Activity-Dependent Development II April 25, 2007 Mu-ming Poo

Size: px
Start display at page:

Download "Activity-Dependent Development II April 25, 2007 Mu-ming Poo"

Transcription

1 Activity-Dependent Development II April 25, 2007 Mu-ming Poo 1. The neurotrophin hypothesis 2. Maps in somatic sensory and motor cortices 3. Development of retinotopic map 4. Reorganization of cortical maps following sensory deprivation 5. Synaptic basis of cortical plasticity --- LTP and LTD 6. Relationship between developmental and adult plasticity The Neurotrophin Hypothesis Synaptic competition between co-innervating nerve terminals is determined by activity-dependent competition for the neurotrophin secreted by the postsynaptic cell. Criteria for neurotrophins to function as molecular signals in synaptic competition: 1) expressed in the right place and at the right time 2) secretion is activity-dependent 3) regulate synaptic functions 4) the amount and distribution are limited Neurotrophin hypothesis for activity-dependent competition from L eye from R eye pre- post- Development of ocular dominance (OD) columns in V1: - Axons from R eye relatively stronger, trigger the firing of postsynaptic cell - Postsynaptic depolarization triggers release of neurotrophins - Active presynaptic nerve terminals from R eyes take up the released neurotrophin, whereas the inactive (non-correlated) terminals inputs from the L eye do not receive the neurotrophin - Stabilization and growth of R eye inputs and regression and elimination of the L eye inputs 1

2 Molecular mechanism of cortical plasticity Evidence for the Neurotrophin Hypothesis: - infusion of BDNF (brain-derived neurotrophic factor) or NT-4/5, prevent formation of OD columns A Normal Layer 4 1.BDNF and NT-4 are expressed in the cortex 2. BDNF application potentiates excitatory synapses B NGF or NT-3 administration Layer 4 NGF NT-3 no effect C NT-4/5 or BDNF administration Layer 4 BDNF NT-4/5 Disrupt formation of OD column by Carla Shatz and co-workers Latest Findings: OD exists to some extent before eye opening Normal visual input may not be necessary for the initial formation, but required for fine tuning and maintenance of visual circuit Initial OD development may depend on spontaneous activity (e.g., retinal waves, correlated between neighboring RGC, but uncorrelated between the two eyes) Different colors represent activity of RGCs at different times sequentially (C. Shatz & R. Wong) CHAT-immunoreactive(IR) cells synthesize ACh Properties of Cortical Maps 1. Topographically ordered: Nearby points in periphery are represented by nearby cortical neurons. 2. Multiple Representations: The same set of sensory or motor information are represented repeatedly by multiple cortical areas. 3. Distorted mapping: Periphery points that required higher spatial resolution are represented with disproportional cortial areas (larger number of cortical neurons). 2

3 Map of body surface in the somatosensory cortex MAP OF BODY SURFACE IN THE MOTOR CORTEX 3

4 Development of retinotopic map Retina Tectum N T R C Topographic Mapping of Retinotectal Projections EphA3 Ephrin-A2 development Initial development of the map is activityindependent, require guidance of matching molecular gradients in the retina and tectum (ephrin Eph receptor interaction) ganglion cell Refinement of the map requires activity: Nearby retinal ganglion cells fire in a correlated manner, leading to stabilization of their connections to the tectal cell which is triggered to fire synchronously by these inputs, while distant cells fire in an uncorrelated manner, leading to elimination of their connection. tectal cell Plasticity of rat somatosensory cortex Barrel Cortex receiving sensory inputs from whiskers Depriving sensory inputs by removing whisker shrinkage of corresponding barrels -- Importance of normal sensory inputs even in adult -- Activity-dependent competition exists in adult cortex Barrel cortex Functional changes in V1 due to scotoma (blind spot) Visual field is represented by the grid on the retina, with corresponding maps shown on V1. Lesion of retina first silenced the corresponding cortical area, but reorganization of the receptive fields of cortical neurons leads to increased representation of the areas around the lesion and reduced representation of the lesioned area. (Gilbert and Wiesel) Artificial scotoma Deprivation of visual input to specific region of retina without lesion results in similar reorganization of the cortical receptive fields. 4

5 Functional expansion of cortical representation by repetitive use Monkey was trained in a task that required heavy usage of digits 2,3,4 --expansion of cortical representation of these digits after a few months Functional changes in the somatic sensory cortex of an owl monkey following amputation of a digit. Question remains to be answered: Are functional changes due to structural changes in the connectivity between neurons, or simply silencing of synaptic transmission, e.g., long-term depression or increased inhibition? Use-dependent changes in synaptic functions Long-term potentiation (LTP) and Long-term depression (LTD) -- Persistent increase or decrease in synaptic response due to repetitive activity, found in all regions of the brain -- Brief high-frequency stimulation LTP Prolonged low-frequency stimulation LTD -- Spike-timing dependent plasticity: A revised version of Hebb s hypothesis Both LTP and LTD are induced by repetitive correlated firing of pre- and postsynaptic cells, depending on the order of firing pre before post LTP post before pre LTD 5

6 Developmental vs. adult plasticity 1. Are these two forms of plasticity depend on similar synaptic mechanisms? Evidence: -- Development of ocular dominance columns is prevented by blocking NMDA receptors. (M. Constantine-Paton) -- Critical period plasticity (ocular dominance modification due to monocular deprivation) can be revived in adult primary visual cortex by protease treatment (that removes extracellular matrix around neurons). (L. Mafei) -- LTP/LTD can be induced in developing and adult cortex by similar stimulation. -- LTP/LTD induction can result in structural changes at synapses, presumably also changes in connectivity LTP increase spine formation, swelling of existing spines LTD shrinkage and retraction of spines 2. Do learning and memory in adult brain involves processes similar to activity-dependent developmental refinement of connections? Evidence: -- LTP is required for spatial learning (hippocampus) and fearing conditioning (amygdala) in rats -- LTP/LTD induction is accompanied by structural changes at synapses -- Neruotrophins required for developmental refinement of connections (e.g., in ocular dominance segregation) is also required for LTP induction in adult brain. Neurotrophins Awakening of Developmental Plasticity in Adult Brain Pizzorusso, T., L. Maffei, et al. Reactivation of Ocular Dominance Plasticity in the adult visual cortex. Science, 298: 1248 (2002) Removal of sidechains from chondroitin sulfate proteoglycans (CSPGs) by chondroitinase ABC partially restores ocular dominace plasticity to monocular deprivation in older animals after the critical period. McGee, A. W., Daw, N.W. & S.M. Strittmatter. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science, 309: 2222 (2005) In NgR -/- mice, visual cortex continues to exhibit full ocular dominance plasticity to 4d monocular deprivation well into adult. 6

7 Summary Experience-Dependent Plasticity in Circuit Formation 1. The formation of neural circuits in the developing brain depends not only on molecular cues for initial cell-cell recognition and synapse formation, but also on experience (activity)-dependent refinement of the connectivity. 2. While the extent of experience-dependent circuit refinement reduces drastically after the critical period, developmental plasticity can be revived in the adult brain. 3. The same molecular mechanisms that shut down the critical period plasticity may be responsible for preventing regeneration of neural circuits in the adult brain after injury. 4. The mechanisms underlying the experience-dependent circuit formation may be similar to those underlying learning and memory. 7

VISUAL CORTICAL PLASTICITY

VISUAL CORTICAL PLASTICITY VISUAL CORTICAL PLASTICITY OCULAR DOMINANCE AND OTHER VARIETIES REVIEW OF HIPPOCAMPAL LTP 1 when an axon of cell A is near enough to excite a cell B and repeatedly and consistently takes part in firing

More information

THEMES. *There is a connection between neural development and learning

THEMES. *There is a connection between neural development and learning Lecture 39 (Chapter 56) - Carol Mason Early Sensory Experience and the Fine Tuning of Synaptic Connections I. Effects of social deprivation Birds Humans Monkeys II. Visual system - from eye to thalamus

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

This article was originally published in the Encyclopedia of Neuroscience published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's

More information

Chapter 9 Refinement of Synaptic Connections

Chapter 9 Refinement of Synaptic Connections Chapter 9 Refinement of Synaptic Connections Afferent Projection Error during Development During development there is a constant rearrangement of synaptic connections, new synapses are formed and old synapses

More information

Neural Activity and the Development of Brain Circuits

Neural Activity and the Development of Brain Circuits Neural Activity and the Development of Brain Circuits Carsten D Hohnke, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Mriganka Sur, Massachusetts Institute of Technology, Cambridge,

More information

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience Cortical Map Plasticity Gerald Finnerty Dept Basic and Clinical Neuroscience Learning Objectives Be able to: 1. Describe the characteristics of a cortical map 2. Appreciate that the term plasticity is

More information

Visual cortical plasticity

Visual cortical plasticity Visual cortical plasticity Deprivation-induced changes in representation Ocular dominance plasticity Retinal scotoma and cortical re-organization Perceptual learning-related plasticity Timing-dependent

More information

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25 Memory Systems II How Stored: Engram and LTP Reading: BCP Chapter 25 Memory Systems Learning is the acquisition of new knowledge or skills. Memory is the retention of learned information. Many different

More information

Retinal Waves and Ocular Dominance Columns

Retinal Waves and Ocular Dominance Columns Retinal Waves and Ocular Dominance Columns In the cat, at birth, inputs from both eyes are intermingled in the visual cortex. Ocular dominance columns start to appear a few weeks after birth. They can

More information

Photoreceptors Rods. Cones

Photoreceptors Rods. Cones Photoreceptors Rods Cones 120 000 000 Dim light Prefer wavelength of 505 nm Monochromatic Mainly in periphery of the eye 6 000 000 More light Different spectral sensitivities!long-wave receptors (558 nm)

More information

Neural Plasticity: Merzenich,Taub, and Greenough

Neural Plasticity: Merzenich,Taub, and Greenough 16 Neural Plasticity: Merzenich,Taub, and Greenough BY ERIN CLIFFORD Introduction REVIEW The study of neural plasticity has important implications for psychological development. Plasticity refers to the

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

SENSORY PLASTICITY. Sensory Plasticity

SENSORY PLASTICITY. Sensory Plasticity 801 Sensory Plasticity SENSORY PLASTICITY You may have the idea that the visual, auditory and somatosensory systems are static pathways (i.e., the neural wiring is in place and simply does its job). To

More information

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 5:. Reading Assignments: None 1 Projection 2 Projection 3 Convention: Visual Angle Rather than reporting two numbers (size of object and distance to observer),

More information

Vision II. Steven McLoon Department of Neuroscience University of Minnesota

Vision II. Steven McLoon Department of Neuroscience University of Minnesota Vision II Steven McLoon Department of Neuroscience University of Minnesota 1 Ganglion Cells The axons of the retinal ganglion cells form the optic nerve and carry visual information into the brain. 2 Optic

More information

1. The responses of on-center and off-center retinal ganglion cells

1. The responses of on-center and off-center retinal ganglion cells 1. The responses of on-center and off-center retinal ganglion cells 2. Responses of an on-center ganglion cell to different light conditions 3. Responses of an on-center ganglion cells to different light

More information

Cell Responses in V4 Sparse Distributed Representation

Cell Responses in V4 Sparse Distributed Representation Part 4B: Real Neurons Functions of Layers Input layer 4 from sensation or other areas 3. Neocortical Dynamics Hidden layers 2 & 3 Output layers 5 & 6 to motor systems or other areas 1 2 Hierarchical Categorical

More information

Synaptic Plasticity and the NMDA Receptor

Synaptic Plasticity and the NMDA Receptor Synaptic Plasticity and the NMDA Receptor Lecture 4.2 David S. Touretzky November, 2015 Long Term Synaptic Plasticity Long Term Potentiation (LTP) Reversal of LTP Long Term Depression (LTD) Reversal of

More information

Cognitive Neuroscience Structure and Function

Cognitive Neuroscience Structure and Function Phylogeny of the cortex Cognitive Neuroscience Structure and Function The neocortex of mammals developed out of the primordial neopallium, which, like that of certain present-day amphibians, consisted

More information

Early Brain Wiring: Activity-Dependent Processes

Early Brain Wiring: Activity-Dependent Processes Early Brain Wiring: Activity-Dependent Processes by Anna A. Penn Abstract One of the leading theories of the neuropathology of schizophrenia is that it is a developmental disorder of "neural connectivity."

More information

Cellular Neurobiology BIPN140

Cellular Neurobiology BIPN140 Cellular Neurobiology BIPN140 1st Midterm Exam Ready for Pickup By the elevator on the 3 rd Floor of Pacific Hall (waiver) Exam Depot Window at the north entrance to Pacific Hall (no waiver) Mon-Fri, 10:00

More information

Basics of Computational Neuroscience

Basics of Computational Neuroscience Basics of Computational Neuroscience 1 1) Introduction Lecture: Computational Neuroscience, The Basics A reminder: Contents 1) Brain, Maps,, Networks,, and The tough stuff: 2,3) Membrane Models 3,4) Spiking

More information

Behavioral Neurobiology

Behavioral Neurobiology Behavioral Neurobiology The Cellular Organization of Natural Behavior THOMAS J. CAREW University of California, Irvine Sinauer Associates, Inc. Publishers Sunderland, Massachusetts PART I: Introduction

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina

Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina The visual system Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina 0.5 mm thick The retina 0.5 mm thick The photosensors

More information

Spike Timing-Dependent Plasticity: From Synapse to Perception

Spike Timing-Dependent Plasticity: From Synapse to Perception Spike Timing-Dependent Plasticity: From Synapse to Perception Yang Dan and Mu-Ming Poo Physiol Rev 86:1033-1048, 2006. doi:10.1152/physrev.00030.2005 You might find this additional information useful...

More information

CSE 599E Lecture 2: Basic Neuroscience

CSE 599E Lecture 2: Basic Neuroscience CSE 599E Lecture 2: Basic Neuroscience 1 Today s Roadmap The neuron doctrine (or dogma) Neuronal signaling The electrochemical dance of ions Action Potentials (= spikes) Synapses and Synaptic Plasticity

More information

Memory retention the synaptic stability versus plasticity dilemma

Memory retention the synaptic stability versus plasticity dilemma Memory retention the synaptic stability versus plasticity dilemma Paper: Abraham, Wickliffe C., and Anthony Robins. "Memory retention the synaptic stability versus plasticity dilemma." Trends in neurosciences

More information

The Ever-Changing Brain. Dr. Julie Haas Biological Sciences

The Ever-Changing Brain. Dr. Julie Haas Biological Sciences The Ever-Changing Brain Dr. Julie Haas Biological Sciences Outline 1) Synapses: excitatory, inhibitory, and gap-junctional 2) Synaptic plasticity, and Hebb s postulate 3) Sensory maps and plasticity 4)

More information

Brain Development III

Brain Development III Brain Development III Neural Development In the developing nervous system there must be: 1. The formation of different regions of the brain. 2. The ability of a neuron to differentiate. 3. The ability

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis Synaptic plasticityhippocampus Neur 8790 Topics in Neuroscience: Neuroplasticity Outline Synaptic plasticity hypothesis Long term potentiation in the hippocampus How it s measured What it looks like Mechanisms

More information

Structural basis for the role of inhibition in facilitating adult brain plasticity

Structural basis for the role of inhibition in facilitating adult brain plasticity Structural basis for the role of inhibition in facilitating adult brain plasticity Jerry L. Chen, Walter C. Lin, Jae Won Cha, Peter T. So, Yoshiyuki Kubota & Elly Nedivi SUPPLEMENTARY FIGURES 1-6 a b M

More information

The synaptic Basis for Learning and Memory: a Theoretical approach

The synaptic Basis for Learning and Memory: a Theoretical approach Theoretical Neuroscience II: Learning, Perception and Cognition The synaptic Basis for Learning and Memory: a Theoretical approach Harel Shouval Phone: 713-500-5708 Email: harel.shouval@uth.tmc.edu Course

More information

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 1 Visual System I I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 2 1 2/3/17 Window of the Soul 3 Information Flow: From Photoreceptors

More information

Welcome to CSE/NEUBEH 528: Computational Neuroscience

Welcome to CSE/NEUBEH 528: Computational Neuroscience Welcome to CSE/NEUBEH 528: Computational Neuroscience Instructors: Rajesh Rao (rao@cs.uw) Adrienne Fairhall (fairhall@uw) TA: Rich Pang (rpang@uw) 1 Today s Agenda F Course Info and Logistics F Motivation

More information

Lateral Geniculate Nucleus (LGN)

Lateral Geniculate Nucleus (LGN) Lateral Geniculate Nucleus (LGN) What happens beyond the retina? What happens in Lateral Geniculate Nucleus (LGN)- 90% flow Visual cortex Information Flow Superior colliculus 10% flow Slide 2 Information

More information

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity Michael P. Stryker Center for Integrative Neuroscience University of California,

More information

Synap&c Plas&city. long-term plasticity (~30 min to lifetime) Long-term potentiation (LTP) / Long-term depression (LTD)

Synap&c Plas&city. long-term plasticity (~30 min to lifetime) Long-term potentiation (LTP) / Long-term depression (LTD) Synap&c Plas&city synaptic connectivity constantly changes in response to activity and other factors During development: provides the basic wiring of the brain s circuits Throughout rest of life: basis

More information

Beyond Vanilla LTP. Spike-timing-dependent-plasticity or STDP

Beyond Vanilla LTP. Spike-timing-dependent-plasticity or STDP Beyond Vanilla LTP Spike-timing-dependent-plasticity or STDP Hebbian learning rule asn W MN,aSN MN Δw ij = μ x j (v i - φ) learning threshold under which LTD can occur Stimulation electrode Recording electrode

More information

How has Computational Neuroscience been useful? Virginia R. de Sa Department of Cognitive Science UCSD

How has Computational Neuroscience been useful? Virginia R. de Sa Department of Cognitive Science UCSD How has Computational Neuroscience been useful? 1 Virginia R. de Sa Department of Cognitive Science UCSD What is considered Computational Neuroscience? 2 What is considered Computational Neuroscience?

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) The hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

FIRST MIDTERM EXAM October 18, 2011 BILD2

FIRST MIDTERM EXAM October 18, 2011 BILD2 FIRST MIDTERM EXAM October 18, 2011 BILD2 WRITE YOUR NAME ON ALL 6 PAGES. ANSWER ALL 10 QUESTIONS (100 POINTS). CONFINE YOUR ANSWERS TO THE SPACE ALLOWED. If you would like to write on the back of the

More information

Physiology of Tactile Sensation

Physiology of Tactile Sensation Physiology of Tactile Sensation Objectives: 1. Describe the general structural features of tactile sensory receptors how are first order nerve fibers specialized to receive tactile stimuli? 2. Understand

More information

Brain Plasticity. Brain Plasticity. Recovery from Deprivation 1/2/11. Dogma. Modern neuroscience. Deprivation can lower IQ. Deprivation reversed

Brain Plasticity. Brain Plasticity. Recovery from Deprivation 1/2/11. Dogma. Modern neuroscience. Deprivation can lower IQ. Deprivation reversed Brain Plasticity Brain Plasticity Dogma Adult brain is stable, unchanging Lose neurons Do not grow/repair neurons Modern neuroscience Brain changes throughout life plasticity Extra capacity Face life s

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Notes: Synapse. Overview. PSYC Summer Professor Claffey PDF. Conversion from an signal to a signal - electrical signal is the

Notes: Synapse. Overview. PSYC Summer Professor Claffey PDF. Conversion from an signal to a signal - electrical signal is the PSYC 170 - Summer 2013 - Professor Claffey Notes: Synapse PDF Overview Conversion from an signal to a signal - electrical signal is the - chemical signal is the Presynaptic - refers to that sends/receives

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) Hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

Synapse. Structure & Function. Neurotransmitter Sequence. Integration. History: 10/4/12 original version

Synapse. Structure & Function. Neurotransmitter Sequence. Integration. History: 10/4/12 original version Synapse History: 10/4/12 original version Structure & Function (This content is covered in Sinjin's presentation, see link in calendar) Neurotransmitters Synaptic cleft Post-synaptic potential Excitation

More information

Synapses and synaptic plasticity. Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember

Synapses and synaptic plasticity. Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember Synapses and synaptic plasticity Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember 1 Brain is comprised of networks of neurons connected and communicating via synapses ~10

More information

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading Cognitive Neuroscience of Language 5 From eye to brain Today s goals Look at the pathways that conduct the visual information from the eye to the visual cortex Marielle Lange http://homepages.inf.ed.ac.uk/mlange/teaching/cnl/

More information

The storage and recall of memories in the hippocampo-cortical system. Supplementary material. Edmund T Rolls

The storage and recall of memories in the hippocampo-cortical system. Supplementary material. Edmund T Rolls The storage and recall of memories in the hippocampo-cortical system Supplementary material Edmund T Rolls Oxford Centre for Computational Neuroscience, Oxford, England and University of Warwick, Department

More information

The Visual System. Cortical Architecture Casagrande February 23, 2004

The Visual System. Cortical Architecture Casagrande February 23, 2004 The Visual System Cortical Architecture Casagrande February 23, 2004 Phone: 343-4538 Email: vivien.casagrande@mcmail.vanderbilt.edu Office: T2302 MCN Required Reading Adler s Physiology of the Eye Chapters

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

Neuroplasticity. Jake Kurczek 9/19/11. Cognitive Communication Disorders

Neuroplasticity. Jake Kurczek 9/19/11. Cognitive Communication Disorders Jake Kurczek 9/19/11 Activity Therapy Be creative Try new things Be prepared to fail Learn from past experiences Be flexible Participants begin working/communicating not good As they work together more

More information

Adult Cortical Plasticity

Adult Cortical Plasticity Adult Cortical Plasticity 141 Adult Cortical Plasticity U T Eysel, Ruhr-University Bochum, Bochum, Germany ã 2009 Elsevier Ltd. All rights reserved. Introduction Plasticity of the brain is a lifelong phenomenon.

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Chapter 23: Wiring the Brain

Chapter 23: Wiring the Brain Chapter 23: Wiring the Brain Introduction Operation of the brain Precise interconnections among 100 billion neurons Brain development Begins as a tube Neurogenesis, synaptogenesis, pathway formation, connections

More information

COGS 107B Week 1. Hyun Ji Friday 4:00-4:50pm

COGS 107B Week 1. Hyun Ji Friday 4:00-4:50pm COGS 107B Week 1 Hyun Ji Friday 4:00-4:50pm Before We Begin... Hyun Ji 4th year Cognitive Behavioral Neuroscience Email: hji@ucsd.edu In subject, always add [COGS107B] Office hours: Wednesdays, 3-4pm in

More information

Neuromorphic computing

Neuromorphic computing Neuromorphic computing Robotics M.Sc. programme in Computer Science lorenzo.vannucci@santannapisa.it April 19th, 2018 Outline 1. Introduction 2. Fundamentals of neuroscience 3. Simulating the brain 4.

More information

Somatosensation. Recording somatosensory responses. Receptive field response to pressure

Somatosensation. Recording somatosensory responses. Receptive field response to pressure Somatosensation Mechanoreceptors that respond to touch/pressure on the surface of the body. Sensory nerve responds propotional to pressure 4 types of mechanoreceptors: Meissner corpuscles & Merkel discs

More information

KEY WORDS Activity-dependent development, Spontaneous retinal waves, Lateral geniculate nucleus, LTP, Learning rules

KEY WORDS Activity-dependent development, Spontaneous retinal waves, Lateral geniculate nucleus, LTP, Learning rules REVIEW Retinal Waves: Implications for Synaptic Learning Rules during Development DANIEL A. BUTTS Department of Neurobiology Harvard Medical School Boston, Massachusetts Neural activity is often required

More information

Why do we have a hippocampus? Short-term memory and consolidation

Why do we have a hippocampus? Short-term memory and consolidation Why do we have a hippocampus? Short-term memory and consolidation So far we have talked about the hippocampus and: -coding of spatial locations in rats -declarative (explicit) memory -experimental evidence

More information

Development and Plasticity of The Retinocollicular Projection

Development and Plasticity of The Retinocollicular Projection Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology 10-29-2008 Development and Plasticity of The Retinocollicular Projection Maria Magdalena Carrasco

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 7: Network models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

How Synapses Integrate Information and Change

How Synapses Integrate Information and Change How Synapses Integrate Information and Change Rachel Stewart class of 2016 https://nba.uth.tmc.edu/neuroscience/s1/chapter06.html https://nba.uth.tmc.edu/neuroscience/s1/chapter07.html Chris Cohan, Ph.D.

More information

Chapter 2. The Cellular and Molecular Basis of Cognition

Chapter 2. The Cellular and Molecular Basis of Cognition Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by B.-W. Ku,

More information

Synaptic plasticity and hippocampal memory

Synaptic plasticity and hippocampal memory Synaptic plasticity and hippocampal memory Tobias Bast School of Psychology, University of Nottingham tobias.bast@nottingham.ac.uk Synaptic plasticity as the neurophysiological substrate of learning Hebb

More information

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus THE VISUAL WORLD! Visual (Electromagnetic) Stimulus Perceived color of light is determined by 3 characteristics (properties of electromagnetic energy): 1. : the spectrum (wavelength) of light (color) 2.

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

Self-Organization and Segmentation with Laterally Connected Spiking Neurons

Self-Organization and Segmentation with Laterally Connected Spiking Neurons Self-Organization and Segmentation with Laterally Connected Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 USA Risto Miikkulainen Department

More information

Basal Ganglia Anatomy, Physiology, and Function. NS201c

Basal Ganglia Anatomy, Physiology, and Function. NS201c Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The Classical Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate

More information

Chapter 2--Introduction to the Physiology of Perception

Chapter 2--Introduction to the Physiology of Perception Chapter 2--Introduction to the Physiology of Perception Student: 1. Our perception of the environment depends on A. the properties of the objects in the environment. B. the properties of the electrical

More information

serotonin in learning and plasticity

serotonin in learning and plasticity serotonin in learning and plasticity pt.1 immediate action L P H N NRX N N R X N CDH RhoA/ROCK RAC1 DAG [Ca2+] camp GIRK2 P11 Gq CASK PICK1 VELI MINT-1 CaMK Ca2+ channel AC Gi mglur7 mglur5 Glutamate NMDAR

More information

The How of Tactile Sensation

The How of Tactile Sensation The How of Tactile Sensation http://neuroscience.uth.tmc.edu/s2/chapter02.html Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo Objectives 1. Understand how sensory stimuli are encoded

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information

Title: Chapter 5 Recorded Lecture. Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu

Title: Chapter 5 Recorded Lecture. Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu Title: Chapter 5 Recorded Lecture Speaker: Title: What Anthony is the title Berger/Angela of this lecture? Williams Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu Chapter

More information

Welcome to CSE/NEUBEH 528: Computational Neuroscience

Welcome to CSE/NEUBEH 528: Computational Neuroscience Welcome to CSE/NEUBEH 528: Computational Neuroscience Instructors: Rajesh Rao (rao@cs) Adrienne Fairhall (fairhall@u) TA: Yanping Huang (huangyp@u) 1 Today s Agenda Introduction: Who are we? Course Info

More information

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology Image Formation and Phototransduction By Dr. Abdelaziz Hussein Lecturer of Physiology Vision Vision is a complex process through which an image of the external environment is formed on the photosensitive

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Cognitive Modelling Themes in Neural Computation. Tom Hartley

Cognitive Modelling Themes in Neural Computation. Tom Hartley Cognitive Modelling Themes in Neural Computation Tom Hartley t.hartley@psychology.york.ac.uk Typical Model Neuron x i w ij x j =f(σw ij x j ) w jk x k McCulloch & Pitts (1943), Rosenblatt (1957) Net input:

More information

Cellular Neurobiology / BIPN 140

Cellular Neurobiology / BIPN 140 SECOND MIDTERM EXAMINATION Fall, 2015 GENERAL INSTRUCTIONS 1. Please write your name on ALL 6 pages. 2. Please answer each question IN THE SPACE ALLOTTED. 1) /10 pts 2) /10 pts 3) /15 pts 4) /15 pts 5)

More information

Chapter 8 11/1/2012. Synaptic Components are Ancient. Syncytium or Synapses? Synapse Formation and Function. Early Calcium Spikes

Chapter 8 11/1/2012. Synaptic Components are Ancient. Syncytium or Synapses? Synapse Formation and Function. Early Calcium Spikes Chapter 8 Synaptic Components are Ancient Synapse Formation and Function Fig 8.1 Syncytium or Synapses? Electrical Development Synapses Improve in Function with Time Fig 8.2 Fig 8.3 Early Calcium Spikes

More information

Activity Dependent Changes At the Developing Neuromuscular Junction

Activity Dependent Changes At the Developing Neuromuscular Junction Activity Dependent Changes At the Developing Neuromuscular Junction (slides 16, 17 and 18 have been slightly modified for clarity) MCP Lecture 2-3 9.013/7.68 04 Neuromuscular Junction Development 1. Muscle

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität

VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker. Neuronenmodelle III. Modelle synaptischer Kurz- und Langzeitplastizität Bachelor Program Bioinformatics, FU Berlin VS : Systemische Physiologie - Animalische Physiologie für Bioinformatiker Synaptische Übertragung Neuronenmodelle III Modelle synaptischer Kurz- und Langzeitplastizität

More information

Abstract A neural network model called LISSOM for the cooperative self-organization of

Abstract A neural network model called LISSOM for the cooperative self-organization of Modeling Cortical Plasticity Based on Adapting Lateral Interaction Joseph Sirosh and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin, Austin, TX{78712. email: sirosh,risto@cs.utexas.edu

More information

NS201B Lecture part 2 November, How neural activity and molecular cues guide formation of maps and connections between visual areas

NS201B Lecture part 2 November, How neural activity and molecular cues guide formation of maps and connections between visual areas NS201B Lecture part 2 November, 2016 How neural activity and molecular cues guide formation of maps and connections between visual areas Michael P Stryker How do we study mapping? Tracers Reveal the details

More information

Antiepileptic agents

Antiepileptic agents Antiepileptic agents Excessive excitability of neurons in the CNS Abnormal function of ion channels Spread through neural networks Abnormal neural activity leads to abnormal motor activity Suppression

More information

Cellular Neurobiology BIPN140

Cellular Neurobiology BIPN140 Cellular Neurobiology BIPN140 1st Midterm Exam Ready for Pickup By the elevator on the 3 rd Floor of Pacific Hall (waiver) Exam Depot Window at the north entrance to Pacific Hall (no waiver) Mon-Fri, 10:00

More information

CSE 599E Lecture 2: Neurobiology 101

CSE 599E Lecture 2: Neurobiology 101 CSE 599E Lecture 2: Neurobiology 101 Image from http://clasdean.la.asu.edu/news/images/ubep2001/neuron3.jpg 1 Some slides adapted from: http://www.yorku.ca/deniseh/courses/arm%20movements.ppt Today s Roadmap

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

Modeling the brain Christ Chris er t Sv S e v nsson e

Modeling the brain Christ Chris er t Sv S e v nsson e Modeling the brain Christer Svensson Introduction The brain, or the central nervous system (CNS), is extremely complex there is no limit on what can be read or said about it. Therefore, I must constrain

More information

11/2/2011. Basic circuit anatomy (the circuit is the same in all parts of the cerebellum)

11/2/2011. Basic circuit anatomy (the circuit is the same in all parts of the cerebellum) 11/2/2011 Neuroscientists have been attracted to the puzzle of the Cerebellum ever since Cajal. The orderly structure, the size of the cerebellum and the regularity of the neural elements demands explanation.

More information

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of Feedback Ex6 You submitted this quiz on Sun 19 May 2013 9:32 PM IST (UTC +0530). You got a score of 10.00 out of 10.00. Question 1 What is common to Parkinson, Alzheimer and Autism? Electrical (deep brain)

More information

How strong is it? What is it? Where is it? What must sensory systems encode? 9/8/2010. Spatial Coding: Receptive Fields and Tactile Discrimination

How strong is it? What is it? Where is it? What must sensory systems encode? 9/8/2010. Spatial Coding: Receptive Fields and Tactile Discrimination Spatial Coding: Receptive Fields and Tactile Discrimination What must sensory systems encode? How strong is it? What is it? Where is it? When the brain wants to keep certain types of information distinct,

More information

Spatial Coding: Receptive Fields and Tactile Discrimination

Spatial Coding: Receptive Fields and Tactile Discrimination Spatial Coding: Receptive Fields and Tactile Discrimination What must sensory systems encode? How strong is it? What is it? Where is it? When the brain wants to keep certain types of information distinct,

More information