell, R. D. Gelber, and H. J. Cohen, Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia, The New England Medicine, vol. 315, no. 11, pp. 657 663, 1986. [16]A.Reiter,M.Schrappe,W.-D.Ludwigetal., IntensiveALLtype therapy without local radiotherapy provides a 90% eventfree survival for children with T-cell lymphoblastic lymphoma: a BFM Group report, Blood, vol. 95, no. 2, pp. 416 421, 2000.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity