Basis and Clinical Applications of Interferon

Similar documents
Anti-infectious Immunity

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Intrinsic cellular defenses against virus infection

Immunology CANCER IMMUNOLOGY

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

Third line of Defense

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

CYTOKINES. Based on: Cellular and Molecular Immunology, 4 th ed.,abbas A.K., Lichtman A.H. and Pober J.S. Sounders company; Philadelphia, 2010.

The Major Histocompatibility Complex (MHC)

Diseases-causing agents, pathogens, can produce infections within the body.

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Chapter 23 Immunity Exam Study Questions

C. Incorrect! MHC class I molecules are not involved in the process of bridging in ADCC.

CYTOKINE RECEPTORS AND SIGNAL TRANSDUCTION

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Defense mechanism against pathogens

AGAINST VIRAL INFECTIONS. Identify the types of immunity involve in the mechanisms of protection against viral infections.

Adaptive Immunity: Specific Defenses of the Host

The Innate Immune Response

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

Oncolytic virus strategy

NTD Vaccine Design Toolkit and Training Workshop Providence, RI January 05, 2011 Cytokines Leslie P. Cousens, PhD EpiVax, Inc.

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES

The Adaptive Immune Response: T lymphocytes and Their Functional Types *

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

The Immune System is the Third Line of Defense Against Infection. Components of Human Immune System

The Adaptive Immune Responses

Under the Radar Screen: How Bugs Trick Our Immune Defenses

Immune System AP SBI4UP

Basic Immunology. Cytokines, cytokine receptors. Lecture 8th. Timea Berki MD, PhD

Immunology lecture: 14. Cytokines: Main source: Fibroblast, but actually it can be produced by other types of cells

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally!

Blood and Immune system Acquired Immunity

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

Cytokines (II) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

Chapter 35 Active Reading Guide The Immune System

Allergy and Immunology Review Corner: Chapter 13 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD.

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)

CYTOKINES. Marion C. Cohen, Ph.D. MSB C

Lecture 4. T lymphocytes

CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR.

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

The Adaptive Immune Response. B-cells

Disease causing organisms Resistance Immunity

Macrophage Activation & Cytokine Release. Dendritic Cells & Antigen Presentation. Neutrophils & Innate Defense

Immunity. Innate & Adaptive

3/28/2012. Immune System. Activation of Innate Immunity. Innate (non-specific) Immunity

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions

WHY IS THIS IMPORTANT?

Corso di Laurea Specialistica in Biotecnologie Molecolari aa 2006/2007 Presentazione di Immunologia Molecolare INTERFERON GAMMA.

Internal Defense Notes

Structure and Function of Antigen Recognition Molecules

Cell-mediated response (what type of cell is activated and what gets destroyed?)

Immunity. Acquired immunity differs from innate immunity in specificity & memory from 1 st exposure

Chapter 6. Antigen Presentation to T lymphocytes

Neutrophils Macrophages CD4+ T-cells CD8+ T-cells B-cells None

Chapter 12: The Lymphatic System

7.013 Spring 2005 Problem Set 6

immunity defenses invertebrates vertebrates chapter 48 Animal defenses --

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Unit 5 The Human Immune Response to Infection

Nonspecific External Barriers skin, mucous membranes

生命科学基础 (21)- 动物的免疫器官. The Immune System. KE, Yuehai 柯越海. Zhejiang University, School of Basic Medical Sciences (BMS-ZJU) 浙江大学基础医学院

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

Cells communicate with each other via signaling ligands which interact with receptors located on the surface or inside the target cell.

Cell-mediated Immunity

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Principles of Adaptive Immunity

The Lymphatic System and Body Defenses

Adaptive Immunity. Jeffrey K. Actor, Ph.D. MSB 2.214,

Chapter 17B: Adaptive Immunity Part II

Topics. Humoral Immune Response Part II Accessory cells Fc Receptors Opsonization and killing mechanisms of phagocytes NK, mast, eosynophils

T Cell Effector Mechanisms I: B cell Help & DTH

I. Critical Vocabulary

I. Defense Mechanisms Chapter 15

April 01, Immune system.notebook

Viral Genetics. BIT 220 Chapter 16

DNA codes for RNA, which guides protein synthesis.

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins,

MCB 4211 Basic Immunology 2nd Exam; 10/26/17 Peoplesoft #:

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Endeavour College of Natural Health endeavour.edu.au

Chapter 22: The Lymphatic System and Immunity

number Done by Corrected by Doctor Sameer

Advances in Cancer Immunotherapy

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

Adaptive Immunity: Humoral Immune Responses

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above

RAISON D ETRE OF THE IMMUNE SYSTEM:

Micr-6005, Current Concepts of Immunology (Rutgers course number: 16:681:543) Spring 2009 Semester

UNIVERSITY OF NAIROBI

Innate Immunity. Bởi: OpenStaxCollege

MONTGOMERY COUNTY COMMUNITY COLLEGE Department of Science LECTURE OUTLINE CHAPTERS 16, 17, 18 AND 19

Immunology - Lecture 2 Adaptive Immune System 1

Transcription:

Interferon Therapy Basis and Clinical Applications of Interferon JMAJ 47(1): 7 12, 2004 Jiro IMANISHI Professor, Kyoto Prefectural University of Medicine Abstract: Interferon (IFN) is an antiviral substance that was discovered about 50 years ago. The advance in the basic research of IFN has revealed the action mechanism of its antiviral effect at a molecular level and provided wide clinical applications. It is roughly divided into 3 types: IFN-, IFN-, and IFN-. IFN- is related to IFN-, but IFN- is completely different. Any type of IFN is a (glyco) protein with a molecular weight of about 20,000kDa. IFN is known to have various biological activities including antiviral effects. Major biological activities include cell growth inhibition and immune regulation. Anti-tumor effect of IFN develops by integration of the various biological activities. IFN is considered to exert its antiviral effect by not only directly inhibiting viral proliferation, but also stimulating cytotoxic T cells, natural killer cells, and macrophages. Key words: Interferon; Inhibition of viral proliferation; Immunomodulating effect; NK cell; Helper T cell Introduction Interferon was first discovered by Nagano and Kojima 1) in Japan as a virus inhibiting factor in 1954. It was also discovered by Isaacs and Lindenmann 2) in 1957 as a substance responsible for virus interference. About a half century has passed since its discovery. It has been clinically applied to treat various diseases for more than 20 years. This paper outlines interferon and explains the results of the basic research toward its clinical application. Types and Properties Interferon (IFN) is generally classified into 3 types (Table 1). First, IFN- is produced when leukocytes are infected with a virus. It is also called leukocyte interferon. Second, IFN- is produced when fibroblasts are infected with a virus or treated with synthetic double-stranded RNA (polyinosinic acid/polycytidylic acid complex; poly I :C). It is also called fibroblast interferon. Third, IFN- is produced when lymphocytes are stimulated with a mitogen or sensitized lymphocytes are bound to an antigen. It is also called immune interferon. This article is a revised English version of a paper originally published in the Journal of the Japan Medical Association (Vol. 128, No. 7, 2002, pages 1013 1017). JMAJ, January 2004 Vol. 47, No. 1 7

J. IMANISHI Table 1 Types and Properties of Human (Hu) IFN Normal Type I Molecular weight About 20,000 About 20,000 About 20,000 Type II About 20,000 (monomer) About 40,000 (dimer) No. of amino acids 165 166 172 166 146 23 or higher About 7 No. of genes (including (including 1 1 4 pseudogenes) 6 pseudogenes) Subtype 14 or higher 1 1 1 Intron 0 0 0 3 Gene location 9p21 9p21 9p21 12q24.1 Presence/absence of sugar chain No Yes Yes Yes Antigenic type Main producer cell Leukocyte Trophoblast Fibroblast Th1 NK Type I Type I Type I Receptor (common to (common to (common to, and ), and ), and ) Receptor gene location Type II (specific to ) 21q22.1 21q22.1 21q22.1 6q16-q12 Species specificity Weak Weak Weak Strong IFN- is similar to IFN- because both have 166 amino acids (some types of IFN- have 165 amino acids) and because there is about 50% homology for their amino acid sequences, or the nucleotide sequences that code them. Furthermore, since the genes for IFN- are located at the same chromosome as that for IFN- (9p- 21 for humans), IFN- is genetically related to IFN-. It has been revealed that IFN- has 14 or more subtypes, and that there are 23 or more genes for IFN- including pseudogenes. In contrast, IFN- has one gene and one subtype. IFN-, a subtype of IFN-, has 172 amino acids. The genes for IFN- are also located at the same chromosome and there is 60% or higher homology for amino acid and nucleotide sequences. 3) Another type of IFN is produced from placental trophoblasts and called trophoblast IFN. This type of IFN is also called IFN-. It is considered to be closely related to the recognition of pregnancy by the parent body. 4) One recent development is a form of consensus IFN- that has a structure common to the subtypes of IFN-. The consensus IFN- is considered to provide higher efficacy than normal IFN-, with fewer adverse effects. IFN- usually exists as a dimer and has 146 amino acids, 20 fewer amino acid as compared with the 166 amino acids of IFN- or IFN-. It has one gene located at the chromosome of 12q24.1 for humans. These facts indicate that IFN- is completely different from IFN- or IFN-. 8 JMAJ, January 2004 Vol. 47, No. 1

BASIS AND CLINICAL APPLICATIONS OF INTERFERON Table 2 Various Biological Activities of IFN 1. Anti-tumor effect 2. Inhibitory effect on cell growth 3. Effects on lymphocytes a) Stimulation and inhibition of antibody production (B cell) b) Inhibition of delayed-type hypersensitivity (T cell) c) Inhibition of transplantation immune response (T cell) d) Inhibition of blastogenesis and DNA synthesis (T cell) e) Potentiation of killer T cells (T cell) f) Potentiation of natural killer activity (NK cell) g) Potentiation of ADCC activity 4. Effects on macrophages a) Potentiation of phagocytosis b) Potentiation of adherence to tumor cells c) Inhibition of intracellular bacterial proliferation d) MIF activity e) Chemotaxis 5. Other effects on cells a) Chemotaxis for neutrophils b) Potentiation of NBT reduction in neutrophils c) Increased histamine release in basophils d) Promotion of differentiation of erythroblasts e) Induction of differentiation of neuroblastoma cells f) Potentiation of expression of MHC Class I and II antigens Biological Activity Many of the various biological activities of IFN are known and understood (Table 2). Naturally enough, since it was first discovered as an antiviral agent, we know that it engages in antiviral activity (inhibits viral proliferation). Other known activities include inhibition of cell growth and effects on immunological activity. In general, IFN stimulates macrophage and natural killer (NK) activities and plays important roles in host defense. IFN, particularly IFN-, plays a key part in regulating the biological immune response, as described below. It is also considered that IFN exerts its effects on viral infection and malignant tumors, as described in the following sections, by combining all of its diverse biological activities. 1. Antiviral activity The mechanism of antiviral activity of IFN (inhibition of viral proliferation) has been generally revealed (Fig. 1). The binding of the IFN molecule to its receptor activates two enzymatic systems. One is the 2-5A synthetase system (2-5A oligosynthetase). When the enzyme is activated, 2-5A is synthesized in the presence of ATP and double-stranded RNA. 2-5A activates endo-rnase (endonuclease) to degrade viral mrna, thereby inhibiting viral protein synthesis. The other enzymatic system is protein kinase (PKR), which is also activated in the presence of double-stranded RNA. When activated, it phosphorylates the initiation factor-2 (eif- 2 ) required for starting the synthesis of peptide chains on ribosomes, thereby inactivating eif-2. This prevents the virus from commencing protein synthesis on the ribosome, and results in the inhibition of viral proliferation. In addition to the two enzymatic systems responsible for the inhibition of viral proliferation, other known mechanisms include the inhibition of transcription into viral mrna and viral inhibition at the viral particle budding phase. It is considered that appropriate action JMAJ, January 2004 Vol. 47, No. 1 9

J. IMANISHI IFN IFN receptor 2-5 oligosynthetase (2-5AS) system Inactive 2-5AS Active 2-5AS Inactive endo-rnase ATP: adenosine triphosphate AMP: adenosine monophosphate ATP Double-stranded RNA Protein kinase (PKR) system 2-5A Active endo-rnase Phosphodiesterase AMP elf-2 Degradation of viral mrna Inactive PKR Active PKR Phosphatase Double-stranded RNA Phosphorylated elf-2 Inhibition of the start of viral peptide chain synthesis Fig. 1 Mechanism of antiviral effect of IFN Th p IL2, IL12 Th o IL2, IFN- IFN-g IL4, TNF- Th1 IFN- IFN-g IL4, IL10 IFN-, IL2 TNF- Cellular immunity IL2, IL4 Th2 IL4, 5, 6, 10 Humoral immunity Fig. 2 Th1 and Th2 cytokine mechanisms of IFN may function depending on viral type. 2. Effects on the immune system IFN has been known to have many effects on the immune system. It is considered to generally inhibit antibody production and delayedtype (Type IV) hypersensitivity. However, it stimulates cytotoxic T cells (killer T cells), NK cells, killer cells responsible for antibodydependent cell-mediated cytotoxicity (ADCC), macrophages, and neutrophils. IFN- has a regulatory effect on the immune system: that is, IFN- is produced from type 1 helper T (Th1) cells. It is also known to stimulate the growth of Th1 cells. Since Th1 cells are involved in cellular immunity, IFN- is considered to increase cellular immunity. In con- 10 JMAJ, January 2004 Vol. 47, No. 1

BASIS AND CLINICAL APPLICATIONS OF INTERFERON Virus Infection Infected cells Inhibition of viral proliferation NK cell Tumor cell destruction Virus-infected cell destruction Production Virus-induced IFN Production Immune IFN Lymphocyte Killer T cell NK cell K cell Infected cells Differentiation NK precursor cells Activity potentiation IFN Fig. 4 IFN-NK system Re-infection and recurrence Macrophage Healing Fig. 3 Antiviral effect of IFN trast, since IFN- suppresses the activity of Th2 cells, it is considered to suppress humoral immunity (Fig. 2). Effects on Viral Infections For the action mechanisms of IFN on viral infections, IFN directly provides antiviral effects and indirectly inhibits viral infections through the immune system (Fig. 3). IFN enhances the activities of macrophages, NK, and ADCC to inhibit viral proliferation in infected cells and destroy infected cells. It is considered that the same mechanisms work for tumors. IFN directly inhibits the proliferation of tumor cells, and generally has a stronger growth inhibitory effect on tumor cells than on normal cells. IFN is also known to induce apoptosis in some cells. Thus, IFN not only directly inhibits the proliferation of tumor cells or destroys them, but also indirectly inhibits them by stimulating the immune system. As described above, IFN is known to enhance the activity of killer T cells, NK cells, and ADCC, and to stimulate macrophages and neutrophils to destroy tumor cells. IFN is known to form a cycle with NK cells. That is, IFN increases NK activity, activated NK cells produce IFN, and IFN acts on NK precursor cells to induce the differentiation of NK cells, thereby increasing NK cells. This system formed by IFN and NK cells is called IFN- NK system (Fig. 4). The IFN-NK system is deeply involved in host defense against viral infection and against tumors. It is well known that the IFN-NK system strongly inhibits tumor metastasis. Conclusions IFN engages in various biological activities including antiviral action. It combines all its activities to provide protection against viral infections and tumors. It is important to clinically apply IFN by managing both the direct and indirect effects of IFN. REFERENCES 1) Nagano, Y. and Kojima, Y.: Pouvoir immunisant de virus vaccinal inactivé par des rayons ultraviolets. C R Soc Biol (Paris) 1954; 148: 1700 1702. 2) Isaacs, A. and Lindenmann, J.: Virus interference. I. The interferon. Proc Roy Soc 1957; B147: 258 267. JMAJ, January 2004 Vol. 47, No. 1 11

J. IMANISHI 3) Capon, D.J., Shepard, H.M. and Goeddel, D.V.:Two distinct families of human and ovine interferon alpha genes are coordinately expressed and encode functional polypeptide. Mol Cell Biol 1985; 5: 768 779. 4) Pontzer, C.H., Ott, T.L., Bazer, F.W. et al.: Structure/function studies with interferon tau: Evidence for multiple active sites. J Interferon Res 1994; 14(3): 133 141. 12 JMAJ, January 2004 Vol. 47, No. 1