Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance.

Similar documents
Comparison of mass spectrometers performances

Characterization of an Unknown Compound Using the LTQ Orbitrap

4th Multidimensional Chromatography Workshop Toronto (January, 2013) Herman C. Lam, Ph.D. Calibration & Validation Group

for the Identification of Phosphorylated Peptides

REDOX PROTEOMICS. Roman Zubarev.

MALDI-TOF. Introduction. Schematic and Theory of MALDI

Phosphorylated glycosphingolipids essential for cholesterol mobilization in C. elegans

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

Lecture 3. Tandem MS & Protein Sequencing

Advances in Hybrid Mass Spectrometry

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

More structural information with MS n

Mass spectra of peptides and proteins - and LC analysis of proteomes Stephen Barnes, PhD

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System

One Gene, Many Proteins. Applications of Mass Spectrometry to Proteomics. Why Proteomics? Raghothama Chaerkady, Ph.D.

Identification of Steroids in Water by Ion Trap LC/MS/MS Application

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Biological Mass spectrometry in Protein Chemistry

Protein and peptide separations,

The use of mass spectrometry in lipidomics. Outlines

Application of a new capillary HPLC- ICP-MS interface to the identification of selenium-containing proteins in selenized yeast

1. Sample Introduction to MS Systems:

Sample Concentration and Analysis of Human Hormones in Drinking Water

Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies.

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

The distribution of log 2 ratio (H/L) for quantified peptides. cleavage sites in each bin of log 2 ratio of quantified. peptides

Simultaneous Analysis of Intact Human Insulin and Five Analogs in Human Plasma Using μelution SPE and a CORTECS UPLC Column

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Introduction to Proteomics 1.0


Proteomics of body liquids as a source for potential methods for medical diagnostics Prof. Dr. Evgeny Nikolaev

Rapid and Sensitive Screening of Benzodiazepines in Serum Using Liquid Chromatography-APCI-Linear Ion Trap System

Symposium on Protein Fractionation

Determination of Amantadine Residues in Chicken by LCMS-8040

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids

MS/MS to Targeted Proteomics (MRM)

Time (min) Supplementary Figure 1: Gas decomposition products of irradiated DMC.

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Mass Spectrometry Infrastructure

Mass Spectrometry based metabolomics

Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications

Tandem mass spectrometry analysis of prostaglandins and isoprostanes

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

Learning Objectives. Overview of topics to be discussed 10/25/2013 HIGH RESOLUTION MASS SPECTROMETRY (HRMS) IN DISCOVERY PROTEOMICS

2D-LC as an Automated Desalting Tool for MSD Analysis

Increasing the Peak Capacity of LC/MS/MS Systems for the Analysis of Complex Biological Samples

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Supporting information

Automated Sample Preparation/Concentration of Biological Samples Prior to Analysis via MALDI-TOF Mass Spectroscopy Application Note 222

Profiling Flavonoid Isomers in Highly Complex Citrus Juice Samples Using UPLC Ion Mobility Time-of-Flight Mass Spectrometry

ION MOBILITY COUPLED TO HIGH RESOLUTION MASS SPECTROMETRY: THE POSSIBILITIES, THE LIMITATIONS

Mass Spectrometry and Proteomics. Professor Xudong Yao Bioanalytical Chemistry Spring 2007

SCS Mass Spectrometry Laboratory

Identification and Quantitation of Microcystins by Targeted Full-Scan LC-MS/MS

Phospholipid characterization by a TQ-MS data based identification scheme

Identification & Confirmation of Structurally Related Degradation Products of Simvastatin

Quantification with Proteome Discoverer. Bernard Delanghe

Analysis of Choline and its Metabolites on the Finnigan LTQ

Development of a Human Cell-Free Expression System to Generate Stable-Isotope-Labeled Protein Standards for Quantitative Mass Spectrometry

Jose Castro-Perez, Henry Shion, Kate Yu, John Shockcor, Emma Marsden-Edwards, Jeff Goshawk Waters Corporation, Milford, MA, U.S. and Manchester, UK

Analysis of Peptides via Capillary HPLC and Fraction Collection Directly onto a MALDI Plate for Off-line Analysis by MALDI-TOF

Mass Spectrometry. Mass spectrometer MALDI-TOF ESI/MS/MS. Basic components. Ionization source Mass analyzer Detector

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016

The Impact of Column Peak Capacity on the Multi- dimensional Chromatography of Complex Peptide Mixtures

Identification of Haemoglobinopathies by LC/MS

Introduction to the Oligo HTCS Systems. Novatia, LLC

SUPPORTING INFORMATION. High Throughput Reaction Screening using Desorption Electrospray Ionization Mass Spectrometry

Methods in Mass Spectrometry. Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification

Improve Protein Analysis with the New, Mass Spectrometry- Compatible ProteasMAX Surfactant

New Instruments and Services

Solving practical problems. Maria Kuhtinskaja

FOURIER TRANSFORM MASS SPECTROMETRY

ABSTRACT. Catherine Fenselau, Professor, Department of Chemistry and Biochemistry

Detection of Low Level of Chloramphenicol in Milk and Honey with MIP SPE and LC-MS-MS

Profiling the Distribution of N-Glycosylation in Therapeutic Antibodies using the QTRAP 6500 System

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

Proteins: Proteomics & Protein-Protein Interactions Part I

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

* Skyline LC SRM. 2 Skyline LC-MS/MS. Skyline University of Washington Windows.

Determination of Benzodiazepines in Urine by CE-MS/MS

Supporting information for. Determination of sub nm levels of low molecular mass (LMM) thiols in natural waters by liquid

Determination of Chlorophenoxyacetic Acid and Other Acidic Herbicides Using a QuEChERS Sample Preparation Approach and LC-MS/MS Analysis

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

International Journal of Applied Pharmaceutical Sciences and Research

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Supporting Information

SEPARATION OF BRANCHED PFOS ISOMERS BY UPLC WITH MS/MS DETECTION

Transcription:

Abundance Abundance Abundance Abundance Abundance Shotgun Proteomics Protein Mixture 1 2 3 MS/MS proteolysis m/z 2 3 Time µlc m/z MS 1 m/z Peptide Mixture m/z

Block Diagram of a Mass Spectrometer Sample In High Vacuum Ion Source Mass Analyzer Detector 8 6 4 2 Relative Abundance1 4 6 8 1 m/z 12 14 16 18 Computer

Block Diagram of a Mass Spectrometer Sample In Tandem Mass Spectrometry or MS/MS High Vacuum Ion Source Mass Analyzer Collisons Mass Analyzer Detector 8 6 4 2 Relative Abundance1 4 6 8 1 m/z 12 14 16 18 Computer

Block Diagram of a Mass Spectrometer Sample In Tandem Mass Spectrometry or MS/MS High Vacuum Ion Source Detector 8 6 4 2 Relative Abundance1 4 6 8 1 m/z 12 14 16 18 Computer

Block Diagram of a Mass Spectrometer Sample In Tandem Mass Spectrometry or MS/MS High Vacuum Ion Source Detector m/z Computer

Abundance Measurement of Peptides by Microcapillary Liquid Chromatography Tandem Mass Spectrometry Microcapillary Chromatography Column Peptide Mixture Peptides are loaded onto the column and separated by liquid chromatography Time

Acquiring Mass Spectrometry Data of Peptides Microcapillary Column 2 kv 3 V Peptides from the column are ionized and transmitted into the vacuum system and trapped in the mass spectrometer

Abundance Acquiring Mass Spectrometry Data of Peptides Peptides from the column are ionized and transmitted into the vacuum system and trapped in the mass spectrometer Peptides are selectively ejected by their mass to produce a mass spectrum The instrument automatically selects a peptide for further analysis Selected m/z m/z

Acquiring a Fragmentation Spectrum The trap is then refilled

Acquiring a Fragmentation Spectrum The trap is then refilled All peptides are ejected from the trap except peptides with the predetermined mass The energy of the isolated peptide is increased resulting in collisions with a gas

Abundance Acquiring a Fragmentation Spectrum The collisions result in structure specific fragments The fragments are then selectively ejected to produce a tandem mass spectrum m/z

Multidimensional Protein Identification Technology (MudPIT) 1 µm i.d. fuse silica Tip is pulled to ~5 μm I.D.

Multidimensional Protein Identification Technology (MudPIT) 1 µm i.d. fuse silica Tip is pulled to ~5 μm I.D. Pack with C18 material 1 st

Multidimensional Protein Identification Technology (MudPIT) 1 µm i.d. fuse silica Tip is pulled to ~5 μm I.D. Pack with C18 material 1 st Pack with SCX material 2 nd

Multidimensional Protein Identification Technology (MudPIT) 1 µm i.d. fuse silica Tip is pulled to ~5 μm I.D. Pack with C18 material 1 st Pack with SCX material 2 nd Peptide digest is loaded offline

Multidimensional Protein Identification Technology (MudPIT) 1 µm i.d. fuse silica Tip is pulled to ~5 μm I.D. Pack with C18 material 1 st Pack with SCX material 2 nd Peptide digest is loaded offline

Multidimensional Protein Identification Technology (MudPIT) H 2 O MeCN NH 4 OAc HPLC ~2 nl/min 2 kv SCX RP- C18 waste

Multidimensional Protein Identification Technology (MudPIT) Step 1 Reverse Phase Gradient H 2 O MeCN NH 4 OAc HPLC 2 kv SCX RP- C18 waste

Multidimensional Protein Identification Technology (MudPIT) H 2 O MeCN NH 4 OAc Step 1 Reverse Phase Gradient Step 2 Salt Pulse HPLC 2 kv SCX RP- C18 waste

Multidimensional Protein Identification Technology (MudPIT) H 2 O MeCN NH 4 OAc Step 1 Reverse Phase Gradient Step 2 Salt Pulse Step 3 Reverse Phase Gradient HPLC 2 kv SCX RP- C18 waste

Multidimensional Protein Identification Technology (MudPIT) H 2 O MeCN NH 4 OAc HPLC Step 1 Reverse Phase Gradient Step 2 Salt Pulse Step 3 Reverse Phase Gradient Step 4 Increase Salt Pulse Repeat 2 kv SCX RP- C18 waste

Relative Abundance Relative Abundance Relative Abundance µlc/µlc/ms/ms of C. elegans Peptides Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance Relative Abundance RT:. - 12. 29.49 34.93 1 95 9 85 8 75 7 65 1 2 3 4 1.61 1.87 11.41 45.53 RT:. - 12.3 37.18 1 37.4 95 9 85 8 75 48.33 48.73 RT:. - 12.2 42.97 1 23.31 95 9 85 8 75 39. 36.26 61.4 RT:. - 12.4 3.79 1 33.7 27.34 7 57.62 21.24 7 35.84 7 37.27 27.5 47.31 65 65 65 35.4 95 9 85 8 75 34.49 46.31 46.8 NL: 4.86E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6154-worm-trizolurea-15n-J1-1 NL: 3.E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6154-worm-trizolurea-15n-J1-2 NL: 3.22E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-3 NL: 3.9E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-4 6 55 5.15 22.9 38.82 4.9 6 55 5 2.86 21.62 37.8 65.92 6 55 5 27.25 6.66 61.28 6 55 5 45 4 35 3 25 2 15 1 5 8.65 12.66 48.81 57.8 3.65 5.73 1 2 3 4 5 6 7 8 9 1 11 64.17 64.5 71.31 65.67 71.71 114.58 77.6 81.56 86.77 111.56 1.89 9.15 11.37 114.88 45 66.11 4 44.58 38.7 71.17 35 57.6 3 63.93 75.92 39.85 25 3.48 6.44 8.17 29.14 2 15 24.33 52.83 84.5 1 84.97 19.83 5.52 2.7 111.47 86.15 18.71 5 4.78 5.82 18.71 88.49 14.88 7.32 14.23 1 2 3 4 5 6 7 8 9 1 11 12 45 4 35 3 25 2 15 1 5 2.24 3.35 49.91 5.54 5.7 57.1 66.73 56.64 96.28 13.31 67.31 76.41 77.6 77.3 78.75 87.44 67.65 6.45 87.61 14.31 97.84 6.13 12.41 19.82 4.32 1 2 3 4 5 6 7 8 9 1 11 12 45 4 35 3 25 2 15 1 5 13.96 29.75 29.29 19.61 24.1 39.24 44.78 44.64 49.41 51.15 56.76 72.16 97.16 9.72 65.3 75.79 96.6 8.6 64.83 98.2 61.79 78.22 98.2 6.34 83.82 93.83 85.68 98.79 3.8 99.26 13.52 11. 1 2 3 4 5 6 7 8 9 1 11 12 71.99 RT:. - 12.2 1 95 9 85 8 75 7 5 6 7 8 42.54 42.83 RT:. - 12.4 1 95 9 85 8 34.47 34.71 41.99 75 75 75 33.94 43.19 7 35.7 7 7 11.36 34.38 RT:. - 12.2 1 95 9 85 8 38.51 41.72 RT:. - 12.1 1 95 9 85 8 48.3 73.23 73.7 89.83 89.47 9.24 88.22 NL: 4.86E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-5 NL: 3.59E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-6 NL: 1.44E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-7 NL: 1.39E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-8 65 6 65 6 4.17 65 6 65 6 36.26 74.16 55 55 55 5.93 69.62 2.35 49.28 52.92 86.86 55 33.33 38.43 38.63 69.93 5 45 33.7 5 45 32.53 4.54 5 45 54.44 69.97 72.76 5 45 11.7 32.77 4.34 4 4 4 56.25 4 17.71 24.19 4.82 35 3 25 2 15 1 5 28.87 37.98 57.48 57.88 44.5 61.29 19.65 26.8 65.47 73.37 9.47 25.9 45.17 56.24 73.88 4.6 18.81 23.89 54.73 67.81 74.13 93.35 9.55 78.16 86.65 94.4 1.45 112.84 35 3 3.97 88.67 25 3.68 11.24 88.49 61.7 2 41.29 56.73 14.73 89.6 88.17 46.97 15 15.3 23.14 54.97 7.92 8.13 73.83 18.36 68.63 76.12 48.25 89.24 68.27 96.65 1 4.8 84.68 62.67 77.12 93.26 1.3 111.27 5 11.87 112.18 113.49 35 3 25 2 15 1 5 56.74 18.23 68.92 6.59 73.21 6.83 73.39 32.28 23.49 24.4 31.29 61.38 42.89 67.11 73.59 79.92 8.25 4.18 81.26 88.1 92.92 93.48 99.3 1.76 112.53 35 3 25 2 15 1 5 19.59 26.71 41.36 49.99 58.79 59.25 58.53 69.36 5.31 59.67 91.17 4.77 93.13 61.6 84.52 94.72 9.18 98.66 18.64 18.2 18.95 1.8 11.93 8.66 8.99 1 2 3 4 5 6 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11 12 1 2 3 4 5 6 7 8 9 1 11 12 RT:. - 12. 1 95 9 85 8 75 9 1 11 12 3.16 3.32 67.78 9.94 RT:. - 12. 1 95 9 85 8 21.42 RT:. - 12. 1 95 9 85 8 75 75 75 2.95 RT:. - 12.1 1 95 9 85 8 26.72 28.65 NL: 1.55E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-9 NL: 2.25E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-1 NL: 2.45E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6174-worm-trizolurea-15n-H-11 NL: 3.47E7 Base Peak F: ITMS + c ESI Full ms [ 4.-14.] MS 6154-worm-trizolurea-15n-J1-12 7 91.62 7 7 7 65 6 33.55 67.63 65 6 65 6 27.33 65 6 42.56 55 5 45 74.33 55 5 45 66.96 67.19 67.47 55 5 45 55 5 45 2.27 14.93 8.67 42.82 4 35 3 25 2 15 1 5 2.87 21.85 25.97 35.62 4.24 4.66 11.83 48.29 59.53 92.6 18.93 11.65 18.34 1.38 12.12 43.61 48.77 19.67 78.31 18.11 58.64 64.68 12.68 78.69 92.99 19.93 79.2 97.15 3.61 17.62 81.48 98.37 111.2 4.82 113.79 1 2 3 4 5 6 7 8 9 1 11 12 88.63 88.48 92.9 4 35 3 25 2 15 1 5 26.42 35.21 19.24 18.44 29.97 87.91 68.12 89.9 76.36 51.22 51.2 66.9 44.85 55.11 4.66 11.32 63.75 75.64 76.93 63.38 11.31 17.55 11.86 11.8 55.55 69.94 77.53 3.7 19.2 94.42 13.99 112.57 4.3 1 2 3 4 5 6 7 8 9 1 11 12 67.84 19.6 16.92 4 16.57 7.27 35 16.37 31.61 7.52 17.7 3 43.55 43.9 18.4 25 4.51 43.86 18.62 2 44.5 37.92 46.26 85.98 52.64 15.6 18.86 15 72.44 46.45 76.34 76.64 19.68 1 57.1 69.6 86.93 77.1 11.15 9.36 15.88 57.56 64.9 4.7 78.54 91.98 111.37 5 92.61 112.11 1 2 3 4 5 6 7 8 9 1 11 4 35 25.21 62.38 3 11.68 65.97 72.52 25 31.37 39.67 2 111.39 59.61 39.9 56.2 111.2 44.82 77.8 15 8.19 77.68 5.19 1 112.2 6.41 87.14 5 92.32 79.56 93.36 99.44 116.29 5.6 1 2 3 4 5 6 7 8 9 1 11 12 MS/MS Spectra: 281,484 Peptides Identified: 8,13 Proteins Identified With >95% Confidence: 2,346

Humans Insulin Receptor C. elegans DAF-2 IRS1-4 IST-1 pi 3-kinase AGE-1 PDK1 PDK-1 AKT/PKB AKT-1/AKT-2 FKHR FKHRL1 AFX DAF-16

Fractionation to Improve the Coverage of Proteins Involved in Insulin / IGF-1 Signaling Reversed Phase 1 Fractions Soluble Proteins Insoluble Proteins Proteins Identified that are Known to be Involved in the Insulin (NH 4 ) 2 SO 4 Cuts 8 Fractions Density Centrifugation / IGF-1 Signaling Pathway 1 Fractions 1 MudPITs 8 MudPITs 1 MudPITs >6,, MS/MS Spectra, 21,264 Unique Peptide Identifications, and 4,373 Unique Protein Identifications

Targeted Proteomics using nanolc-hsrm-ms

Relative Abundance Relative Abundance Q1 CID Q3 Ion Source 1 521.7 757.6 1 8 8 6 6 4 4 2 2 521. 521.5 522. 522.5 523. 523.5 524. m/z 2 4 6 8 1 m/z

Counts Counts Counts Counts Counts Counts Counts Counts Counts Precursor Ion > Product Ion SRM Chromatograms TGASEAVPSEGK > GK TGSAEAVPSEGK > EGK TGSAEAVPSEGK > SEGK TGSAEAVPSEGK > PSEGK TGSAEAVPSEGK > VPSEGK TGSAEAVPSEGK > AVPSEGK TGSAEAVPSEGK > EAVPSEGK TGSAEAVPSEGK > AEAVPSEGK TGSAEAVPSEGK > SAEAVPSEGK 1x1 5 8x1 4 6x1 4 4x1 4 y2 566.78 > 24.13 2x1 4 33 34 37 38 39 4 32 35 36 2x1 4 1x1 4 y3 9x1 3 6x1 3 566.78 > 333.18 3x1 3 32 33 34 35 36 37 38 39 4 1x1 4 y4 9x1 3 6x1 3 566.78 > 42.21 3x1 3 32 33 34 35 36 37 38 39 4 2x1 4 y5 1x1 4 8x1 3 566.78 > 517.26 4x1 3 32 33 34 35 36 37 38 39 4 1x1 4 y6 8x1 3 5x1 3 566.78 > 616.33 3x1 3 32 33 34 35 36 37 38 39 4 1x1 5 y7 9x1 4 6x1 4 566.78 > 687.37 3x1 4 32 33 34 35 36 37 38 39 4 8x1 3 y8 6x1 3 4x1 3 566.78 > 816.41 2x1 3 32 33 34 35 36 37 38 39 4 3x1 4 2x1 4 4 y9 566.78 > 93.44 1x1 33 34 37 38 39 4 32 35 36 3x1 4 y1 2x1 4 4 566.78 > 131.5 1x1 32 33 34 35 36 37 38 39 4

Synthetic Peptide Standards Relative Abundance Relative Abundance Worm Homogenate 25 µg Relative Abundance Relative Abundance 1 1 8 IDATTHIGGVQIK DAF-16 8 QEDVVIEGWLHK AKT-1 6 6 4 4 2 2 2 21 22 23 24 25 2 21 22 23 24 25 1 8 75 attomole IDATTHIGGVQIK 1 8 7.5 femtomole QEDVVIEGWLHK 6 6 4 4 2 2 2 21 22 23 24 25 2 21 22 23 24 25

Measurement of Absolute Levels of DAF-16 and AKT-1 During Development Using Standard Addition Femtomoles per 25 g Total Protein 5 45 4 35 3 25 2 15 1 5 DAF-16 AKT-1 embryo 18 h 24 h 36 h 48 h 6 h 76 h 8 h 96 h Development Time

Protein of Interest General Approach for Targeted Identification of Proteins by hsrm 1 MAESHLLQWL LLLLPTLCGP GTAAWTTSSL ACAQGPEFWC QSLEQALQCR 51 ALGHCLQEVW GHVGADDLCQ ECEDIVHILN KMAKEAIFQD TMRKFLEQEC 11 NVLPLKLLMP QCNQVLDDYF PLVIDYFQNQ TDSNGICMHL GLCKSRQPEP 151 EQEPGMSDPL PKPLRDPLPD PLLDKLVLPV LPGALQARPG PHTQDLSEQQ 21 FPIPLPYCWL CRALIKRIQA MIPKGALAVA VAQVCRVVPL VAGGICQCLA 251 ERYSVILLDT LLGRMLPQLV CRLVLRCSMD DSAGPRSPTG EWLPRDSECH 31 LCMSVTTQAG NSSEQAIPQA MLQACVGSWL DREKCKQFVE QHTPQLLTLV 351 PRGWDAHTTC QALGVCGTMS SPLQCIHSPD L Any Peptide Identified Previously? (LTQ) YES Approximate Precursor and Product Ions from Previously Acquired Data

Protein of Interest General Approach for Targeted Identification of Proteins by hsrm 1 MAESHLLQWL LLLLPTLCGP GTAAWTTSSL ACAQGPEFWC QSLEQALQCR 51 ALGHCLQEVW GHVGADDLCQ ECEDIVHILN KMAKEAIFQD TMRKFLEQEC 11 NVLPLKLLMP QCNQVLDDYF PLVIDYFQNQ TDSNGICMHL GLCKSRQPEP 151 EQEPGMSDPL PKPLRDPLPD PLLDKLVLPV LPGALQARPG PHTQDLSEQQ 21 FPIPLPYCWL CRALIKRIQA MIPKGALAVA VAQVCRVVPL VAGGICQCLA 251 ERYSVILLDT LLGRMLPQLV CRLVLRCSMD DSAGPRSPTG EWLPRDSECH 31 LCMSVTTQAG NSSEQAIPQA MLQACVGSWL DREKCKQFVE QHTPQLLTLV 351 PRGWDAHTTC QALGVCGTMS SPLQCIHSPD L Any Peptide Identified Previously? (LTQ) YES NO Peptide Candidates Approximate Precursor and Product Ions from Previously Acquired Data Predict Precursor and Product Ions in silico

B2-AR B2-AR Group Means Non-Failing Failing Failing Non-Failing Calsequestrin Calsequestrin Group Means Non-Failing Non-Failing Failing Failing

MLC2 MLC Group Means Non-Failing Failing Failing Non-Failing

Troponin-C: Regulation Protein of Contraction Nonfailing Failing