INFLUENCE OF SOME GROWTH FACTORS ON IN-VITRO GROWTH OF FUSARIUM OXYSPORUM F. SP. PHASEOLI CAUSING SEEDLING MORTALITY OF BUSH BEAN

Similar documents
Physiological studies of Sclerotinia sclerotiorum causing stem rot of fennel (Foeniculum vulgare Mill.)

EFFECT OF DIFFERENT CARBON SOURCES ON THE GROWTH OF DIFFERENT ISOLATES OF FUSARIUM OXYSPORUM f. sp. CUBENSE IN DIFFERENT MEDIA

Evaluation of botanicals and bioagents against chickpea wilt complex pathogens

Effect of nitrogen sources on the growth of Pythium aphanidermatum (Edson) Fitz

Cultural and Physiological Variation Between Isolates of Stemphylium botryosum the Causal of Stemphylium Blight Disease of Lentil (Lens culinaris)

Biological control of Fusarium solani f. sp. phaseoli the causal agent of root rot of bean using Bacillus subtilis CA32 and Trichoderma harzianum RU01

oxysporum f, sp, ciceri and Meloidogyne javanica

In vitro antagonistic activity of Trichoderma species against Fusarium oxysporum f. sp. melongenae

STUDIES ON CULTURAL, MORPHOLOGICAL AND PATHOGENIC VARIABILITY AMONG THE ISOLATES OF FUSARIUM OXYSPORUM F. SP. CICERI CAUSING WILT OF CHICKPEA

Heterobasidion insulare

Managing Fusarium Diseases of Vegetables

Studies on Cultural, Morphological Variability in Isolates Fusarium solani, Incitant of Dry Root-rot of Sweet Orange

INTEGRATED MANAGEMENT OF ROOT ROT DISEASE OF MULBERRY CAUSED BY FUSARIUM SOLANI

Evaluation of fungicides against Fusarium oxysporum ciceri causing chickpea wilt

STUDIES ON FUNGAL POPULATION OF CUMIN (NIGELLA SATIVA L.) FROM DIFFERENT PARTS OF MARATHWADA.

EVALUATION OF FUNGICIDES FOR MANAGEMENT OF FUSARIUM WILT OF PIGEONPEA CAUSED BY FUSARIUM UDUM BUTLER

Symptomatology, proving pathogenicity and standardization of inoculum density of Fusarium oxysporum causing wilt of fenugreek

Fusarium root rot of soybean occurrence, impact, and relationship with soybean cyst nematode

THE OHIO JOURNAL OF SCIENCE

Antagonistic Activity and Shelf Life Study of Trichoderma harzianum (Rifai)

Morphological and cultural characterization of colletotrichum capsici, incitant of blight of chickpea in Andhra Pradesh, India

Asian Journal of Food and Agro-Industry ISSN Available online at

EFFICACY OF DIFFERENT FUNGICIDES AGAINST DRY ROT PATHOGEN OF POTATO CAUSED BY FUSARIUM SP. UNDER IN VITRO CONDITION

Detoxification of oxalic acid by Pseudomonas fluorescens during wilt disease condition in chickpea plant

The Antimicrobial Effect of Seed Coat Polymers on Soil Borne Pathogens of Castor and Groundnut

Eco-friendly management of wilt caused by Fusarium oxysporum f.sp. Ciceri in chickpea

Nature of Protection of Chilli Seedling from Rhizoctonia Damping-off by Plant Growth Promotion Fungi 1) A. Muslim

MIDHILA PADMAN and JANARDHANA G R*

Int.J.Curr.Microbiol.App.Sci (2016) 5(8):

Assessment of Carrier Materials to Formulate Trichoderma Harzianum Bio-Fungicide for Controlling Foot and Root Rot Disease of Brinjal in Seed Bed

Screening of genotypes and effect of fungicides against purple blotch of onion.

Thermo-Therapy and Use of Biofungicides and Fungicides for Management of Internal Discoloration of Horseradish Roots

Formulation of alternative culture media for bacterial and fungal growth

Plant Pathogen Suppression the Synergistic Effect between Biofertilizer and Irradiated Oligochitosan of Tomato

Screening of BARI Rhizobium Biofertilizers against Foot and Root Rot of Chickpea

OPTIMIZATION OF TRICHODERMA STRAIN CULTIVATION FOR BIOCONTROL ACTIVITY

2 1 Liu Chunji 2 Kemal Kazan 2. Studies on Conditions for Sporulation of Pathogen Fusarium pseudograminearum

Factors influencing population dynamics of Fusarium oxysporum f. sp. cumini in the presence and absence of cumin crop in arid soils

Evaluation of agro-industrial wastes for conidia based inoculum production of bio-control agent: Trichoderma harzianum

CHAPTER II THE EFFECT OF TEMPERATURE AND CULTURE MEDIUM ON THE GROWTH AND SPORULATION OF DRECHSLERA CATENARIA

Variability Among the Isolates of Sarocladium Oryzae Incitant of Rice Sheath Rot

Ampelomyces quisqualis for control of powdery mildew

Fusarium Diseases of Tomato. Hung Doan, Gene Miyao and Mike Davi Department of Plant Pathology University of California, Davis

Evaluation of Fungicides, Botanicals, Neem products and Bio-agents against Wilt of Pigeonpea caused by Fusarium udam.butler

Study and assessment of compost of different organic mixtures and effects of organic compost tea on plant diseases.

Survey for the Incidence of Root Rot/Wilt of Fenugreek in Northern Karnataka, India

Screening of indigenous potential antagonistic Trichoderma species from tomato rhizospheric soil against Fusarium oxysporum f. sp.

Int.J.Curr.Microbiol.App.Sci (2018) 7(9):

Bioactive Test of Metabolites from Chaetomium cochliodes against Phytophthora sp.

Tropentag 2012, Göttingen, Germany September 19-21, 2012

Optimization of Cultural Conditions for Production of Antifungal Bioactive Metabolites by Streptomyces spp. Isolated from Soil

In-vitro Efficacy of Different Fungicides against Pathogens Causing Wilt of Betelvine

Forest Pest Management SD14 M CI Report 87-12

Effect of Neem Kernel Cake Powder (NKCP) on Fusarium Wilt of Tomato when Used as Soil Amendment

Effect of Botanicals and Bioagents on Growth of Aspergillus niger (Van Tiegh) Causing Black Mold in Onion

and biocontrol activity of microorganisms for sustainable agriculture

Mahesh Singh, H.K. Singh, Shiwangi, Madan Maurya

7-012: Detection of Alternaria padwickii on Oryza sativa (Rice)

Efficacy of different fungicides for the management of chickpea wilt (Fusarium oxysporum f. sp. ciceri)

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Biological control of aquatic weeds by Plectosporium alismatis

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 8 No. 3, January-March 2014

Study of wilt producing Fusarium sp. from tomato (Lycopersicon esculentum Mill)

Study on Nutritional Requirements of Nematophagous Fungi in Terms of Carbon and Nitrogen Sources

Scholars Research Library. Purification and characterization of neutral protease enzyme from Bacillus Subtilis

Efficacy of various bio-agents and plant extract against Septoria lycopersici

Management of Coriander Wilt (Fusarium oxysporium) through Cultural Practices as Organic Amendments and Date of Sowing

In vitro Screening of Plant Extracts, Trichoderma harzianum and Carbendazim against Fusarium oxysporium f. sp. Lycopersici on Tomato

Studies on cultural, morphological variability in isolates of Fusarium solani (Mart.) Sacc., incitant of dry root-rot of Citrus

Screening of Fungicides, Botanicals and Bioagents against Colletotrichum dematium In Vitro

Factors affecting yeast growth and protein yield production from orange, plantain and banana wastes processing residues using Candida sp.

NUTRITIONAL REQUIREMENTS FOR THE GROWTH AND ARTHROSPORE

PLANT PATHOLOGY AND NEMATOLOGY. Method for Rapid Production of Fusarium oxysporum f. sp. vasinfectum Chlamydospores

Microbial Analysis for sesame seed(sesamum indicum) & pathogenicity test for some Alternaria spp.on seed.

Efficacy of Fungicides and Biocontrol Agents against Fusarium oxysporum f.sp. ciceri

Inhibition of Ergosterol Biosynthesis in Fungal Plant Pathogens by Bacillus sp.

Fungi Isolated from Flue-cured Tobacco at Time of Sale and After Storage1

Vitamin Requirements of Cercospora beticola Sacc.

Influence of Physiological and Environmental Factors on Growth and Sporulation of an Antagonistic Strain of Trichoderma viride RSR 7

Potential of biocontrol agents against basal rot of onion caused by Fusarium oxysporumf. sp. Cepae

Diversity and Selectivity of Mycotoxin Fungi Affecting Arachis hypogaea Seed Quality in Western Kenya

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

IN-VITRO EVALUATION OF FUNGAL ANTAGONISTS AND PLANT EXTRACTS AGAINST FRENCH BEAN ROOT ROT CAUSED BY RHIZOCTONIA SOLANI KHUN.

Efficacy of Some Plant Extracts on Growth and Germination of Rhizopus stolonifer and Fusarium oxysporum Isolated from Rotten Irish Potato Tubers

Int.J.Curr.Microbiol.App.Sci (2017) 6(9):

Prof Ralph Noble. Mr Adrian Jansen. 30 July 2012

Effect of Environmental Factors on the Growth of Aspergillus Species Associated with Stored Millet Grains in Sokoto.

Screening of Tuberose Cultivars and Effect of Fungicides against Tuberose Leaf Spot Caused by Alternaria polyanthi

Potential of some fungicides on the growth and development of Sclerotium rolfsii Sacc. in vitro

CULTURAL, MORPHOLOGICAL AND BIOCHEMICAL VARIATIONS OF ALTERNARIA SOLANI CAUSING DISEASES ON SOLANACEOUS CROPS

In vitro Evaluation of Trichoderma viride and Trichoderma harzianum Against Fusarium Wilt of Chickpea

Project title: Fusarium wilt of lettuce: management through detection, avoidance and disease resistance

Fusarium Species Associated with Tall Fescue Seed Production in Oregon

Eco-Friendly Management of Fusarium oxysporum f. sp. ciceri the Causal Agent of Chickpea Wilt Disease under In-vitro Condition

Laboratorios CONDA, S.A. Distributed by Separations

THE EFFECT OF TEMPERATURE ON THE TRANSLOCATION OF PHOSPHORUS BY RHIZOPUS STOLONIFER

Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cepae from Onion in Colorado

Sexual reproduction of

Transcription:

INFLUENCE OF SOME GROWTH FACTORS ON IN-VITRO GROWTH OF FUSARIUM OXYSPORUM F. SP. PHASEOLI CAUSING SEEDLING MORTALITY OF BUSH BEAN S. Sharmin Siddique 1, M. K. A. Bhuiyan 2, M. R. Uddin 3 and M. B. Anwar 1 1 Scientific Officer, Plant Pathology Division, 3 Senior Scientific Officer, Horticulture Division, Regional Agricultural Research Station, Jessore and 2 Professor, Plant Pathology Department, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur; Bangladesh ABSTRACT S. Sharmin Siddique, M. K. A.Bhuiyan, M. R. Uddin and M. B. Anwar. 212. Influence of some growth factors on invitro growth of Fusarium oxysporum f. sp. phaseoli causing seedling mortality of bush bean. Bangladesh J. Plant Pathol. Vol. 28 (1&2): 13-18. The present experiment was conducted to determine the influence of different temperature regimes (15, 2, 25, 3 and 35C), ph levels (4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8. and 8.5), nitrogen sources (peptone, L-asparagines, NaNO3, NH4NO3, (NH4)2SO4,), carbon sources (dextrose, D-xylose, sucrose, glycerol and D-mannitol) and C/N ratio (5, 1, 2, 4, 8, and 1) on in-vitro growth of Fusarium oxysporum f.sp. phaseoli isolated from diseased bush bean (Phaseolus vulgaris L.) seedlings. The growth was measured in terms of radial colony diameter on semi solid medium and dry mycelial weight grown in liquid medium. The pathogen grew well at the temperature range of 15-35 C, ph range of 4.-8.5 and C/N ratio range of 5-1. The maximum colony diameter of 85.47 mm and 272.89 mg mycelial dry weight per plate were found at 3C. The highest colony diameter of 78.67 mm/plate was recorded from ph 6. and maximum dry mycelial weight of 246.6 mg/plate was found at ph 6.5. The highest colony diameter and dry mycelial weight were recorded when C/N ratio was maintained at 2. The best source of nitrogen was peptone and that of carbon was sucrose. Based on results of the present study it may be concluded that the optimum temperature, ph and C/N ratio for mycelial growth of the fungus are 3 C, ph 6.-6.5 and C/N ratio 2, respectively. Peptone and sucrose are the best sources of nitrogen and carbon, respectively. Keywords: Growth factors, in-vitro growth, Fusarium oxysporum f.sp. phaseoli, bush bean. INTRODUCTION Fusarium oxysporum f. sp. phaseoli is a major cause of seedling mortality of vegetables including bush bean (Phaseolus vulgaris L.). It causes seed deterioration and root rot or wilt (Cavalacanti et al. 22). Ellanskaia (1969) demonstrated that different sources of carbon had remarkable influence on the growth and conidia formation of fungi under the genus Fusarium. Warner (199) studied the effect of temperature and medium composition on growth and sporulation of F. oxysporum. He found that the maximum growth and sporulation of the fungus occurred on potato dextrose agar and malt agar at 25-3C. Chlamydospore germination is influenced by the presence of exogenous sources of carbon and nitrogen (Ciotola et al. 2). The effects of physiological and pathological factors on growth, development and pathogenicity of F. oxysporum have been well documented by Ciotola et al. (2). Systematic researches on physiological aspects of F. oxysporum f. sp. phaseoli causing seedling mortality of bush bean are not available in Bangladesh. But such information is essential to develop an appropriate control strategy against seedling mortality of vegetable crops caused by F. oxysporum f.sp. phaseoli. 212 Bangladesh Phytopathological Society The present study was undertaken to determine the influence of different growth factors on in-vitro growth of F. oxysporum f. sp. phaseoli infecting bush bean. MATERIALS AND METHODS Influence of five important growth factors namely temperature during incubation, and ph, nitrogen source, carbon sources and C/N ratio of the culture medium were tested following in-vitro method (Dhingra and Sinclair 1985). First two experiments were conducted to test five temperature regimes (15, 2, 25, 3 and 35 C) and ten levels of ph (4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 8. and 8.5). In both the experiments, potato dextrose agar (PDA) and potato dextrose broth (Tuite 1969) were used. Another three experiments were conducted to test the effect of five nitrogen sources (NaNO 3, NH 4NO 3, (NH 4) 2SO 4, peptone and L-Asparagine), five carbon sources (Dextrose, D-Xylose, Sucrose, Glycerol and D- mannitol) and six levels of C/N ratio (5, 1, 2, 4, 8, and 1) on mycelium growth of F. oxysporum f.sp. phaseoli. Czapek s solution with agar (semisolid) and without agar (liquid) was used as basal media. The test fungus, F. oxysporum f.sp. phaseoli was isolated from foot rot infected bush bean seedling following tissue Vol. 28 No. 1&2, 212 13

planting method (Tuite 1969). To prepare its inocula, the fungus was grown on PDA medium in Petri dishes. Mycelial discs were cut from growing edge of 4 days old culture of the fungus with a flame sterilized 5 mm diameter cork borer. Except the experiment with ph levels, the ph of the culture medium was adjusted to 6 using.1n HCl and.1n NaOH and sterilized in an autoclave at 12C under 1kg/cm 2 pressure for 2 minutes. The liquid medium (broth) was prepared using all ingredients except agar. To test carbon sources, Czapek s medium was prepared by mixing each carbon source at 3 g per 1 liter. Czapek s medium without any carbon source was used as control. To study the influence of different nitrogen sources, the Czapek s medium was prepared by mixing requisite quantity of each nitrogen source which is equivalent to the amount of nitrogen obtainable from 3g of NaNO 3. The Czapek s medium without any nitrogen source was used as a control. To test the effect of C/N ratio on growth of the pathogen, Czapek s medium was prepared by mixing requisite quantity of NaNO 3 as a source of nitrogen at two fixed levels of sucrose (2g and 5g) as a source of carbon. The levels of the C/N ratio were 5, 1, 2, 4, 8, and 1. The growth of the fungus was measured in terms of colony diameter and mycelial dry weight. To measure colony diameter, agar medium (semisolid) was used and the fungus was grown in 9 mm glass Petri dishes. For the measurement of mycelium dry weight, the fungus was grown in 1 ml conical flasks containing liquid medium (without agar). The agar media were dispensed into the Petri dishes and the liquid media were also poured into the conical flasks at 2 ml per dish or flask. To measure colony diameter, Petri plates containing agar medium were inoculated after solidification with the mycelium discs (.5 cm) of the test fungus. The inoculum was placed at the center of each plate. Except the experiment to test different temperature regimes, the inoculated Petri plates under all experiment were incubated at 25C in incubators. The plates were arranged in the incubators following completely randomized design with three replications. The colony growth was measured by averaging the two diameters taken at right angle for each colony after 4 days of incubation. To measure mycelium dry weight, conical flaks containing potato dextrose broth or liquid Czapeck s medium (4 C) were inoculated with the inoculum at one disc per flask. The inoculated flasks were incubated at room temperature (25-28 C) for 14 days. The flasks were arranged on the laboratory desks following completely randomized design with three replications (flasks). At the end of incubation period, the cultures in all flasks were filtered through dry (at 7 C for 12 hr) and pre-weighed filter paper. Dry weight of mycelium was determined after drying the mycelium along with the filter paper in an oven at 7 C for constant weight. Dry weight of mycelium was obtained by subtracting weight of only filter paper from weight of filter paper plus mycelium. Data collected from different experiments were analyzed for ANOVA using MSTAT-C program. Duncan s Multiple Range Test (DMRT) was performed to compare treatment means. Whenever necessary, data were transformed following appropriate method before statistical analysis. RESULTS AND DISCUSSION Effect of temperature on mycelial growth Results on the effect of temperature regimes on radial colony diameter and mycelium dry weight of F. oxysporum f. sp. phaseoli are presented in Figure 1. Significantly the highest radial growth was observed at 3C followed by room temperature, 25 and 2C. The lowest radial growth was observed at 15C. The optimum temperature for the radial colony growth was 3C. An increase or decrease from the optimum temperature, the radial growth of the pathogen was significantly reduced. The relationship between temperature regimes and radial colony diameter was polynomial. Similar trend was observed in case of mycelium dry weight. The highest mycelium dry weight was found at 3C followed by room temperature (25-28 C), 25 and 2C. However, the mycelium dry weight at those levels was statistically similar but significantly higher compared to 35 and 15C. Relationship between mycelium dry weight and temperature level was also polynomial. Findings of the present study suggest that temperature regime play an important role on the growth of the F. oxysporum f.sp. phaseoli. Effect of ph on mycelium growth The ph of the culture medium showed appreciable influence on radial colony diameter and mycelium dry weight of F. oxysporum f. sp. phaseoli. The highest radial growth was observed at ph 6.5, which was statistically similar to the growth at ph 5., 5.5, 6. and 7.. The lowest radial hyphal growth was recorded at ph 4. followed by ph 8.5. The highest mycelium dry weight was found at ph 6.5, which was statistically similar to ph 5.5, 6., 6.5 and 7.. The lowest mycelium dry weight was observed at ph 4., which was statistically similar to ph 8.5. The relationship between radial colony diameter and ph level, and mycelium dry weight and ph level was polynomial. The results of the present experiment indicate 14 Bangladesh J. Plant Pathol.

272.89 233.19 Mycelium growth 156.76 17.23 85.47 51.17 73.67 91.73 52.67 29. that F. oxysporum f. sp. phaseoli can grow at a wide range (4.-8.5) of ph levels of culture medium (Fig. 2). Effect of nitrogen sources on mycelial growth The effect of five nitrogen sources on radial colony diameter and mycelium dry weight of F. oxysporum f. sp. phaseoli is shown in Figure 3. All the sources of nitrogen increased radial growth significantly over control (Czapek s medium). The highest radial colony diameter of the pathogen was obtained from Czapek s basal medium supplemented with peptone as a nitrogen source. The radial growth obtained from the medium containing NaNO 3 and NH 4NO 3 was statistically similar but significantly higher compared to (NH 4) 2SO 4. The highest mycelial dry weight was observed in peptone medium followed by L-Asparagine. But their differences were not significantly different. Other nitrogen sources also gave higher mycelial dry weight compared to control. Effect of carbon sources Use of different carbon sources in the growth medium gave significant increase in colony growth of F. oxysporum f. sp. phaseoli compared to control. The highest radial growth was obtained with Czapek s medium containing sucrose as a carbon source followed by glucose and dextrose. Among the carbon sources, glycerol appeared to be a poor source of carbon for in vitro the growth of the pathogen. Similar growth trend was also observed incase of mycelium dry weight. Sucrose was appeared to be the best source of carbon for mycelium dry weight of F. oxysporum f. sp. phaseoli followed by glucose, dextrose, mannitol, glycerol and PDA (Fig. 4). 3 3 Radia colony diameter (mm) Mycelial dry weigh (mg) Poly. (Radia colony diameter (mm)) Poly. (Mycelial dry weigh (mg)) 2 1 1 15 2 25 3 35 Temperature level ( C ) Fig 1. Effect of temperature on radial colony diameter and mycelial dry weight of Fusarium oxysporum f. sp. phaseoli. 3 Radial colony diameter (mm/plate) Mycelium dry wt (mg/plate) Poly. (Radial colony diameter (mm/plate)) Radial diameter and Mycelial dry wt (mg) 2 1 1 48.67 154.25 48.67 2.24 73.33 221.57 77.67 238.34 78.67 239.77 78. 246.6 73.33 225.97 69.67 22.4 63. 184.23 54.33 161.1 4. 4. 5. 5. 6. 6. 7. 7. 8. 8. Level of ph Fig 2. Effect of ph on the radial growth diameter and mycelial dry weight of Fusarium oxysporum f. sp. phaseoli. Vol. 28 No. 1&2, 212 15

Effect of C/N ratio on colony growth At 2 g sucrose, the highest radial colony diameter was found at C/N ratio 2, which was statistically similar to C/N ratio 1 but significantly higher compared to other levels of C/N ratio. At C/N ratios 5, 1 and 2, the radial colony diameter was statistically similar but significantly higher compared to only two higher C/N ratios. At 5 g sucrose, the highest radial colony diameter was also observed at C/N ratio 2, which was statistically similar to C/N ratio of 1 but significantly higher compared to other levels of C/N ratio. The second highest radial colony growth was recorded from C/N ratio 1 followed by C/N ratio 5, 4 and 8. The differences in colony diameter at those three levels of C/N ratio were not significant. At both 2 and 5 g sucrose, the lowest colony diameter was recorded from C/N ratio 1, which was statistically similar to C/N 8 (Fig. 5). In presence of 2 g as well as 5 g sucrose, the mycelium dry weight of the fungus increased gradually with increased levels of C/N ratio up to 2 and decrease thereafter. However, the mycelium dry weight at C/N ratios 5, 1 and 2 was statistically similar and significantly higher compared to all other of C/N ratios. The lowest dry weight was found at the highest C/N ratio followed by C/N ratio 8 (Fig. 6). The colony diameter and mycelium dry weight increased gradually with the increase of C/N ratio up to 2 and decreased thereafter. Relationship of two parameters with level of C/N ratio was polynomial (Fig. 5 and 6). Results of the present study reveal that all growth factors tested have shown considerable influence on the radial colony diameter and mycelial dry weight of F. oxysporum f. sp. phaseoli. The pathogen can grow at a temperature range of 15-35 C, ph range 4.-8.5 and C/N ratio 5-1. Influence of nitrogen and carbon sources on mycelial growth of the pathogen is also considerable. The fungus grows Radial dial (mm) well in culture medium containing peptone, L- Asparagine, NaNO 3 and NH 4NO 3 as nitrogen sources, and manitol, dextrose and glucose as carbon sources. The best source of nitrogen is peptone and that of carbon is sucrose. More or less similar findings have been reported by many other researchers. Gaikwad and Pachpande (1992) and Osman et al. (1992) observed that the optimum temperature range for better growth of F. oxysporum is 2 to 35C with the highest growth at 3C. Other investigators also found optimum colony growth of Fusarium at a temperature rage of 24-27C (Chen et al. 23, Dwievedi and De 23). Raghuwanshi (1995), Kumar et al. (2) and Ragazzi (1992) found that various formae speciales of F. oxysporum grow well at a range of ph of 5.-7.5. The results on the effect of nitrogen sources on the growth of the pathogen recorded in the present study are in agreement with findings of other investigators (Rahman et al. 1993, Chen et al. 23, Kumar et al. 2, Ciotola et al 23). The results on the effect of nitrogen sources on the growth of the pathogen recorded in the present study are in agreement with findings of other investigators (Rahman et al. 1993, Chen et al. 23, Kumar et al. 2, Ciotola et al 23). Griffin (197) demonstrated that carbon and nitrogen are the most vital nutrients for the growth of F. oxysporum. Kumar et al. (2) and Desai et al. (1994) obtained maximum growth of F. oxysporum f. sp. lentis and F. oxysporum f. sp. ciceri with mannitol and maltose used as carbon sources in culture medium. Based on findings of the present investigation it may be concluded that the optimum temperature and ph for mycelial growth of F. oxysporum f. sp. phaseoli is 3 C and ph 6.-6.5, respectively. The optimum C/N ratio for its mycelial growth is 2. Peptone and sucrose are the best sources of nitrogen and carbon, respectively for mycelial growth of the fungus. Dry weight 4 Radial diameter (mm) & Mycelial dry wt (mg) 4 3 3 2 1 1 42.87 384.7 383.5 364.97 332.9 72.34 14.67 124.94 25.33 67.33 74. 77.67 78. 8.33 Peptone PDA L-aspergine NaNO3 NH4NO3 (NH4)2SO4 Control (Czapek-N) Source of Nitrogen Fig 3. Effect of different nitrogen sources on colony diameter and mycelial dry weight of Fusarium oxysporum f. sp. phaseoli. 16 Bangladesh J. Plant Pathol.

77.33 7. 75.33 Radial colony diametre ( mm) 63.33 64.67 69.33 67.33 69. 72.33 62.33 63.67 67.33 238.33 235.67 232.33 235.33 Radial colony diameter wt. ( mg / plate) 23.33 23.33 23.67 225.33 22.33 22.67 22.67 22.67 Radial growth (mm) Mycelial weight (mg) 4 Colony diameter (cm) and Mycelial dry weight (g/plate) 4 3 3 2 1 1 354.5 358.25 44.4 246.6 68.67 79. 84.33 78. 87.63 25. 15.33 Mannitol Dextrose Glucose PDA Glycerol Control (Czapek-C) Sources of carbon 28.17 Fig 4. Effect of five carbon sources in culture medium on in-vitro growth of Fusarium oxysporum f. sp. phaseoli 9 Radial colony dia (mm,/plate) at 2 g sucrose Poly. (Radial colony dia (mm,/plate) at 2 g sucrose) Radial colony dia (mm,/plate) at 5 g sucrose Poly. (Radial colony dia (mm,/plate) at 5 g sucrose) 8 R 2 =.8353 7 R 2 =.8929 6 4 3 2 1 5 1 2 4 8 1 C / N Ratio Fig. 5. Effect of C/N ratio on radial growth of Fusarium oxysporum f. sp. phaseoli at 2 and 5 g sucrose Mycelial dry wt (mg/plate) at 2g sucros Poly. (Mycelial dry wt (mg/plate) at 2g sucros) Mycelial dry wt (mg/plate) at 5 g sucros Poly. (Mycelial dry wt (mg/plate) at 5 g sucros) 245 24 R 2 =.8869 235 R 2 =.861 23 225 22 215 21 25 5 1 2 4 8 1 C / / N R atio Fig 6. Effect of C/N ratio on mycelial dry weight Fusarium oxysporum f. sp. phaseoli in sol plate at 2 and 5 g sucrose Vol. 28 No. 1&2, 212 17

LITERATURE CITED Cavalcanti, L. S., Cohelo, R. S. B. and Perez, J. O. 22. Use of two inoculation methods to cultivate the resistance of common bean cultivars and lines to Fusarium oxysporum f. sp. phaseoli. Ciencia- Rural. 32(1): 1-5. Chen, F. R., Yang, X. J., Li, T., Xie, S. Y. and Ruan, H. C. 23. Studies on the biological characteristics and control of banana vascular wilt (Fusarium oxysporum f. sp. cubense). Acta. Agric. Univ. Jiangxiensis. 25(6): 9-93. Ciotola, M., DiTommaso, A. and Watson, A. K. 2. Chlamydospore production, inoculation methods and Pathogenicity of Fusarium oxysporum M12-4A, a biocontrol for Striga hermonthica. Bio. Sci. Tech. 1(2): 129-145. Desai, S., Nene, Y. L. and Reddy, A. G. R. 1994. Races of Fusarium oxysporum causes wilt in chickpea: growth variability. Indian J. Mycol. Plant Pathol. 24(2) :12-127. Dhingra, O. D. and Sinclair, J. B. 1985. Basic plant pathology methods. CRC Press. Inc. Boca Raton Florida. pp.13-44. Dwivedi, R. P. and De, R. K. 23. Effect of different culture media and temperature on growth and sporulation of Fusarium oxysporum f. sp. lentis. Indian J. Pul. Res. 16(1): -53. Ellanskaia, I. A. 1969. Effect of different sources of carbon nutrition on growth and conidium formation of fungi of the genus Fusarium. Mikrobiol Zh. 31(1):22-27. Gaikwad, S. J., and Pachpande, S. M. 1992. Effects of temperature on wilt of sesame caused by of Fusarium oxysporum f. sp. sesame. J. Mharastra Agric. Univ. 17(1): 76-78. Griffin, G. J. 197. Exogenous carbon and nitrogen requirements for chlamydospore germination by Fusarium solani: dependence on spore density. Can J Microbiol. 16(12):1366-1368. Kumar, R., Jha, D. K. and Dubey, S. C. 2. Influence of nutrition and ph on growth and sporulation of Fusarium oxysporum. J. Research, Birsa Agric. Univ. 12(1): 61-65. Osman, M., El-Sayed, M. A., Mohamed, Y. A. H. and Metwally, M. 1992. Effect of Various culture conditions on Alternaria alternate and Fusarium oxysporum. 1. Culture media, temperature, age and carbon source. Microbios 71(286): 15-26. Ragazzi, A. 1992. Different strains of Fusarium oxysporum f. sp. vasinfectum from cotton in Angola: biological aspects and pathogenicity. Zeitschrift fur Pflanzenkrankheiten und Pflanzenscutz 99(5): 499-4. Raghuwanshi, K. S. 1995. Cultural; and physiological studies of Fusarium oxysporum f sp. sesami causing wilt disease of sesamum. Madras Agric. J. 82 (11): 65-67. Rahman, M. Z., Ayub, A., Dey, T. K. and Alam, K. B. 1993. Effect of nitrogen and carbon sources on growth of Fusarium oxysporum and Sclerotium rolfsii. Bangladesh J. Plant Pathol. 9(1&2): 23-25. Tuite, J. 1969. Plant Pathological Method. Fungi and Bacteria. Burgress Pub. Minnesota, Minn. USA. 293 pp. Warner, M. 199. Effect of temperature and medium composition on growth and sporulation of Formae speciales of Fusarium oxysporum Schlecht. Rockzniki Akademii Rolniczez W. Poznaniu, Ogrodnictwo. 217(18): 17-12 18 Bangladesh J. Plant Pathol.