EEG correlates of working memory performance in females

Size: px
Start display at page:

Download "EEG correlates of working memory performance in females"

Transcription

1 DOI /s BMC Neuroscience RESEARCH ARTICLE Open Access EEG correlates of working memory performance in females Yuri G. Pavlov 1,2* and Boris Kotchoubey 1 Abstract Background: The study investigates oscillatory brain activity during working memory (WM) tasks. The tasks employed varied in two dimensions. First, they differed in complexity from average to highly demanding. Second, we used two types of tasks, which required either only retention of stimulus set or retention and manipulation of the content. We expected to reveal EEG correlates of temporary storage and central executive components of WM and to assess their contribution to individual differences. Results: Generally, as compared with the retention condition, manipulation of stimuli in WM was associated with distributed suppression of alpha1 activity and with the increase of the midline theta activity. Load and task dependent decrement of beta1 power was found during task performance. Beta2 power increased with the increasing WM load and did not significantly depend on the type of the task. At the level of individual differences, we found that the high performance (HP) group was characterized by higher alpha rhythm power. The HP group demonstrated task-related increment of theta power in the left anterior area and a gradual increase of theta power at midline area. In contrast, the low performance (LP) group exhibited a drop of theta power in the most challenging condition. HP group was also characterized by stronger desynchronization of beta1 rhythm over the left posterior area in the manipulation condition. In this condition, beta2 power increased in the HP group over anterior areas, but in the LP group over posterior areas. Conclusions: WM performance is accompanied by changes in EEG in a broad frequency range from theta to higher beta bands. The most pronounced differences in oscillatory activity between individuals with high and low WM performance can be observed in the most challenging WM task. Background The ability to retain information in memory for a short period of time is critical for numerous cognitive tasks including planning, verbal competence, spatial orientation, mental manipulations of objects and many others [1 3]. According to Baddeley and Hitch s [4] model, the structure of working memory (WM) consists of several components. One of them is responsible for temporary storage of information in modality-specific buffers. Another key component, the central executive, is considered to be a set of tools designed to maintain the active *Correspondence: pavlovug@gmail.com 1 Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany Full list of author information is available at the end of the article representation of memory trace, to control attention and to preserve the latter from interference caused by irrelevant stimuli [5, 6]. A number of neuroimaging studies demonstrated that maintenance of information in WM engages a broad network of neural structures mostly including prefrontal cortex, parietal and temporal areas [2, 7]. Whereas storage buffers represent information received from sensory inputs in posterior regions, the prefrontal cortex sustains and transforms this information and organizes executive processes of working memory [8]. Existing research highlights the importance of the fronto-parietal network activation in working memory processes, especially in high demanding tasks [9 13]. Apparently, individual differences in working memory capacity are also determined by fronto-parietal white matter connectivity [14]. The Author(s) 217. This article is distributed under the terms of the Creative Commons Attribution 4. International License ( which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( publicdomain/zero/1./) applies to the data made available in this article, unless otherwise stated.

2 Page 2 of 14 Features of the processes presumed by Baddeley and Hitch s model of WM cannot be characterized only by spatial distribution of brain activation. Qualitatively different information about these processes can be obtained from studies of neuronal oscillatory activity as an energyefficient mechanism for temporal coordination of cognitive processes [15]. An increase of frontal midline theta rhythm (FMT) frequently accompanies such processes as nonspecific attention and WM [16 19]. The results of earlier studies often define FMT as the most plausible phenomenon reflecting an activation of central executive components of WM [2]. Several attempts to isolate central executive components from temporary storage components by including tasks requiring mental manipulations support hypothesis of the link between FMT and the executive control [21 23]. Several studies demonstrated the activation of fronto-parietal executive control system during retention in WM [24 26]. Moreover, some authors report increasing fronto-parietal synchronization with stronger engagement of central executive components [19]. Induced coupling of theta rhythm between frontal and parietal cortical regions by transcranial alternating current stimulation (tacs) resulted in improved visual WM performance, while the induced decoupling lead to WM deterioration [27]. Changes in alpha activity also show parametrical increase related to working memory load [28 3]. Increasing power of alpha rhythm is frequently interpreted as a mechanism for filtration and for suppression of the cortical areas irrelevant to the current task [3 32]. The role of beta activity in working memory processes is still not sufficiently investigated. Thus the activity particularly in the low beta band (~13 2 Hz) was found to increase during retention in WM [18, 33 35]. A parametrical increase of low beta with the increasing of memory set size was also observed [18, 33]. A comparison of retention condition with the conditions where participants were instructed to manipulate objects in WM showed that gradually increasing task complexity was related with a decrease of low beta activity [22]. Data of several studies suggest that the main contribution to individual differences in WM is made by the ability to control attention or executive control [36 38]. However, despite extensive research of WM in the recent 2 years, there is no clarity as regards the electrophysiological correlates mechanisms of individual differences in WM performance. The existing research (both general and differential psychological) have some limitations that restrict the possibility to explain the actual relationship between brain activity and WM performance. First of all, most WM studies have used the n-back paradigm [39 41]. This kind of task engages multiple WM processes including retention of the stimuli set presented at the previous step, comparison between the first item of the memorized set and the new one, making decision about correctness of the comparison, and updating the content of WM. In this paradigm, it is difficult to clearly separate retention from the central executive components of WM. Second, the level of difficulty of the task is usually moderate and thus does not present a big challenge for people with average WM abilities. There are studies dedicated to the investigation of EEG in WM tasks with several levels of difficulty [18, 4, 42, 43]. In the studies mentioned above the number of steps did not exceed three (3-back) [4, 41]. Some researchers applied other paradigms with gradually increasing difficulty of tasks for assessing WM performance [17, 18, 23]. But these paradigms either did not include any manipulation task [17, 18], or their difficulty level was rather low [23]. Finally, the existing studies aimed to discover electrophysiological correlates of individual differences in WM were based on a sample size not exceeding 14 participants in each group [18, 4, 44]. An analysis of typical effect sizes indicates that at least twice larger groups would be necessary to reliably evaluate the differences between high- and low-performers. In this paper we used highly demanding tasks which should give us the opportunity to distinguish EEG activity of individuals with different levels of WM performance. Additionally, using two types of tasks, which required either only retention of stimulus set or manipulation of content, we expected to reveal EEG correlates of temporary storage and central executive components of WM and to assess their contribution to individual differences. The hypotheses of the study were as follows: 1. Motivated by the previous studies we expected significant relationships between WM performance and oscillatory activity in theta and alpha frequency bands; 2. Particularly, we supposed that frontal theta rhythm power is strongly related to the WM load; 3. We expected that storage components of working memory play less important role in individual differences than executive components. Specifically, we assumed that no individual differences would be found in the simple retention conditions; 4. Additionally, we hypothesized that the most challenging condition would best separate between low and high performers;

3 Page 3 of 14 Methods Participants Due to a strong gender disproportion in the initial sample, only data of female participants were included into the present study. All participants were Russian native speakers. Furthermore, a subsequent analysis revealed five EEG records with an excessive amount of artefacts (i.e., <2 artifact-free epochs in at least one condition). Thus, 65 female participants (mean age = 2.92, SD = 2.96) were included to the final sample. The participants had normal or corrected-to-normal vision and no history of neurological or mental diseases. Stimuli Sets of Russian alphabet letters written in capital were used as stimuli. The letters had been selected randomly and had random order and no repetitions in the sets. Each trial consisted of seven consecutive events. An analogue using Latin letters and English words is shown in Fig. 1. A trial always began with an exclamation mark presented for 2 ms, which was followed by a fixation cross for 3 ms. Participants were instructed to fixate the cross when it appeared in the center of the screen. At the next step the word forward or alphabetical, presented for 5 ms, instructed participants whether they would have to memorize the original set as it was presented (retention task) or to memorize it after mental recombination of the letters in the alphabetical order (manipulation task). After that, sets of 5, 6 or 7 letters were demonstrated for 3 ms followed by a delay period where a fixation cross was demonstrated for 65 ms. At the end of this delay period, a randomly chosen letter from the previously presented set appeared on the screen together with a digit that represented the serial number of this letter. The letter-digit combination was presented for 1 ms. Participants were asked to press a specified button of a computer mouse if the presented letter had the corresponding serial number either in the original set (in the retention task), or in the set merging as a result of alphabetic recombination (in the manipulation task). The other mouse button had to be pressed if the serial number of the presented letter was incorrect. The two buttons were attributed to correct and wrong probes in a counterbalanced order. The probe was correct in 5% of the trials, and the order of correct and incorrect probes was random. The next trial started after an interval that varied between 5 and 55 ms. Thus, the experiment entailed six different conditions: memorizing 5, 6 or 7 letters in the alphabetical or forward order. Each condition had 2 consecutive trials. These six blocks with 2 trials were presented in a random order. A short practice block of 6 trials was given immediately before the main experiment. During the experiment, the participants were seated in a comfortable armchair in front of a computer screen in a dark room. Stimuli were presented in white color on a black background in the center of the screen by using PsyTask software (Mitsar Ltd.). The distance to the screen was 1 m and the size of the letters was All participants were subdivided into two groups separated by the median of their mean performance across all tasks. The groups are referred to as high performance (HP; N = 32) and low performance (LP; N = 33) groups. The percentage of correct answers was used for behavioral data analysis. A repeated measures ANOVA with the between-subject factor Group (HP, LP) and the withinsubject factors Task (retention, manipulation) and Load (5, 6, or 7 letters) was applied. EEG recording and analysis The EEG was recorded from 19 electrodes arranged according to the 1 2 system using Mitsar-EEG-21 amplifier and referred to the average earlobe. Two additional electrodes were used for horizontal and vertical EOG. EEG data were acquired with 5 Hz sampling Attention Hold attention Instruction Letters set (five, six or seven letters) Delay period (retention or manipulation) Probe (position ofthe letter in the set) Intertrial interval! Forward BCWSPN W-3! Alphabetical BCWSPN S-5 2 ms 3 ms 5 ms 3 ms 65 ms 1 ms 5-55 ms Fig. 1 Examples of the trials

4 Page 4 of 14 frequency,.16 Hz high pass filter and 7 Hz low pass filter. Frequency bands for EEG analysis were defined using individual alpha frequency (IAF) as follows: theta = (IAF-6 Hz to IAF-2.5 Hz), alpha1 = (IAF- 2.5 Hz to IAF), alpha2 = (IAF to IAF Hz), beta1 = (IAF Hz), beta2 = (2 3 Hz). The IAF was determined on a 3 min EEG recorded at rest with eyes closed. Segments of raw EEG recorded during the interval from 5 to 65 ms of the delay period were analyzed. These segments were filtered between.5 and 3 Hz, and a 5-Hz notch filter was applied. The segments were subdivided into 2-s epochs. A fast Fourier transformation (FFT) was performed in each epoch. Ocular artefacts were corrected by using independent component analysis (ICA) followed by visual EEG inspection for remaining artefacts (see Table 1 for number of artifact-free epochs per EEG condition). These operations were performed in EEGlab toolbox. Spectral power densities for each frequency bands were calculated using Fieldtrip toolbox. Spectral power data were statistically analyzed by using two independent mixed-design ANOVAs. The first analysis involved mean power values in four regions of interest (ROI): left (Fp1, F7, F3) and right (Fp2, F8, F4) anterior areas, left (T5, P3, O1) and right (T6, P4, O2) posterior areas. This analysis included a between-subject factor Group (HP, LP) and the within-subject factors Task (retention, manipulation), Load (5 vs. 7 letters), Hemisphere (left, right) and Site (anterior, posterior). The second ANOVA of mean power values at the midline (Fz, Cz, Pz) was used exclusively for planned testing the hypothesis about the dynamics of the theta rhythm. The results in the other frequency bands were not analyzed. The ANOVA included factors Group (betweensubject), Task and Load (within-subject). All statistical calculations were performed by using SPSS package. Results Behavioral results Participants performed with a general mean accuracy of 78.5 ±.9%. Mean accuracies for each condition are shown in Fig. 2. The main effects of Task [F(1,63) = 18.1, p <.1, η 2 =.632] and Load [F(2,126) = 49.69, p <.1, Table 1 Number of artifact-free epochs per EEG condition Retention Mean ± standard deviation (minimum) Manipulation 5 letters 52.4 ± 8.2 (21) 53.4 ± 6.63 (27) 7 letters 54.2 ± 6.41 (25) 53.5 ± 6.87 (31) η 2 Accuracy,% R 6R 7R 5M 6M 7M Lowperformance group High performancegroup Fig. 2 Mean accuracy in different WM tasks and conditions. Notes 5R, 6R, 7R memorizing 5, 6, or 7 letters in forward order (retention condition); 5M, 6M, 7M memorizing 5, 6, or 7 letters in alphabetical order (manipulation condition) =.441] as well as their interaction of the factors [F(2,126) = 5.66, p =.5, η 2 =.82] were obtained. A pairwise comparison between load levels separately for alphabetical and forward conditions showed highly significant differences (p <.1) for all pairs but two. First, there was no difference between the performance in 5- and 6-letter conditions in the forward order (p =.191). Second, the differences were less pronounced in the comparison between 6 and 7 letters in the alphabetical order (p =.11; not significant after Bonferroni correction). For this reason, and in order to avoid potential problem with sphericity in statistical measures, the 6-letters condition was excluded from the EEG analysis. The mean performance accuracy in the high and low performance groups was 84.9 ±.5 and 71.9 ± 1.1%, for HP and LP, respectively [F(1,63) = 87.26, p <.1, η 2 =.581]. The difference between HP and LP did not substantially differ as a function of Task and Load. Electrophysiological results Theta The theta rhythm had lower power in anterior areas in comparison with posterior areas (main effect of Site, see Table 2). Also, the power was higher over the left than the right hemisphere (main effect of Hemisphere). Furthermore, the theta power decreased with the increasing WM load at all ROIs except the right anterior one (Load Site Hemisphere interaction). Across the whole sample, the theta power tended to be higher in the manipulation task than in the retention task. As depicted in Fig. 3, this effect was more pronounced at anterior than posterior areas (Task Site interaction) and also more pronounced over the left than the right hemisphere (Task Hemisphere interaction). The analysis also revealed a four-way interaction between Task, Site, Hemisphere and Group. Specifically, in the HP

5 Page 5 of 14 Table 2 Results of the ANOVA with the factors Task Load Hemisphere Site Group Theta Alpha1 Alpha2 Beta1 Beta2 F p η 2 F p η 2 F p η 2 F p η 2 F p η 2 Task Load Site < < < < < Hemisphere Group Site Hemisphere Task Group Task Load Task Site Task Hemisphere Task Site Group Load Site Hemisphere Task Site Hemisphere Group Italic numbers indicate significant effects (p <.5) a V 8 µv µ µv 2 µv 2 16 b µv 2 V µ Le Le Hemisphere Hemisphere Right Right Hemisphere Hemisphere Reten on Retenon Manipulaon Manipula on Anterior Reten on Retenon Posterior Manipulaon Manipula on Fig. 3 General tendencies of theta power for retention and manipulation tasks a over the left and right hemispheres and b in anterior and posterior areas. Error bars depict Standard Error of the Mean (SEM) group we observed a larger theta power in the manipulation condition than in the retention condition, and the magnitude of this effect was the highest in the left anterior area (Task Site Hemisphere interaction within the HP group: F(1,31) = 7.65, p =.1, η 2 =.197). No significant effects were found in the LP group. The analysis of midline theta also showed a higher power in the manipulation task than in the retention task [main effect of Task, F(1,63) = 7.685, p =.7, η 2 =.19]. Increasing number of the presented letters from 5 to 7 yielded a decrease of theta power in the manipulation task but its increase in the retention task [Task Load interaction, F(1,63) = 5.462, p =.23, η 2 =.8]. This interaction was, however, strongly modified by the between-subject factor. As depicted in Fig. 4, an increase of the number of letters from 5 to 7 was associated with an increase of theta activity in the HP group but its decrease in the LP group [Load Group interaction, F(1,63) = 4.465, p =.39, η 2 =.66]. Figure 4 shows that the significant Load Task interaction for the entire sample described above was actually produced by the dramatic decrement of the theta power in the most demanding condition (manipulation task, high WM load) in the LP group. Similarly, the triple interaction Load Site Hemisphere for the entire sample does not really characterize the entire sample but, like the Load Task interaction, can be attributed to a disproportionately strong influence of the LP group. Alpha As expected, alpha1 and alpha2 activity increased in the posterior direction (main effect of Site, see Table 2). Alpha1 power was lower in the manipulation task than in the retention tasks (main effect of Task). This effect was larger at the posterior than anterior sites (Task Site interaction). In addition, as can be seen in Fig. 5, the

6 Page 6 of 14 a 3 Low performance group High performance group 25 2 µv R 7R 5M 7M 5R 7R 5M 7M b High performance group c Low performance group 5R 7R 5M 7M Fig. 4 a Midline theta power for four WM tasks; b and c: the corresponding topograms in two groups. Notes 5R, 7R 5 and 7 letters retention conditions; 5M, 7M 5 and 7 letters manipulation conditions. Error bars depict SEM suppression of the alpha1 power in the manipulation task relative to the retention task was stronger in the HP than the LP group (Task Group interaction). Alpha2 was generally stronger in the HP than the LP group (main effect of Group). There were no significant differences in the average individual alpha frequencies between the groups [F(1,63) =.14, p =.71], with mean values being 1.47 Hz (SD =.87) and 1.39 Hz (SD =.82) in the LP and the HP groups, respectively. Alpha1 activity was suppressed with increasing WM load in each ROI except the right posterior area where alpha1 power increased (Load Site Hemisphere interaction). Beta1 Beta1 power was significantly lower in the anterior than posterior areas (main effect of Site), and lower on the left than right side (main effect of Hemisphere). As can be seen in Fig. 6, beta1 power increased with the increasing WM load in the manipulation conditions but decreased in the retention conditions (Task Load interaction). In general, the power was higher in the

7 Page 7 of 14 µv Reten on Manipula on LP group HP group Fig. 5 Alpha1 power for retention and manipulation tasks in low and high performance groups. Error bars depict SEM retention condition than in the manipulation condition (main effect of Task). A significant four-way Task Site Hemisphere Group interaction was obtained and further analyzed for groups and for electrode sites. The first ANOVA yielded a significant Task Site Hemisphere interaction [F(1,31) = 6.471, p <.5, η 2 =.131] only in the HP group, indicating that the decrease of the beta1 power from the retention task to the manipulation task was more pronounced in the left posterior and the right anterior ROIs. No such effects were observed in the LP group. The second ANOVA revealed a significant Task Group interaction in the left posterior ROI [F(1,31) = 5953, p <.5, η 2 =.86]. This result converges with the preceding one, both indicating task dependent changes of beta1 power in the HP group only, and particularly at the left posterior area (see Fig. 7). Beta2 In strike contrast to beta1, beta2 power was significantly larger in the anterior than posterior areas (main effect of Site). Increasing WM load led to an increase in beta2 activity (main effect of Load). The significant Task Site Group interaction (see Table 2) indicates opposite task- and location-related changes in the two groups. The HP group showed higher beta2 activity in the manipulation task at anterior areas, but in the retention task at posterior areas. The opposite held true for the LP group (Fig. 8). Discussion Theta and central executive components of WM The current study found that increasing WM task complexity and executive control demand were associated with the increase of the frontal theta activity. Increasing theta power in midline and frontal areas during mental manipulations in contrast to the mere retention of memory content is in line with numerous data indicating positive relationships between FMT and cognitive load [17, 18, 42, 45 47]. Moreover, an increase of FMT in manipulation tasks as compared with retention tasks was also found in studies whose design was similar to the present one [21 23, 48]. In addition, the link between FMT and the activation of the anterior cingulate cortex (ACC) and the medial µv R 7R 5M 7M Fig. 6 Beta1 power chart and corresponding topograms for retention and manipulation tasks. Error bars depict SEM

8 Page 8 of 14 a µv Reten on HP group LPgroup Manipula on b High performance group c Low performance group Reten on Manipula on Fig. 7 Beta1 power in the left posterior area for retention and manipulation tasks (a) and corresponding topograms in Low performance (LP; b) and High performance (HP; c) groups. Error bars depict SEM prefrontal cortex (mpfc) was repeatedly proven by simultaneous EEG-fMRI recordings as well as by direct electrophysiological recordings in monkeys [49 52]. The ACC and the mpfc are active during memory processes, WM performance, and executive control [53 55]. We assume that the increment of FMT (supposedly indicating the activation of the ACC) with increasing WM demands is related to increasing involvement of executive processes. However, it should be noted that FMT reflects not pure memory processes per se but more likely the allocation of cortical resources depending on

9 Page 9 of 14 µv 2 µv Reten on LP group Anterior area Posterior area Reten on LP group Manipula on HP group Manipula on HP group Fig. 8 Beta2 power for Retention and Manipulation tasks in low and high performance groups in anterior and posterior areas. Error bars depict SEM the features of the task [18, 55, 56]. One may speculate that increasing demands for executive control during manipulation of information in WM engage a widely distributed network whose main components are the prefrontal cortex and the ACC. The task-related increment of the theta power in the left anterior area was found only in the HP group. This may be related to more effective manipulations supported by the language cortex. Some authors hypothesize that high WM load leads to the involvement of a circuit including the prefrontal cortex and the medial temporal lobe related to long-term memory [57 59]. The activation of the left prefrontal cortex including the inferior frontal gyrus (IFG) and Broca s area was found in verbal tasks associated with executive functions [51, 6, 61]. Simultaneous EEG/fMRI recording in a modified Sternberg task revealed a load-dependent increase of left IFG activation and the theta rhythm [51]. Similar results were obtained by Chee and Choo [62] in another WM task. We suppose that the left-hemispheric accentuation of the theta rhythm may represent more effective information exchange between short- and long-term memory storage in the HP group. Group differences were not only task-dependent but also load-dependent. The HP group demonstrated a gradual increase of theta power at midline, reaching its peak in the most demanding condition: manipulation task with 7 letters. In contrast, the LP group exhibited a sharp drop of theta power in this condition after a maximum in the condition of moderate difficulty: manipulation with 5 letters. Since previous studies of EEG correlates of individual differences in WM were limited to moderate difficulty, we can state that our findings are fully consistent with the previous ones, where the theta activity always increased with memory load [18, 4, 42, 43, 45, 46]. However, the most difficult task resulted in a more complex change of theta activity that has not been observed so far. One may speculate that reaching the individual s WM capacity limit is accompanied by a crucial deficit of attentional resources. Post-experimental reports suggest that most participants formulated their task as to remember all letters if possible, but possibly, some LP participants in the most difficult condition changed the task to to remember at least some letters. Alternatively, some subjects may have switched strategy to remember the first few letters with regard to position in the forward task and the first few letters with regard to alphabetical order in the alphabetical task. This post hoc hypothesis was supported by an analysis of behavioral results regarding to the position of the probe letter. The factor Position was taken with 2 levels (the first two vs. the last 2 letters for 5-letters conditions, or the first three vs. the last 3 letters for 7-letters conditions). Both 2-way Position Group interaction [F(1,63) = 6.22, p =.17, η 2 =.87] and a 4-way Position Task Load Group interaction [F(1,63) = 3.183, p =.45, η 2 =.48] were significant. Unfortunately, due to the post hoc nature of this effect we could not perform the EEG analysis with the factor Position, because we did not have a sufficient statistical power for this unplanned comparison. Another explanation might be the loss of motivation in LP participants in the most challenging condition. This hypothesis, however, would predict a particularly poor performance of LP participants in the manipulation task with 7 letters. This disagrees with the observed data indicating nearly equal performance differences between LP and HP participants in all conditions (see Fig. 4). From our point of view, the strategy change hypothesis can better integrate this fact that the loss-of-motivation hypothesis. Also Jaeggi et al. [41] came on the basis of their fmri study to the same conclusion concerning the suboptimal strategies used by LP subjects in WM tasks. In that study, LP participants showed a positive correlation between task complexity and the amount of the broad activation in the frontal cortex. Obviously, the most challenging condition leads to the widely distributed engagement of the prefrontal cortex and results in the lack of neural resources for activation of the ACC necessary for the executive control of WM. Alpha and the storage components of WM As compared with the retention condition, manipulation of stimuli in WM was associated with distributed

10 Page 1 of 14 suppression of alpha1 activity. Desynchronization of low alpha has been regarded as a nonspecific cortical response that can be observed during various cognitive operations [28, 42, 63] including maintaining information in WM [49, 64, 65]. In addition to this non-specificity model, however, more specific hypotheses about the dynamics of alpha exist. Thus, alpha synchronization in posterior areas during the maintenance of actual information may reflect active inhibition to protect these areas from reorienting to new irrelevant information processing [17, 32]. It is plausible that the temporary storage components of WM play a key role in successful maintenance of 7 letters relative to 5 letters. It might be suggested that when the volume of information maintained in the temporary storage approaches the putative capacity limit (7 ± 2), the central executive should actively inhibit irrelevant information. The observed asymmetry of alpha1 power at the posterior area agrees with the previous studies of WM and short-term memory [17, 42, 5, 66, 67]. In the development of the cortical idling hypothesis, Pfurtscheller et al. [68] proposed that the increasing alpha activity during cognitive processing is related to the allocation of attentional resources by inhibition of the cortical areas irrelevant to the current task [32, 69, 7]. In this context, the alpha rhythm plays a role of an information flow filter. It is well known that WM is one of the main components of general intelligence [71, 72]. Accordingly, the degree of alpha desynchronization in semantic memory task is positively related to intelligence [73]. Similar correlations between IQ and alpha power were observed in the resting state [74, 75]. We suppose that stronger alpha power may reflect a higher level of readiness to perceive relevant information. Therefore, HP individuals have potentially more resourceful visual cortex and manage the tasks better [63]. Beta1 and manipulation of information in WM Task-related decrement of beta1 power found in this study was quite similar to the effect reported by Berger et al. [22] who also compared manipulation versus retention conditions. This effect may be explained by the conception of Engel and Fries [76] that, applied to the present experiment, suggests that the decrease of beta1 power takes place during updating or manipulating information in WM as well as during retrieval of information from long term memory and encoding it in WM. The desynchronization of the beta1 rhythm can be attributed to the sequential updating of the WM content during mental alphabetizing of the letters. This process also involves addressing the long term memory where the alphabet is stored. Load-dependent changes in beta1 power were observed only in the manipulation condition. We hypothesize that manipulation is performed using two independent temporal buffers. One of them ( store buffer) is the final storage for modified items after the manipulations, and the other one ( working buffer) serves as a workspace for the remaining to-be-modified items. Weiss and Müller [77] hypothesize about two different beta1 rhythms that overlap in frequency but reflect different subprocesses in WM. The first rhythm supports the activity of the store buffer, and the second rhythm, that of the workspace buffer. Synchronization of the former maintains the active state of the engram and protects it from irrelevant information. Weiss and Rappelsberger [78] demonstrated a gradual increase of beta1 activity in response to sequential filling of WM by words. Research conducted by Leiberg et al. [79] also showed a loaddependent increase of beta1 activity. At the same time, desynchronization of the other beta1 rhythm reflects the retrieval from long term memory and encoding to WM. In other words, desynchronization of the latter beta1 rhythm reflects manipulations of objects in the workspace for their subsequent transfer to the store. Our hypothesis also entails that the lack of beta1 desynchronization during the encoding process indicates a disruption of memory formation. Recently, Hanslmayr et al. [8] found a negative effect of transcranial magnetic stimulation (TMS) of the left inferior frontal gyrus at beta1 frequency (18.7 Hz) on memory performance in a word-list learning task. Furthermore, a study [34] performed on monkeys demonstrated desynchronization of beta activity during updating of WM content but synchronization of beta activity during retention. Probably, in the retention condition the workspace buffer is only minimally involved. It may work at the beginning of the delay period when sequentially and quickly presented information is encoded. Thus Zanto and Gazzaley [81] found the desynchronization of beta1 rhythm during the first 125 ms of the 4-s delay period but its synchronization from 15 ms to the end of the delay. In the current study, the delay periods during maintaining and manipulation of 5 and 7 letters could be different due to a longer presentation time (3 s). Therefore, the recombination of 5 letters to the alphabetical order could already start during stimulus presentation and continue only in the workspace buffer without addressing the store buffer. When the recombination process is finished, the result is transferred to the store buffer and kept there until the probe is presented. The store buffer in this case prevents possible interference of other stimuli and maintains the actual state of the engram until the moment when its content is requested. When a longer stimulus set is memorized (i.e., 7 letters), a plausible strategy is to

11 Page 11 of 14 memorize the initial letters set and to transfer it into the store buffer. If this strategy is used, recombination may start after the stimuli have disappeared from the screen. During this period, both buffers are actively involved: the store buffer is keeping the initial set, while recombination is carried out in the workspace buffer. When the recombination is finished, the information moves to the store and updates its content. This assumed information return to, and updating of, the store buffer would explain the increase of beta1 power from 5- to 7-letter condition in the manipulation task. At the level of individual differences, the main result was a stronger desynchronization of beta1 rhythm in the HP group during manipulation condition in the left posterior area. An important role of the superior parietal cortex in flexible redistribution of attentional resources was demonstrated in several studies [82 85]. In terms of the proposed two-buffer model, one may suggest that HP individuals are better able to shift their attention between the store of the originally presented set and the workspace where they work with the symbols. This might allow them to perform manipulations in the workspace buffer not spending too much resources for maintaining information in the store buffer. Beta2 and amount of information in WM Beta2 power increased with the increasing WM load and did not significantly depend on the type of the task. Dissociations between the lower (13 2 Hz) and upper (25 3 Hz) beta were demonstrated earlier in a study of Shahin et al. [86]. The authors concluded that the increment of the upper beta may reflect maintaining verbal stimuli in auditory memory. The maintenance of stimuli in WM was also suggested to cause synchronization of beta2 (~2 3 Hz) in two different tasks [87, 88]. Spitzer et al. [88] assumed that the upper beta activity is directly related to the quantity of supramodal abstract information. The significant effect of Load on beta2 power found in the present study is in line with this interpretation. During the manipulation task, beta2 power increased in the HP group in the anterior areas, but in the LP group in the posterior areas. As we do not know any comparable result in the literature, this finding is, first of all, in need of replication. As a putative explanation, we propose that beta2 may most simply be designated as activation. We believe, therefore, that changes in beta2 activity are not related to mental processes as such, but rather to the general volume of information necessarily used in these processes. This volume is expected to be larger in the manipulation task than in the retention task because during manipulation one has to work with at least two stimulus sets: the one that should be manipulated with and the one that results from the manipulation. The increase of frontal activity in HP participants may, therefore, reflect their ability to process a larger amount of information, whereas the heightened activity of sensory regions in LP subjects appears to reflect their need to frequently address the original stimulus set. Summary of the proposed model In general, the obtained results allow us to make several claims about possible factors contributing, at the individual level, to effective verbal WM performance: firstly, a higher state of readiness to process relevant and to inhibit irrelevant information and related larger alpha power; secondly, stronger engagement of the left prefrontal cortex; this factor can underlie efficient maintaining and manipulating information in WM due to a fast exchange of information between long term and working memory; thirdly, an energy efficient strategy for distribution of frontal resources in order to maintain the necessary level of activity of the ACC; finally, activation of the ACC and the related executive functions is decisive for successful manipulations of content in WM, simultaneous maintaining information about initial properties of stimuli and efficiently shifting attention between these cognitive operations. Limitations We have to acknowledge at least two limitations of the present study. Firstly, the results may be affected by the homogeneity of the sample in respect to gender (i.e., females). A gender based analysis will be the matter of a subsequent report. Secondly, our putative explanation hypotheses suggested in the Discussion above have neuroanatomical implications, i.e., they presume the activity of certain brain structures such as the ACC. To test these hypotheses, a larger number of electrodes should be used in future studies, which will allow a more precise assessment of the spatial distribution of the obtained effects. Thirdly, individual differences were approached using median split on the global performance. Although the data show that general performance differences play a significant role, this approach may underestimate the importance the individual differences that concern only specific conditions (e.g., only manipulation but not retention). In principle, other approaches to group selection are possible and might yield different results.

12 Page 12 of 14 Conclusions 1. In accordance with many previous studies, we expected to find significant WM-related changes in alpha and theta frequency bands. This hypothesis was only partially supported by the data. Significant effects were found in all analyzed frequency bands from theta to high beta, indicating that our knowledge about the neural basis of WM is not comprehensive. 2. The hypothesis about a strong participation of the frontal theta rhythm in WM processes was confirmed. The novel finding was, however, different dynamics of frontal theta in HP and LP groups. 3. When starting the study, we believed that some important findings can have been missed in the previous experiments because they used only tasks of low to average difficulty. Therefore, we predicted important intergroup variation in EEG pattern in the most challenging condition. This prediction was confirmed. The most pronounced differences between individuals with high and low WM performance, in terms of the oscillatory activity in several frequency ranges, were observed in the manipulation task with 7 letters, which is a very difficult condition that for many individuals might exceed their limits. Particularly, this condition resulted in a more complex change of theta activity than just an increase with WM load, which has not been observed so far. Including greater variety of experimental conditions and groups to the WM research agenda seems beneficial. 4. Finally, we expected a stronger effect of executive WM components as compared with storage components. The data put this hypothesis in question. Firstly, the difference in performance between LP and HP participants was nearly equal in retention (weak executive control demands) and manipulation (much higher executive control demands) conditions. Secondly, task and site dependent group differences were found in each explored frequency bands including anterior theta and posterior alpha activity. In some studies these two responses were interpreted as reflections of executive and storage components of WM, respectively [89, 9]. Although there is an alternative interpretation on the basis of cross-frequency coupling [91, 92], all these observations together may indicate that the two components of WM are equally important for WM performance at the individual level. More studies are needed to clarify this issue. Abbreviations WM: working memory; HP: high performance; LP: low performance; tacs: transcranial alternating current stimulation; FMT: frontal midline theta rhythm; EEG: electroencephalography; EOG: electrooculography; IAF: individual alpha frequency; FFT: fast Fourier transformation; ICA: independent component analysis; ROI: region of interest; SEM: standard error of the mean; IFG: inferior frontal gyrus; fmri: functional magnetic resonance imaging; ACC: anterior cingulate cortex; IQ: intelligence quotient; ANOVA: analysis of variance. Authors contributions YGP conceived of the study, designed the experimental paradigm, carried out the recording of the data, performed the statistical analysis and drafted the manuscript. BK contributed to the discussion, and to the preparation of the manuscript. Both authors read and approved the final manuscript. Author details 1 Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany. 2 Department of Psychology, Ural Federal University, Yekaterinburg, Russia. Competing interests The authors declare that they have no competing interests. Availability of data and materials The datasets analyzed during the current study is available from the corresponding author on reasonable request. Ethics approval and consent to participate Informed consent was obtained from all subjects prior to the study. The study was approved by the Ural Federal University Ethics Committee. Funding We acknowledge support by the Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of University of Tübingen. Received: 23 December 216 Accepted: 4 February 217 References 1. Daneman M, Merikle PM. Working memory and language comprehension: a meta-analysis. Psychon Bull Rev. 1996;3: D Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc B Biol Sci. 27;362: Hyun J-S, Luck SJ. Visual working memory as the substrate for mental rotation. Psychon Bull Rev. 27;14: Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol. 212;63: Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 23;4: Engle RW, Tuholski SW, Laughlin JE, Conway AR. Working memory, shortterm memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen. 1999;128: Postle BR. Working memory as an emergent property of the mind and brain. Neuroscience. 26;139: Nee DE, Brown JW, Askren MK, Berman MG, Demiralp E, Krawitz A, et al. A meta-analysis of executive components of working memory. Cereb Cortex. 213;23: Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, et al. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386: Edin F, Klingberg T, Johansson P, McNab F, Tegnér J, Compte A. Mechanism for top-down control of working memory capacity. Proc Natl Acad Sci. 29;16: Klingberg T, O Sullivan BT, Roland PE. Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cereb Cortex. 1997;7: Linden DEJ, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R, et al. Cortical capacity constraints for visual working memory: dissociation of fmri load effects in a fronto-parietal network. NeuroImage. 23;2:

13 Page 13 of Palva JM, Monto S, Kulashekhar S, Palva S. Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci. 21;17: Ekman M, Fiebach CJ, Melzer C, Tittgemeyer M, Derrfuss J. Different roles of direct and indirect frontoparietal pathways for individual working memory capacity. J Neurosci. 216;36: Buzsaki G. Neuronal oscillations in cortical networks. Science. 24;34: Aftanas LI, Golocheikine SA. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett. 21;31: Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci. 22;15: Onton J, Delorme A, Makeig S. Frontal midline EEG dynamics during working memory. NeuroImage. 25;27: Sauseng P, Klimesch W, Schabus M, Doppelmayr M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol. 25;57: Sauseng P, Griesmayr B, Freunberger R, Klimesch W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev. 21;34: Berger B, Minarik T, Griesmayr B, Stelzig-Schoeler R, Aichhorn W, Sauseng P. Brain oscillatory correlates of altered executive functioning in positive and negative symptomatic schizophrenia patients and healthy controls. Front Psychol. 216;7: Berger B, Omer S, Minarik T, Sterr A, Sauseng P. Interacting memory systems does EEG alpha activity respond to semantic long-term memory access in a working memory task? Biology. 214;4: Griesmayr B, Gruber WR, Klimesch W, Sauseng P. Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiol Learn Mem. 21;93: Cooper PS, Wong ASW, Fulham WR, Thienel R, Mansfield E, Michie PT, et al. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage. 215;18: Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, Von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci. 1998;95: Wu X, Chen X, Li Z, Han S, Zhang D. Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency. NeuroImage. 27;35: Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 212;22: Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 212;16: Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, et al. Brain oscillatory substrates of visual short-term memory capacity. Curr Biol. 29;19: Tuladhar AM, ter Huurne N, Schoffelen J-M, Maris E, Oostenveld R, Jensen O. Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp. 27;28: Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci [Internet]. 21 [cited 216 May 23];4. fnhum /abstract. 32. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition timing hypothesis. Brain Res Rev. 27;53: Deiber M-P, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibanez V, et al. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics. Cogn Neurosci J. 27;19: Siegel M, Warden MR, Miller EK. Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci. 29;16: Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J. Induced γ-band activity during the delay of a visual short-term memory task in humans. J Neurosci. 1998;18: Barrett LF, Tugade MM, Engle RW. Individual differences in working memory capacity and dual-process theories of the mind. Psychol Bull. 24;13: Engle RW, Kane MJ. Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychol Learn Motiv. 24;44: Unsworth N, Spillers GJ. Working memory capacity: attention control, secondary memory, or both? A direct test of the dual-component model. J Mem Lang. 21;62: Brouwer A-M, Hogervorst MA, van Erp JBF, Heffelaar T, Zimmerman PH, Oostenveld R. Estimating workload using EEG spectral power and ERPs in the n-back task. J Neural Eng. 212;9: Daffner KR, Chong H, Sun X, Tarbi EC, Riis JL, McGinnis SM, et al. Mechanisms underlying age- and performance-related differences in working memory. J Cogn Neurosci. 211;23: Jaeggi SM, Buschkuehl M, Etienne A, Ozdoba C, Perrig WJ, Nirkko AC. On how high performers keep cool brains in situations of cognitive overload. Cogn Affect Behav Neurosci. 27;7: Gevins A, Smith ME, McEvoy L, Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex. 1997;7: Pesonen M, Hämäläinen H, Krause CM. Brain oscillatory 4 3 Hz responses during a visual n-back memory task with varying memory load. Brain Res. 27;1138: Dong S, Reder LM, Yao Y, Liu Y, Chen F. Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Res. 215;1616: Itthipuripat S, Wessel JR, Aron AR. Frontal theta is a signature of successful working memory manipulation. Exp Brain Res. 212;224: Missonnier P, Deiber M-P, Gold G, Millet P, Pun MG-F, Fazio-Costa L, et al. Frontal theta event-related synchronization: comparison of directed attention and working memory load effects. J Neural Transm. 26;113: Gevins A, Smith ME. neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex. 2;1: Griesmayr B, Berger B, Stelzig-Schoeler R, Aichhorn W, Bergmann J, Sauseng P. EEG theta phase coupling during executive control of visual working memory investigated in individuals with schizophrenia and in healthy controls. Cogn Affect Behav Neurosci. 214;14: Meltzer JA, Negishi M, Mayes LC, Constable RT. Individual differences in EEG theta and alpha dynamics during working memory correlate with fmri responses across subjects. Clin Neurophysiol. 27;118: Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, et al. Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS ONE. 21;5:e Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen MCM. Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. NeuroImage. 29;44: Tsujimoto T, Shimazu H, Isomura Y, Sasaki K. Theta oscillations in primate prefrontal and anterior cingulate cortices in forewarned reaction time tasks. J Neurophysiol. 21;13: Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2;4: Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 212;12: Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 213;79: Sauseng P, Hoppe J, Klimesch W, Gerloff C, Hummel FC. Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci. 27;25: Cashdollar N, Malecki U, Rugg-Gunn FJ, Duncan JS, Lavie N, Duzel E. Hippocampus-dependent and-independent theta-networks of active maintenance. Proc Natl Acad Sci. 29;16: Eckart C, Fuentemilla L, Bauch EM, Bunzeck N. Dopaminergic stimulation facilitates working memory and differentially affects prefrontal low theta oscillations. NeuroImage. 214;94: Jeneson A, Squire LR. Working memory, long-term memory, and medial temporal lobe function. Learn Mem. 211;19:15 25.

REHEARSAL PROCESSES IN WORKING MEMORY AND SYNCHRONIZATION OF BRAIN AREAS

REHEARSAL PROCESSES IN WORKING MEMORY AND SYNCHRONIZATION OF BRAIN AREAS REHEARSAL PROCESSES IN WORKING MEMORY AND SYNCHRONIZATION OF BRAIN AREAS Franziska Kopp* #, Erich Schröger* and Sigrid Lipka # *University of Leipzig, Institute of General Psychology # University of Leipzig,

More information

Working Memory: Critical Constructs and Some Current Issues. Outline. Starting Points. Starting Points

Working Memory: Critical Constructs and Some Current Issues. Outline. Starting Points. Starting Points Working Memory: Critical Constructs and Some Current Issues Edward E. Smith Columbia University Outline Background Maintenance: Modality specificity and buffers Interference resolution: Distraction and

More information

EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance

EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance EEG-Rhythm Dynamics during a 2-back Working Memory Task and Performance Tsvetomira Tsoneva, Davide Baldo, Victor Lema and Gary Garcia-Molina Abstract Working memory is an essential component of human cognition

More information

Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics. Scott Makeig. sccn.ucsd.edu

Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics. Scott Makeig. sccn.ucsd.edu Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics Scott Makeig Institute for Neural Computation University of California San Diego La Jolla CA sccn.ucsd.edu Talk given at the EEG/MEG course

More information

Selective bias in temporal bisection task by number exposition

Selective bias in temporal bisection task by number exposition Selective bias in temporal bisection task by number exposition Carmelo M. Vicario¹ ¹ Dipartimento di Psicologia, Università Roma la Sapienza, via dei Marsi 78, Roma, Italy Key words: number- time- spatial

More information

Description of the Spectro-temporal unfolding of temporal orienting of attention.

Description of the Spectro-temporal unfolding of temporal orienting of attention. Description of the Spectro-temporal unfolding of temporal orienting of attention. All behaviors unfold over time; therefore, our ability to perceive and adapt our behavior according to the temporal constraints

More information

Processed by HBI: Russia/Switzerland/USA

Processed by HBI: Russia/Switzerland/USA 1 CONTENTS I Personal and clinical data II Conclusion. III Recommendations for therapy IV Report. 1. Procedures of EEG recording and analysis 2. Search for paroxysms 3. Eyes Open background EEG rhythms

More information

Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance?

Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance? Chapter 5 Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance? Karin H. Gomarus, Albertus A. Wijers, Ruud B. Minderaa,

More information

EEG Analysis on Brain.fm (Focus)

EEG Analysis on Brain.fm (Focus) EEG Analysis on Brain.fm (Focus) Introduction 17 subjects were tested to measure effects of a Brain.fm focus session on cognition. With 4 additional subjects, we recorded EEG data during baseline and while

More information

Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range

Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range European Journal of Neuroscience, Vol. 25, pp. 587 593, 2007 doi:10.1111/j.1460-9568.2006.05286.x Dissociation of sustained attention from central executive functions: local activity and interregional

More information

An Analysis of Improving Memory Performance Based on EEG Alpha and Theta Oscillations

An Analysis of Improving Memory Performance Based on EEG Alpha and Theta Oscillations Vol. 2, No. 1 108 An Analysis of Improving Memory Performance Based on EEG Alpha and Theta Oscillations Tianbao Zhuang & Hong Zhao Graduate School of Innovative Life Science University of Toyama Toyama,

More information

Neural Correlates of Human Cognitive Function:

Neural Correlates of Human Cognitive Function: Neural Correlates of Human Cognitive Function: A Comparison of Electrophysiological and Other Neuroimaging Approaches Leun J. Otten Institute of Cognitive Neuroscience & Department of Psychology University

More information

Supplementary Motor Area exerts Proactive and Reactive Control of Arm Movements

Supplementary Motor Area exerts Proactive and Reactive Control of Arm Movements Supplementary Material Supplementary Motor Area exerts Proactive and Reactive Control of Arm Movements Xiaomo Chen, Katherine Wilson Scangos 2 and Veit Stuphorn,2 Department of Psychological and Brain

More information

Prestimulus Alpha as a Precursor to Errors in a UAV Target Orientation Detection Task

Prestimulus Alpha as a Precursor to Errors in a UAV Target Orientation Detection Task Prestimulus Alpha as a Precursor to Errors in a UAV Target Orientation Detection Task Carryl Baldwin 1, Joseph T. Coyne 2, Daniel M. Roberts 1, Jane H. Barrow 1, Anna Cole 3, Ciara Sibley 3, Brian Taylor

More information

Evidence for false memory before deletion in visual short-term memory

Evidence for false memory before deletion in visual short-term memory Evidence for false memory before deletion in visual short-term memory Eiichi Hoshino 1,2, Ken Mogi 2, 1 Tokyo Institute of Technology, Department of Computational Intelligence and Systems Science. 4259

More information

TEMPORAL CHARACTERISTICS OF THE MEMORY CODE

TEMPORAL CHARACTERISTICS OF THE MEMORY CODE TEMPORAL CHARACTERISTICS OF THE MEMORY CODE Irina V. Maltseva 1, Yuri Masloboev 2 Institute of Psychology, Russian Academy of Sciences Moscow, Russia 1 Moscow Institute of Electronic Engineering Moscow,

More information

Tracking the Development of Automaticity in Memory Search with Human Electrophysiology

Tracking the Development of Automaticity in Memory Search with Human Electrophysiology Tracking the Development of Automaticity in Memory Search with Human Electrophysiology Rui Cao (caorui.beilia@gmail.com) Thomas A. Busey (busey@indiana.edu) Robert M. Nosofsky (nosofsky@indiana.edu) Richard

More information

Visual Context Dan O Shea Prof. Fei Fei Li, COS 598B

Visual Context Dan O Shea Prof. Fei Fei Li, COS 598B Visual Context Dan O Shea Prof. Fei Fei Li, COS 598B Cortical Analysis of Visual Context Moshe Bar, Elissa Aminoff. 2003. Neuron, Volume 38, Issue 2, Pages 347 358. Visual objects in context Moshe Bar.

More information

Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory? Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory? Nick Berggren and Martin Eimer Abstract During the retention of

More information

Discrete capacity limits in visual working memory Keisuke Fukuda, Edward Awh and Edward K Vogel

Discrete capacity limits in visual working memory Keisuke Fukuda, Edward Awh and Edward K Vogel Available online at www.sciencedirect.com Discrete capacity limits in visual working memory Keisuke Fukuda, Edward Awh and Edward K Vogel The amount of information we can actively maintain in mind is very

More information

Working Memory (Goal Maintenance and Interference Control) Edward E. Smith Columbia University

Working Memory (Goal Maintenance and Interference Control) Edward E. Smith Columbia University Working Memory (Goal Maintenance and Interference Control) Edward E. Smith Columbia University Outline Goal Maintenance Interference resolution: distraction, proactive interference, and directed forgetting

More information

Mental representation of number in different numerical forms

Mental representation of number in different numerical forms Submitted to Current Biology Mental representation of number in different numerical forms Anna Plodowski, Rachel Swainson, Georgina M. Jackson, Chris Rorden and Stephen R. Jackson School of Psychology

More information

Human Brain Institute Russia-Switzerland-USA

Human Brain Institute Russia-Switzerland-USA 1 Human Brain Institute Russia-Switzerland-USA CONTENTS I Personal and clinical data II Conclusion. III Recommendations for therapy IV Report. 1. Procedures of EEG recording and analysis 2. Search for

More information

Journal of Experimental Psychology: Human Perception & Performance, in press

Journal of Experimental Psychology: Human Perception & Performance, in press Memory Search, Task Switching and Timing 1 Journal of Experimental Psychology: Human Perception & Performance, in press Timing is affected by demands in memory search, but not by task switching Claudette

More information

The EEG Analysis of Auditory Emotional Stimuli Perception in TBI Patients with Different SCG Score

The EEG Analysis of Auditory Emotional Stimuli Perception in TBI Patients with Different SCG Score Open Journal of Modern Neurosurgery, 2014, 4, 81-96 Published Online April 2014 in SciRes. http://www.scirp.org/journal/ojmn http://dx.doi.org/10.4236/ojmn.2014.42017 The EEG Analysis of Auditory Emotional

More information

Submitted report on Sufi recordings at AAPB 2013 in Portland. Not for general distribution. Thomas F. Collura, Ph.D. July, 2013

Submitted report on Sufi recordings at AAPB 2013 in Portland. Not for general distribution. Thomas F. Collura, Ph.D. July, 2013 Submitted report on Sufi recordings at AAPB 2013 in Portland Not for general distribution. Thomas F. Collura, Ph.D. July, 2013 Summary of EEG findings The intent of the EEG monitoring was to see which

More information

Gum Chewing Maintains Working Memory Acquisition

Gum Chewing Maintains Working Memory Acquisition International Journal of Bioelectromagnetism Vol. 11, No. 3, pp.130-134, 2009 www.ijbem.org Gum Chewing Maintains Working Memory Acquisition Yumie Ono a, Kanako Dowaki b, Atsushi Ishiyama b, Minoru Onozuka

More information

Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory?

Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? Running Head: Visual Working Memory and the CDA Does contralateral delay activity reflect working memory storage or the current focus of spatial attention within visual working memory? Nick Berggren and

More information

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1 The neurolinguistic toolbox Jonathan R. Brennan Introduction to Neurolinguistics, LSA2017 1 Psycholinguistics / Neurolinguistics Happy Hour!!! Tuesdays 7/11, 7/18, 7/25 5:30-6:30 PM @ the Boone Center

More information

FINAL PROGRESS REPORT

FINAL PROGRESS REPORT (1) Foreword (optional) (2) Table of Contents (if report is more than 10 pages) (3) List of Appendixes, Illustrations and Tables (if applicable) (4) Statement of the problem studied FINAL PROGRESS REPORT

More information

Coherent oscillatory networks supporting short-term memory retention

Coherent oscillatory networks supporting short-term memory retention available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Coherent oscillatory networks supporting short-term memory retention Lisa Payne a,, John Kounios b a Program of Neuroscience,

More information

Supplemental Material

Supplemental Material Supplemental Material Recording technique Multi-unit activity (MUA) was recorded from electrodes that were chronically implanted (Teflon-coated platinum-iridium wires) in the primary visual cortex representing

More information

Cognitive Neuroscience of Memory

Cognitive Neuroscience of Memory Cognitive Neuroscience of Memory Types and Structure of Memory Types of Memory Type of Memory Time Course Capacity Conscious Awareness Mechanism of Loss Sensory Short-Term and Working Long-Term Nondeclarative

More information

MENTAL WORKLOAD AS A FUNCTION OF TRAFFIC DENSITY: COMPARISON OF PHYSIOLOGICAL, BEHAVIORAL, AND SUBJECTIVE INDICES

MENTAL WORKLOAD AS A FUNCTION OF TRAFFIC DENSITY: COMPARISON OF PHYSIOLOGICAL, BEHAVIORAL, AND SUBJECTIVE INDICES MENTAL WORKLOAD AS A FUNCTION OF TRAFFIC DENSITY: COMPARISON OF PHYSIOLOGICAL, BEHAVIORAL, AND SUBJECTIVE INDICES Carryl L. Baldwin and Joseph T. Coyne Department of Psychology Old Dominion University

More information

Interference with spatial working memory: An eye movement is more than a shift of attention

Interference with spatial working memory: An eye movement is more than a shift of attention Psychonomic Bulletin & Review 2004, 11 (3), 488-494 Interference with spatial working memory: An eye movement is more than a shift of attention BONNIE M. LAWRENCE Washington University School of Medicine,

More information

Neuro Q no.2 = Neuro Quotient

Neuro Q no.2 = Neuro Quotient TRANSDISCIPLINARY RESEARCH SEMINAR CLINICAL SCIENCE RESEARCH PLATFORM 27 July 2010 School of Medical Sciences USM Health Campus Neuro Q no.2 = Neuro Quotient Dr.Muzaimi Mustapha Department of Neurosciences

More information

Chapter 8: Visual Imagery & Spatial Cognition

Chapter 8: Visual Imagery & Spatial Cognition 1 Chapter 8: Visual Imagery & Spatial Cognition Intro Memory Empirical Studies Interf MR Scan LTM Codes DCT Imagery & Spatial Cognition Rel Org Principles ImplEnc SpatEq Neuro Imaging Critique StruEq Prop

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

Spectral Analysis of EEG Patterns in Normal Adults

Spectral Analysis of EEG Patterns in Normal Adults Spectral Analysis of EEG Patterns in Normal Adults Kyoung Gyu Choi, M.D., Ph.D. Department of Neurology, Ewha Medical Research Center, Ewha Womans University Medical College, Background: Recently, the

More information

Dual n-back training increases the capacity of the focus of attention

Dual n-back training increases the capacity of the focus of attention Psychon Bull Rev (2013) 20:135 141 DOI 10.3758/s13423-012-0335-6 BRIEF REPORT Dual n-back training increases the capacity of the focus of attention Lindsey Lilienthal & Elaine Tamez & Jill Talley Shelton

More information

Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials

Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials 2015 6th International Conference on Intelligent Systems, Modelling and Simulation Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials S. Z. Mohd

More information

Novel single trial movement classification based on temporal dynamics of EEG

Novel single trial movement classification based on temporal dynamics of EEG Novel single trial movement classification based on temporal dynamics of EEG Conference or Workshop Item Accepted Version Wairagkar, M., Daly, I., Hayashi, Y. and Nasuto, S. (2014) Novel single trial movement

More information

Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves

Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves SICE Annual Conference 27 Sept. 17-2, 27, Kagawa University, Japan Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves Seiji Nishifuji 1, Kentaro Fujisaki 1 and Shogo Tanaka 1 1

More information

A model of parallel time estimation

A model of parallel time estimation A model of parallel time estimation Hedderik van Rijn 1 and Niels Taatgen 1,2 1 Department of Artificial Intelligence, University of Groningen Grote Kruisstraat 2/1, 9712 TS Groningen 2 Department of Psychology,

More information

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning Resistance to Forgetting 1 Resistance to forgetting associated with hippocampus-mediated reactivation during new learning Brice A. Kuhl, Arpeet T. Shah, Sarah DuBrow, & Anthony D. Wagner Resistance to

More information

Synchronization between prefrontal and posterior association cortex during human working memory

Synchronization between prefrontal and posterior association cortex during human working memory Proc. Natl. Acad. Sci. USA Vol. 95, pp. 7092 7096, June 998 Neurobiology Synchronization between prefrontal and posterior association cortex during human working memory J. SARNTHEIN*, H. PETSCHE, P.RAPPELSBERGER,

More information

Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm

Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm Author's response to reviews Title:Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm Authors: Julia Miro (juliamirollado@gmail.com) Pablo Ripollès (pablo.ripolles.vidal@gmail.com)

More information

The Spatial-verbal Difference in the N-back Task: An ERP Study

The Spatial-verbal Difference in the N-back Task: An ERP Study 170 The Spatial-verbal Difference in the N-back Task: An ERP Study Yung-Nien Chen 1,2 and Suvobrata Mitra 2 Abstract- The spatial-verbal dichotomy of working memory tasks was investigated using event-related

More information

NIH Public Access Author Manuscript Neurosci Lett. Author manuscript; available in PMC 2014 March 13.

NIH Public Access Author Manuscript Neurosci Lett. Author manuscript; available in PMC 2014 March 13. NIH Public Access Author Manuscript Published in final edited form as: Neurosci Lett. 2010 January 14; 468(3): 339 343. doi:10.1016/j.neulet.2009.11.028. Theta and Alpha oscillations during working-memory

More information

Revealing The Brain s Hidden Potential: Cognitive Training & Neurocognitive Plasticity. Introduction

Revealing The Brain s Hidden Potential: Cognitive Training & Neurocognitive Plasticity. Introduction Revealing The Brain s Hidden Potential: Cognitive Training & Neurocognitive Plasticity. Introduction Global aging poses significant burdens as age-related impairments in cognitive function affect quality

More information

Rajeev Raizada: Statement of research interests

Rajeev Raizada: Statement of research interests Rajeev Raizada: Statement of research interests Overall goal: explore how the structure of neural representations gives rise to behavioural abilities and disabilities There tends to be a split in the field

More information

Verbal representation in task order control: An examination with transition and task cues in random task switching

Verbal representation in task order control: An examination with transition and task cues in random task switching Memory & Cognition 2009, 37 (7), 1040-1050 doi:10.3758/mc.37.7.1040 Verbal representation in task order control: An examination with transition and task cues in random task switching ERINA SAEKI AND SATORU

More information

WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN

WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN Siti Zubaidah Mohd Tumari and Rubita Sudirman Department of Electronic and Computer Engineering,

More information

Attention, Binding, and Consciousness

Attention, Binding, and Consciousness Attention, Binding, and Consciousness 1. Perceptual binding, dynamic binding 2. Neural Correlates of Consciousness: Binocular rivalry 3. Attention vs. consciousness 4. Binding revisited: Split-brain, split-consciousness

More information

3. Title: Within Fluid Cognition: Fluid Processing and Fluid Storage?

3. Title: Within Fluid Cognition: Fluid Processing and Fluid Storage? Cowan commentary on Blair, Page 1 1. Commentary on Clancy Blair target article 2. Word counts: Abstract 62 Main text 1,066 References 487 (435 excluding 2 references already in the target article) Total

More information

Intro to Cognitive Neuroscience. Working memory

Intro to Cognitive Neuroscience. Working memory Intro to Cognitive Neuroscience Working memory 1 What is working memory? Brief, immediate memory for information we are currently processing. Closely related to attention: attending to something is often

More information

The role of theta oscillations in memory and decision making

The role of theta oscillations in memory and decision making The role of theta oscillations in memory and decision making Thesis by Marijke Beulen Neuroscience and Cognition, Utrecht University July 2011 Supervisor: Dr. Marieke van Vugt Department of Artificial

More information

Does scene context always facilitate retrieval of visual object representations?

Does scene context always facilitate retrieval of visual object representations? Psychon Bull Rev (2011) 18:309 315 DOI 10.3758/s13423-010-0045-x Does scene context always facilitate retrieval of visual object representations? Ryoichi Nakashima & Kazuhiko Yokosawa Published online:

More information

Replacing the frontal lobes? Having more time to think improve implicit perceptual categorization. A comment on Filoteo, Lauritzen & Maddox, 2010.

Replacing the frontal lobes? Having more time to think improve implicit perceptual categorization. A comment on Filoteo, Lauritzen & Maddox, 2010. Replacing the frontal lobes? 1 Replacing the frontal lobes? Having more time to think improve implicit perceptual categorization. A comment on Filoteo, Lauritzen & Maddox, 2010. Ben R. Newell 1 Christopher

More information

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Prefrontal cortex and the generation of oscillatory visual persistence

More information

Hippocampal mechanisms of memory and cognition. Matthew Wilson Departments of Brain and Cognitive Sciences and Biology MIT

Hippocampal mechanisms of memory and cognition. Matthew Wilson Departments of Brain and Cognitive Sciences and Biology MIT Hippocampal mechanisms of memory and cognition Matthew Wilson Departments of Brain and Cognitive Sciences and Biology MIT 1 Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

More information

Oscillations: From Neuron to MEG

Oscillations: From Neuron to MEG Oscillations: From Neuron to MEG Educational Symposium, MEG UK 2014, Nottingham, Jan 8th 2014 Krish Singh CUBRIC, School of Psychology Cardiff University What are we trying to achieve? Bridge the gap from

More information

A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions

A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions Neurocomputing 69 (2006) 1322 1326 www.elsevier.com/locate/neucom A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions Nicola De Pisapia, Todd S. Braver Cognitive

More information

Transcranial direct current stimulation modulates shifts in global/local attention

Transcranial direct current stimulation modulates shifts in global/local attention University of New Mexico UNM Digital Repository Psychology ETDs Electronic Theses and Dissertations 2-9-2010 Transcranial direct current stimulation modulates shifts in global/local attention David B.

More information

Neural correlates of short-term perceptual learning in orientation discrimination indexed by event-related potentials

Neural correlates of short-term perceptual learning in orientation discrimination indexed by event-related potentials Chinese Science Bulletin 2007 Science in China Press Springer-Verlag Neural correlates of short-term perceptual learning in orientation discrimination indexed by event-related potentials SONG Yan 1, PENG

More information

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J.

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J. The Integration of Features in Visual Awareness : The Binding Problem By Andrew Laguna, S.J. Outline I. Introduction II. The Visual System III. What is the Binding Problem? IV. Possible Theoretical Solutions

More information

Report. Brain Oscillatory Substrates of Visual Short-Term Memory Capacity

Report. Brain Oscillatory Substrates of Visual Short-Term Memory Capacity Current Biology 19, 1846 1852, November 17, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.08.062 Brain Oscillatory Substrates of Visual Short-Term Memory Capacity Report Paul Sauseng,

More information

Overt vs. Covert Responding. Prior to conduct of the fmri experiment, a separate

Overt vs. Covert Responding. Prior to conduct of the fmri experiment, a separate Supplementary Results Overt vs. Covert Responding. Prior to conduct of the fmri experiment, a separate behavioral experiment was conducted (n = 16) to verify (a) that retrieval-induced forgetting is observed

More information

What Matters in the Cued Task-Switching Paradigm: Tasks or Cues? Ulrich Mayr. University of Oregon

What Matters in the Cued Task-Switching Paradigm: Tasks or Cues? Ulrich Mayr. University of Oregon What Matters in the Cued Task-Switching Paradigm: Tasks or Cues? Ulrich Mayr University of Oregon Running head: Cue-specific versus task-specific switch costs Ulrich Mayr Department of Psychology University

More information

Visual Selection and Attention

Visual Selection and Attention Visual Selection and Attention Retrieve Information Select what to observe No time to focus on every object Overt Selections Performed by eye movements Covert Selections Performed by visual attention 2

More information

The role of amplitude, phase, and rhythmicity of neural oscillations in top-down control of cognition

The role of amplitude, phase, and rhythmicity of neural oscillations in top-down control of cognition The role of amplitude, phase, and rhythmicity of neural oscillations in top-down control of cognition Chair: Jason Samaha, University of Wisconsin-Madison Co-Chair: Ali Mazaheri, University of Birmingham

More information

The role of phase synchronization in memory processes

The role of phase synchronization in memory processes The role of phase synchronization in memory processes Juergen Fell and Nikolai Axmacher Abstract In recent years, studies ranging from single-unit recordings in animals to electroencephalography and magnetoencephalography

More information

Event-related alpha and theta responses in a visuo-spatial working memory task

Event-related alpha and theta responses in a visuo-spatial working memory task Clinical Neurophysiology 113 (2002) 1882 1893 www.elsevier.com/locate/clinph Event-related alpha and theta responses in a visuo-spatial working memory task Marcel C.M. Bastiaansen a, *, Danielle Posthuma

More information

The Role of Working Memory in Visual Selective Attention

The Role of Working Memory in Visual Selective Attention Goldsmiths Research Online. The Authors. Originally published: Science vol.291 2 March 2001 1803-1806. http://www.sciencemag.org. 11 October 2000; accepted 17 January 2001 The Role of Working Memory in

More information

Edge - White Paper November 2018

Edge - White Paper November 2018 Edge - White Paper November 2018 ABSTRACT HUMM has demonstrated a significant enhancement of working memory performance with Edge in a randomized, double-blind trial. HUMM s core technology allows for

More information

Visual working memory as the substrate for mental rotation

Visual working memory as the substrate for mental rotation Psychonomic Bulletin & Review 2007, 14 (1), 154-158 Visual working memory as the substrate for mental rotation JOO-SEOK HYUN AND STEVEN J. LUCK University of Iowa, Iowa City, Iowa In mental rotation, a

More information

When things look wrong: Theta activity in rule violation

When things look wrong: Theta activity in rule violation Neuropsychologia 45 (2007) 3122 3126 Note When things look wrong: Theta activity in rule violation Gabriel Tzur a,b, Andrea Berger a,b, a Department of Behavioral Sciences, Ben-Gurion University of the

More information

The Central Nervous System

The Central Nervous System The Central Nervous System Cellular Basis. Neural Communication. Major Structures. Principles & Methods. Principles of Neural Organization Big Question #1: Representation. How is the external world coded

More information

A Psychophysiological Study of Lavender Odorant

A Psychophysiological Study of Lavender Odorant Memoirs of Osaka Kyoiku University, Ser. DI, Vol. 47, No. 2, pp. 281-287 (January, 1999) A Psychophysiological Study of Lavender Odorant Naoyasu MOTOMURA, Akihiro SAKURAI and Yukiko YOTSUYA Department

More information

Title: Alpha neurofeedback training and its implications for studies of cognitive creativity

Title: Alpha neurofeedback training and its implications for studies of cognitive creativity Title: Alpha neurofeedback training and its implications for studies of cognitive creativity Authors: Henk J. Haarmann, Timothy G. George, Alexei Smaliy, Kristin Grunewald, & Jared M. Novick Affiliation:

More information

Theoretical Neuroscience: The Binding Problem Jan Scholz, , University of Osnabrück

Theoretical Neuroscience: The Binding Problem Jan Scholz, , University of Osnabrück The Binding Problem This lecture is based on following articles: Adina L. Roskies: The Binding Problem; Neuron 1999 24: 7 Charles M. Gray: The Temporal Correlation Hypothesis of Visual Feature Integration:

More information

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above.

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above. Section: Chapter 14: Multiple Choice 1. Alex the parrot: pp.529-530 shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all

More information

Intelligence moderates reinforcement learning: a mini-review of the neural evidence

Intelligence moderates reinforcement learning: a mini-review of the neural evidence Articles in PresS. J Neurophysiol (September 3, 2014). doi:10.1152/jn.00600.2014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

More information

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization 1 7.1 Overview This chapter aims to provide a framework for modeling cognitive phenomena based

More information

Conscious control of movements: increase of temporal precision in voluntarily delayed actions

Conscious control of movements: increase of temporal precision in voluntarily delayed actions Acta Neurobiol. Exp. 2001, 61: 175-179 Conscious control of movements: increase of temporal precision in voluntarily delayed actions El bieta Szel¹g 1, Krystyna Rymarczyk 1 and Ernst Pöppel 2 1 Department

More information

What matters in the cued task-switching paradigm: Tasks or cues?

What matters in the cued task-switching paradigm: Tasks or cues? Journal Psychonomic Bulletin & Review 2006,?? 13 (?), (5),???-??? 794-799 What matters in the cued task-switching paradigm: Tasks or cues? ULRICH MAYR University of Oregon, Eugene, Oregon Schneider and

More information

October 2, Memory II. 8 The Human Amnesic Syndrome. 9 Recent/Remote Distinction. 11 Frontal/Executive Contributions to Memory

October 2, Memory II. 8 The Human Amnesic Syndrome. 9 Recent/Remote Distinction. 11 Frontal/Executive Contributions to Memory 1 Memory II October 2, 2008 2 3 4 5 6 7 8 The Human Amnesic Syndrome Impaired new learning (anterograde amnesia), exacerbated by increasing retention delay Impaired recollection of events learned prior

More information

A Brain Computer Interface System For Auto Piloting Wheelchair

A Brain Computer Interface System For Auto Piloting Wheelchair A Brain Computer Interface System For Auto Piloting Wheelchair Reshmi G, N. Kumaravel & M. Sasikala Centre for Medical Electronics, Dept. of Electronics and Communication Engineering, College of Engineering,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature14066 Supplementary discussion Gradual accumulation of evidence for or against different choices has been implicated in many types of decision-making, including value-based decisions

More information

Control processes in verbal working memory: An event-related potential study

Control processes in verbal working memory: An event-related potential study available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Control processes in verbal working memory: An event-related potential study Ivan Kiss a,b,, Scott Watter b, Jennifer

More information

Attention Response Functions: Characterizing Brain Areas Using fmri Activation during Parametric Variations of Attentional Load

Attention Response Functions: Characterizing Brain Areas Using fmri Activation during Parametric Variations of Attentional Load Attention Response Functions: Characterizing Brain Areas Using fmri Activation during Parametric Variations of Attentional Load Intro Examine attention response functions Compare an attention-demanding

More information

Chapter 5. Summary and Conclusions! 131

Chapter 5. Summary and Conclusions! 131 ! Chapter 5 Summary and Conclusions! 131 Chapter 5!!!! Summary of the main findings The present thesis investigated the sensory representation of natural sounds in the human auditory cortex. Specifically,

More information

Spectral fingerprints of large-scale neuronal interactions

Spectral fingerprints of large-scale neuronal interactions Nature Reviews Neuroscience AOP, published online 11 January 212; doi:1.138/nrn3137 REVIEWS Spectral fingerprints of large-scale neuronal interactions Markus Siegel 1 *, Tobias H. Donner 2 * and Andreas

More information

Biomarkers in Schizophrenia

Biomarkers in Schizophrenia Biomarkers in Schizophrenia David A. Lewis, MD Translational Neuroscience Program Department of Psychiatry NIMH Conte Center for the Neuroscience of Mental Disorders University of Pittsburgh Disease Process

More information

Prefrontal cortex. Executive functions. Models of prefrontal cortex function. Overview of Lecture. Executive Functions. Prefrontal cortex (PFC)

Prefrontal cortex. Executive functions. Models of prefrontal cortex function. Overview of Lecture. Executive Functions. Prefrontal cortex (PFC) Neural Computation Overview of Lecture Models of prefrontal cortex function Dr. Sam Gilbert Institute of Cognitive Neuroscience University College London E-mail: sam.gilbert@ucl.ac.uk Prefrontal cortex

More information

Event-Related Potentials Recorded during Human-Computer Interaction

Event-Related Potentials Recorded during Human-Computer Interaction Proceedings of the First International Conference on Complex Medical Engineering (CME2005) May 15-18, 2005, Takamatsu, Japan (Organized Session No. 20). Paper No. 150, pp. 715-719. Event-Related Potentials

More information

Cognitive Neuroscience Cortical Hemispheres Attention Language

Cognitive Neuroscience Cortical Hemispheres Attention Language Cognitive Neuroscience Cortical Hemispheres Attention Language Based on: Chapter 18 and 19, Breedlove, Watson, Rosenzweig, 6e/7e. Cerebral Cortex Brain s most complex area with billions of neurons and

More information

Studying the time course of sensory substitution mechanisms (CSAIL, 2014)

Studying the time course of sensory substitution mechanisms (CSAIL, 2014) Studying the time course of sensory substitution mechanisms (CSAIL, 2014) Christian Graulty, Orestis Papaioannou, Phoebe Bauer, Michael Pitts & Enriqueta Canseco-Gonzalez, Reed College. Funded by the Murdoch

More information

Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation Transcranial Magnetic Stimulation Session 4 Virtual Lesion Approach I Alexandra Reichenbach MPI for Biological Cybernetics Tübingen, Germany Today s Schedule Virtual Lesion Approach : Study Design Rationale

More information