Visual system invades the endbrain: pathways to striatum and cortex (continued) Why this happened in evolution

Similar documents
9.14 Classes #21-23: Visual systems

The basal forebrain: Questions, chapter 29:

Final review, 9.14_2014. Slides for special study

CNS pathways. topics. The auditory nerve, and the cochlear nuclei of the hindbrain

9.14 Class 32 Review. Limbic system

Vision II. Steven McLoon Department of Neuroscience University of Minnesota

A sketch of the central nervous system and its origins. MIT 9.14 Classes 31

Thus, there evolved the major types of functions of the neocortical mantle:

MITOCW MIT9_14S14_lec23.mp3

Classes #5-6: Specializations in CNS evolution

9.14 Qs on post-midterm class sessions and Schneider chapters 18-34

From Brodal, 2 nd ed. fig 20.1; 3 rd ed. Fig 21.1

A sketch of the central nervous system and its origins

The Visual System. Anatomical Overview Dr. Casagrande January 21, 2004

9.01 Midterm Examination NAME October 27, 2003

The Visual System. Cortical Architecture Casagrande February 23, 2004

LISC-322 Neuroscience. Visual Field Representation. Visual Field Representation. Visual Field Representation. Visual Field Representation

Photoreceptors Rods. Cones

Parallel streams of visual processing

Hierarchy and evolution of nervous system I

PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17. By: Joseline

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

21)Describe what happens to regeneration of CNS axons in mammals early in development as the animal grows older. In brief, why does it happen?

1. The responses of on-center and off-center retinal ganglion cells

Lawrence & Kuypers, 1968:

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Mind. Synopsis: Synopsis: Friday: Overview Perception Retina Central projections LGN (Visual Cortex)

Outline of the next three lectures

Plasticity of Cerebral Cortex in Development

M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels

MITOCW MIT9_14S14_lec15.mp3

Developmental sequence of brain

C:\Documents and Settings\sstensaas\Desktop\dental visual 2010\VisualPath dental 2010.docVisualPath dental 2010.doc

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy

Introduction to the Central Nervous System: Internal Structure

Biological Bases of Behavior. 3: Structure of the Nervous System

Thalamus: VA VM, MD S N. GPi Superior colliculus. compacta reticulata

Early Lesions of Superior Colliculus: Factors Affecting the Formation of Abnormal Retinal Projections1

Visual System. By: Jordan Koehling

Ch 5. Perception and Encoding

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What?

Gross Organization I The Brain. Reading: BCP Chapter 7

Nsci 2100: Human Neuroanatomy 2017 Examination 3

THE VISUAL PATHWAY FOR DENTAL STUDENTS

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp ,

Orientation, Development, Gross Anatomy, Blood Supply and Meninges References... 3

Required Slide. Session Objectives

Ch 5. Perception and Encoding

MITOCW MIT9_14S14_lec35.mp3

Stanley Pruisinger 1980's

LISC-322 Neuroscience Cortical Organization

PSY 215 Lecture #5 (01/26/2011) (Anatomy of the Brain) Dr. Achtman PSY 215. Lecture 5 Anatomy of the Brain Chapter 4, pages 86-96

MITOCW MIT9_14S09_lec05-mp3

Cranial Nerves. Steven McLoon Department of Neuroscience University of Minnesota

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

The thickening. embryonic neural tube. Preview: Fig 1.3. Forebrain (prosencephalon)

4) Modification of Development by Sensory Experience (Nurture)

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

Embryological origin of thalamus

Vision Seeing is in the mind

Thalamus and the Internal Capsule

CSE511 Brain & Memory Modeling. Lect21-22: Vision Central Pathways

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System

Brain, Cranial Nerves, and Spinal Cord

Cephalization. Nervous Systems Chapter 49 11/10/2013. Nervous systems consist of circuits of neurons and supporting cells

Psyc 311A, fall 2008 Conference week 3 TA: Jürgen Germann

25/09/2012. Capgras Syndrome. Chapter 2. Capgras Syndrome - 2. The Neural Basis of Cognition

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

CNS-2: Physiology: Vision

Pathway from the eye to the cortex

Human neocortical anatomy in Moscow

Vision. The Eye External View. The Eye in Cross-Section

Early Stages of Vision Might Explain Data to Information Transformation

-Ensherah Mokheemer. -Amani Nofal. -Loai Alzghoul

Brain Architecture and Function Parts Size and Cognition

Auditory and Vestibular Systems

1. The basic anatomy of the Central Nervous System (CNS)

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Clinical and Experimental Neuropsychology. Lecture 3: Disorders of Perception

CHAPTER 48: NERVOUS SYSTEMS

Parallel processing strategies of the primate visual system

BINOCULAR VISUAL FIELD. fixation point. fovea

For more information about how to cite these materials visit

Medical Neuroscience Tutorial Notes

Cognitive Neuroscience Structure and Function

Central nervous system (CNS): brain and spinal cord Collections of cell body and dendrites (grey matter) are called nuclei/nucleus Nucleus can also

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

A&P 1 Brain & Cranial Nerves Guide #1 - Pre-Lab Exercises

Introduction to Physiological Psychology

Ch 13: Central Nervous System Part 1: The Brain p 374

For more information about how to cite these materials visit

Medical Neuroscience Tutorial

Cetacean Brains Cogs 143 * UCSD

Brainstem: Midbrain. 1. Midbrain gross external anatomy 2. Internal structure of the midbrain:

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

Lecture - Chapter 13: Central Nervous System

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Development of Brain Stem, Cerebellum and Cerebrum

Transcription:

Visual system invades the endbrain: pathways to striatum and cortex (continued) Why this happened in evolution What were the adaptive advantages? Visual information reaching the striatum directly: Advantages for plasticity (habit learning) Visual information reaching the neocortex: Provided other routes to the striatum & to the pretectum, tectum and subthalamus. (Each of these had outputs to the motor system.) Enabled better acuity for orienting and for learned approachavoidance choices Cognitive functions Provided a visual route to the amygdala carrying object information useful for learning of avoidance and approach responses Provided a visual route to the hippocampus for learning and remembering place information 1

Visual system invades the endbrain: pathways to striatum and cortex (continued) Binocular vision: Further adaptive advantages (Especially important for predators with frontal eyes): predominantly a neocortical function Improved depth vision with better acuity for accurate approach and grasping Cortex became dominant as acuity improved. 2

Expansions and specializations in the visual system Midbrain tectum (superior colliculus of mammals) Evolution of tectal cortex (lamination at brain surface), varying greatly among different species Evolution of great size differences, e.g., relatively large in teleosts, birds, and some mammals Dorsal thalamus and neocortical projection areas All mammals have visual cortex, including V1 Primate specializations resulted in great expansions of this part of the visual system Transcortical pathways from visual cortex [discussed later] to multiple representations of the visual field Retina: Evolution of a great range of sensitivity, acuity, color detection See Striedter p. 261 for discussion of mammals. Other components of the subcortical visual system: Expansions were much less marked, as they played roles that made smaller demands on size. 3

Retinal projections: the pattern found in all mammals A very similar pattern is found in other vertebrates as well 4

Mammalian brain schematic: Retinal projections, and some further connections in the visual system = SCN Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 5

What is the basic layout of the pathway from retina to midbrain in vertebrates? 1) The course of the axons 2) Their topographic organization This is our topic for the class 6

A sketch of the central nervous system and its origins G. E. Schneider 2014 Part 8: Sensory systems MIT 9.14 Classes 21-22-23 Sensory systems 2: Visual systems 7

Last time: Topics Origins of vision, 1: Light detection Origins of vision, 2: Image formation Structures serving three major functions: predator escape, orienting towards objects, identifying patterns and objects Retinal projections in vertebrates, introduction Today: Retinal projections in vertebrates, and the layout of the optic tract Species differences in relative size of structures Lamination of midbrain tectum and lateral geniculate body Topography of tract and termination patterns 8

Questions, chapter 21 1) What is the first structure reached by axons from retinal ganglion cells? Name the forebrain subdivision and the major retinal terminal nucleus in that subdivision. 2) What is the major difference in the nature of the projections of the dorsal thalamus on the one hand and the ventral thalamus (subthalamus) or the epithalamus on the other? 9

Questions, chapter 21 3) In this chapter, the epithalamus is described as a caudalmost diencephalic neuromere that includes cell groups where the optic tract has dense terminations. What is this terminal area called? 10

Two ways of looking at the optic tract: Coronal section of tweenbrain Stretched section through optic tract from chiasm to superior colliculus Enlarged in later slides Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 11

Embryonic Human Diencephalon with Optic Tract LGB: Lateral Geniculate Body Diencephalic Neuromeres d: dorsal part v: ventral part LP: Lateral Posterior Nuc PT: Pretectal area V: Ventral nuc of thalamus Sub: Subthalamus [NOT the ventral nucleus of the dorsal thalamus] Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. This is very similar to the adult diencephalon of a rat, mouse, or hamster. 12

Figure removed due to copyright restrictions. Please see course textbook or: Clark, WE Le Gros. "A Morphological Study of the Lateral Geniculate Body." The British Journal of Ophthalmology 16, no. 5 (1932): 264. 13

Diencephalic Neuromeres of the embryonic neural tube Review 1. Epithalamus 2. Dorsal Thalamus 3. Ventral Thalamus 4. Hypothalamus Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. [Note: In some recent interpretations, there are 5 or 6 diencephalic neuromeres.] 14

Questions, chapter 21 4) Name the five main optic-tract termination areas in the order they are reached by the optic tract. What additional areas receive sparse retinal projections from the main optic tract? 5) Inputs from the right and left eyes terminate in distinct areas, a separation that is especially important for creating binocular disparity cues to depth of visually perceived objects. Describe the appearance of the distinct areas in the diencephalon of a small rodent and of a monkey. 15

Stretched section through optic tract from optic chiasm to superior colliculus SCh = SCN SC = superior colliculus = optic tectum Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 16

LGN (LGd) of macaque monkey, left side in frontal section. To the left and above it is the Pulvinar nucleus the expanded Lateral Posterior Nucleus. Figure removed due to copyright restrictions. (from Zigmond et al, p 836, originally from Hubel and Wiesel.) 17

Fig 21-4b Courtesy of anonymous MIT student. Used with permission. 18

Varieties of laminar patterns in LGBd of primates and tree shrew: Figure removed due to copyright restrictions. Please see course textbook or: Clark, WE Le Gros. "A Morphological Study of the Lateral Geniculate Body." The British Journal of Ophthalmology 16, no. 5 (1932): 264. Fig 21-4c 19

Next: Side views of a rodent diencephalon showing the optic-tract axons. 20

Two small bundles of axons are depicted, one coming from the retina and one from the superficial layers of the superior colliculus. Omitted: Retinal projections to SCN, Pretectal area, nuclei of the accessory optic tract. Fig 21-5 Adult optic tract of hamster, side view Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 21

Questions, chapter 21 4) Axons that leave the main optic tract and terminate in small cell groups (up to 3 of them) are described as the optic tract axons. 22

Adult optic tract (Hamster) Reconstruction from serial, frontal sections. Retinal projections were marked by degeneration and visualized with a Nauta silver-staining method. Main optic tract Accessory optic tract Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. NEXT: Photos of brains 23

Hamster brain with hemispheres & Cb removed, seen from right side Cochlear nuc Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 24

Hamster brain with hemispheres & Cb removed, seen from right side Lat Lemniscus IC SC LGd Cochlear nuc Corpus striatum Lat Olf Tract ped Hypoth Optic Tract Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 25

Hamster brain, adult and newborn Cochlear nuc Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 26

Questions, chapter 21 7) Study figures 21.5, 21.6 and 21.7. Next, cover the labels written above and below the photo of figure 21.7, and see if you can remember the names of structures to which the blue lines are pointed. 8) Do the same for figure 21.8, covering up the names between the two photographs. 27

Hamster brain with hemispheres & Cb removed, seen from right side A B F G C D E Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 28

Hamster brain, adult and newborn Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 29

Questions, chapter 21 9) Which structures can you recognize in figures 21.9 and 21.10? What would make this more difficult during a neurosurgical procedure? 30

Hamster brain with hemispheres & Cb removed, adult, top view Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 31

Hamster brain, adult: additional removal of right corpus striatum and exposure of anterior commissure Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 32

Same after altered tilt and lighting Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 33

How is this basic layout in the adult brain different in the embryo when the axons are growing? 34

Side view, embryonic optic tract SC: superior colliculus PT: pretectal nuclei LGB: lateral geniculate body d: dorsal part v: ventral part Retinal coordinates: N, T, S, I Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain Structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 35 Note the relatively straight course of the optic tract from chiasm to midbrain tectum in the prenatal hamster brain (E13).

Next: Before we talk about topographic organization, we will review some species differences, and take a look at lamination in the midbrain tectum. 36

MIT OpenCourseWare http://ocw.mit.edu 9.14 Brain Structure and Its Origins Spring 2014 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.