Neurochemical Effects of Repeated Gestational Exposure to Chlorpyrifos in Developing Rats

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Neurochemical Effects of Repeated Gestational Exposure to Chlorpyrifos in Developing Rats"

Transcription

1 TOXICOLOGICAL SCIENCES 77, (2004) DOI: /toxsci/kfh014 Neurochemical Effects of Repeated Gestational Exposure to Chlorpyrifos in Developing Rats Jason R. Richardson 1 and Janice E. Chambers 2 Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi Received on August 1, 2003; accepted on October 3, 2003 The neurochemical effects in developing rats exposed during gestation to the anticholinesterase organophosphorus insecticide chlorpyrifos (CPS) were determined. Pregnant rats were dosed daily with CPS (0, 3, or 7 mg/kg) in corn oil from gestation days (GD) Pups were euthanized on postnatal days (PND) 1, 3, 6, 9, 12, and 30 for the determination of brain cholinesterase (ChE) and choline acetyltransferase (ChAT) activities, along with muscarinic receptor (machr) densities, the levels of the high-affinity choline uptake (HACU) system, and the vesicular acetylcholine transporter (VAChT). ChE activities were inhibited about 15 and 30% on PND 1, in the low- and high-dosage groups, respectively, and were not different from control values by PND 6. machr densities on PND 1 were reduced in the high-dosage group by about 18, 21, and 17%, using 3 H-N-methylscopolamine, 3 H-quinuclidinyl benzilate, and 3 H-4-DAMP, respectively, as ligands, and were not different from control levels by PND 6. ChAT activity was decreased by 12% in the high-dosage group on PND 9, 12, and 30. HACU levels, using 3 H-hemicholinium-3 as the ligand, were reduced by 25% on PND 6 in the low- and high-dosage groups, and by 14 and 21% on PND 12 and 30, only in the high-dosage group. Levels of the VAChT were reduced by a range of 13 31% on PND 3 through 30 in the high-dosage group, using 3 H-AH5183 (vesamicol) as the ligand. These data suggest that gestational exposure to 7 mg/kg/day CPS results in long-term alterations of presynaptic cholinergic neurochemistry. Key Words: developmental neurotoxicity; chlorpyrifos; choline acetyltransferase; cholinesterase inhibition; cholinergic neurochemistry; organophosphate insecticide. Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl)- phosphorothioate] (CPS) is a widely used organophosphorus (OP) insecticide, with a variety of agricultural and household uses. Recent concerns over possible developmental toxicity of CPS have resulted in cancellation of residential uses of this 1 Present address: Center for Neurodegenerative Disease, Emory University, Atlanta, GA To whom correspondence should be addressed at the Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, PO Box 6100, Mississippi State, MS Fax. (662) Toxicological Sciences 77(1), Society of Toxicology 2004; all rights reserved. insecticide and review of its agricultural uses in order to determine if additional measures should be undertaken to provide greater protection of children (EPA, 2001). Developing animals are more susceptible to the acute toxic effects of CPS (Atterberry et al., 1997; Moser and Padilla, 1998; Zheng et al., 2000). In addition to the acute susceptibility of juvenile animals, repeated exposures of juveniles to chlorpyrifos have resulted in long-term neurochemical or behavioral aberrations (Dam et al., 1999; Carr et al., 2001; Moser and Padilla, 1998; Slotkin et al., 2001; Tang et al., 1999; Zheng et al., 2000). However, there is a paucity of studies that have evaluated the effects of gestational exposure to CPS on the developing cholinergic neurochemistry of the offspring. Lassiter et al. (1998, 1999) orally exposed pregnant dams to 0, 3, 5, 7, or 10 mg/kg/day from gestation days (GD) 14 to 18 and determined that fetal brain ChE was much less inhibited than that of the dams on GD 18 to 21, and suggested that this difference was most likely the result of a greater rate of protein synthesis in the developing animal. Additionally, Mattsson et al. (2000) came to a similar conclusion in dams orally exposed to 0, 0.3, 1, or 5 mg/kg/day from GD 6 through postnatal day (PND) 10, reporting that ChE activity had returned to near control levels by PND 5 in the highest-dosage group. In the first study, which explored neurochemical effects other than ChE inhibition in animals gestationally exposed to CPS, Chanda et al. (1995) reported that a single high dosage of CPS (200 mg/kg), administered subcutaneously in oil to the dam on GD 12, resulted in 30% inhibition of ChE in the offspring on PND 3, which was accompanied by an 11% decrease in muscarinic acetylcholine receptor (machr) levels as measured by 3 H-quinuclidinyl benzilate (QNB) binding. In an additional study by Chanda and Pope (1996), dams administered 25 mg/kg/day from GD 12 through GD 19 resulted in about 20 25% brain ChE inhibition in the offspring on PND 3 and a 27% decrease in machr levels. Qiao et al. (2003) reported that subcutaneous exposure of pregnant dams to 0, 1, or 5 mg/kg/day of CPS, administered in DMSO on GD 17 to 20, resulted in long-term decreases, up to PND 30 and 60, in the levels of the high-affinity choline uptake transporter, with no corresponding effects on choline acetyltransferase activity or M2/M4 machr levels. Recently, our laboratory reported 83

2 84 RICHARDSON AND CHAMBERS that offspring of dams orally administered 0, 3, 5, or 7 mg/kg/ day from GD 6 through GD 20 resulted in brain ChE inhibition in the offspring of 45% on PND 1 in the highest-dosage group, with inhibition persisting through PND 9 (Richardson and Chambers, 2003). In addition, we found a 13% decrease in choline acetyltransferase (ChAT) activity, the enzyme responsible for acetylcholine (ACh) biosynthesis, on PND 12, when ChE levels were comparable with those of control animals. Therefore, it appears that while brain ChE activity in animals exposed to CPS during gestation is able to recover from inhibition fairly rapidly, there may be lingering effects on other neurochemical components of the cholinergic system. The present study was designed to expand on the observations of our previous study (Richardson and Chambers, 2003) by the determination of the occurrence and persistence of effects on the neurochemical components of the cholinergic nervous system in the offspring of dams orally exposed to CPS during gestation. In addition to monitoring ChE inhibition, cell surface and total machr levels were measured by the binding of 3 H-N-methylscopolamine (NMS) and 3 H-QNB, respectively, to determine whether machr might be sequestered or downregulated similarly to that observed in animals exposed to CPS during the postnatal period (Tang et al., 1999). Since NMS and QNB nonspecifically label all subtypes (M1 M5) of machr (Bowen and Marek, 1982), the levels of M1/M3 and M2/M4 machr were determined by the binding of 3 H-4- DAMP and 3 H-AF-DX 384, respectively. Furthermore, to determine whether other presynaptic cholinergic markers were affected in a similar fashion to our previously reported decrease in ChAT activity in rats exposed to CPS during gestation, we measured levels of the high-affinity choline uptake transporter (HACU) and the vesicular acetylcholine transporter (VAChT) by the binding of 3 H-hemicholinium-3 and 3 H- AH5183, respectively. The results presented here confirm our previous observations of the effects of gestational exposure to CPS on brain ChE and ChAT activity, and extend them by demonstrating that exposure to CPS during gestation results in transient reductions of total machr and machr subtypes, but more persistent reductions of HACU and VAChT levels. MATERIALS AND METHODS Chemicals. Analytical grade CPS was a generous gift from Dow Agrosciences (Indianapolis, IN). 3 H-Acetyl coenzyme A (CoA) (190 mci/mmol) was purchased from ICN Biomedical (Irvine, CA). 3 H-Hemicholinium-3 (HC-3; 136 Ci/mmol), 3 H-AH5183 (vesamicol; 34 Ci/mmol), 3 H-quinuclidinyl benzilate (QNB; 48 Ci/mmol), 3 H-4-diphenylacetoxy-N-(2-chloroethyl)piperidine (4-DAMP; 80.5 Ci/mmol), 3 H-N-methylscopolamine (NMS; 83.5 Ci/ mmol), and 3 H-AF-DX 384 (100 Ci/mmol) were purchased from New England Nuclear. Unlabeled AF-DX 384 was a generous gift from Boehringer- Ingelheim Pharmaceutical (Ridgefield, CT). ScintiLene non-aqueous scintillation fluid was obtained from Fisher Scientific, Inc. (Houston, TX). All other chemicals, if not specified, were purchased from Sigma Chemical Co. (St Louis, MO). Experimental design. Experimentally naive adult male and female Sprague-Dawley rats (Crl:CD(SD)BR) were obtained from Charles River Laboratories (Wilmington, MA). Rats were maintained in a temperaturecontrolled room at 22 3 C with a 12:12-h light:dark cycle in an AAALACaccredited facility, with both Purina standard rat chow (Brentwood, MO) and tap water available ad libitum. All procedures were approved by the Mississippi State University Animal Care and Use Committee. Rats were bred at a female:male ratio of 3:1. Gestational day 0 (GD 0) was determined by the presence of sperm in the vaginal lavage, and females were housed individually thereafter. Dams were randomly assigned to treatment groups, weighed daily, and orally dosed from GD 6 to 20 with 0, 3 (low), or 7 mg/kg/day (high) CPS in corn oil, based upon low and high dosages used previously in our laboratory (Richardson and Chambers, 2003). Treatments were administered on a vanilla wafer (Nabisco ) at 0.5 ml/kg to reduce handling stress involved with oral intubation. Treated cookies were totally consumed within 10 min of administration. Dams were allowed to give birth and litters were culled to pups/litter on PND 1, to ensure standardized nutritional availability. Pups were sampled on PND 1, 3, 6, 9, and 12, with an equal number of pups sampled from each litter to maintain equal litter sizes; remaining pups were weaned on PND 22 and euthanized on PND 30, the time at which the cholinergic system has reached maturity (Coyle and Yamamura, 1976). There was no selection made for sex in the sampling, since previous studies have shown no differences in ChE inhibition of rats exposed to CPS during gestation (Mattsson et al., 2000), and each litter was considered as an individual unit of analysis. Enzyme assays. ChE was assayed spectrophotometrically in brain homogenates (whole brain without cerebellum or medulla-pons) using acetylthiocholine as the substrate and 5,5 -dithio-bis(nitrobenzoic acid) (DTNB) as the chromogen with eserine in the blanks (Chambers et al., 1988; Ellman et al., 1961). ChAT activity was assayed radiometrically, essentially according to the method of Fonnum (1975) as described previously (Chambers and Chambers, 1989; Richardson and Chambers, 2003). Data were expressed as nmol product formed/min/mg protein and pmol acetylcholine formed/min/mg protein for ChE and ChAT, respectively. ChE assays were performed on all treatment groups until activities had returned to control levels. ChAT assays were performed on samples from PND 6, 9, 12, and 30 only, since a previous study from our laboratory determined that ChAT activity was low and unaffected by CPS treatment on PND 1 and 3 (Richardson and Chambers, 2003). Muscarinic receptor binding. Crude synaptosomal fractions of brain (excluding cerebellum and medulla-pons) were prepared using the method of Gray and Whittaker (1962), as described in detail by Tang et al. (1999). Briefly, the brain was homogenized in 10 volumes of 0.32 M sucrose. The homogenate was centrifuged at 1000 g for 10 min, the pellet discarded, and the supernatant centrifuged at 17,000 g for 20 min. The pellet was resuspended at a concentration of 1 mg/ml with Krebs-Ringer buffer (comprised of [in mm]: NaCl, 150; KCl, 5; CaCl 2, 1.5; MgCl 2, 1.3; HEPES, 20, ph 7.4; glucose, 10) to obtain a crude synaptosomal fraction, which was kept on ice and used within 1 h. Muscarinic receptor (machr) levels in crude synaptosomal preparations were determined with the specific ligands 3 H-NMS and 3 H-QNB, using a method similar to that of Yamamura and Snyder (1974), as described by Tang et al. (1999), with a single saturating concentration (3 nm) of 3 H-NMS or 3 H-QNB. The specific binding was calculated as the total binding (incubated without 10 M atropine sulfate) minus nonspecific binding (incubated with atropine), and expressed as fmol/mg protein. For M1/M3 and M2/M4 machr binding, brain samples (whole brain without cerebellum and medulla-pons) were homogenized in 50 mm Tris-HCl (ph 7.4) containing 120 mm NaCl, 5 mm KCl, 2 mm CaCl 2, and 1 mm MgCl 2 (Tris-salts buffer) in a glass mortar, using a Wheaton motorized tissue grinder and a Teflon pestle. The homogenate was centrifuged for 10 min at 48,000 g and the supernatant was discarded. This procedure was repeated before the final pellet (crude membrane preparation) was resuspended, using the Wheaton grinder at a concentration of 2 mg of protein/ml. M1/M3 machr levels were measured in crude membrane preparations by binding of the selective antagonist 3 H-4-DAMP, according to the method of Araujo et al. (1991), with modifications to reduce the total assay volume to

3 NEUROCHEMICAL EFFECTS OF GESTATIONAL CHLORPYRIFOS l. Preliminary kinetic studies indicated that the binding of 3 H-4-DAMP ( nm) was best fit to a two-site model with a value of and nm, consistent with that of Araujo et al. (1991). The highaffinity site is thought to consist of primarily M3 sites, with the low-affinity site consisting of both M1 and M3 sites (Araujo et al., 1991). Therefore, binding studies were conducted with a single concentration (50 nm) designed to measure the density of both M1 and M3 receptor subtypes, and in the presence of the specific M2/M4 antagonist, AF-DX 384 (20 nm), to block possible binding of 3 H-4-DAMP to M4 sites. Assays were conducted at 37 C for 60 min. Specific binding was calculated as described above and expressed as fmol/mg protein. Assays were performed on all treatment groups until they returned to control levels, since data from this study indicated that there were no long-term changes in QNB or NMS levels after a return to control levels (data not shown). M2/M4 machr levels were determined in the same crude membrane preparation, essentially by the method of Castoldi et al. (1991) using the selective M2/M4 antagonist 3 H-AF-DX 384. Preliminary kinetic studies indicated that the binding of 3 H-AF-DX 384 ( nm) was best fit to a one-site model with a Kd of approximately nm. Therefore, binding studies were conducted with a single concentration (20 nm) of 3 H-AF-DX 384 at 37 C for 60 min. Specific binding was calculated as described above, and expressed as fmol/mg protein. Assays were performed on all treatment groups until they returned to control levels. Hemicholinium-3 and AH5183 binding. For hemicholinium-3 (HC-3) binding to the high-affinity choline uptake transporter, brain samples (whole brain without cerebellum and medulla-pons) were prepared as described above for M1/M3 machr binding, except that 50 mm glycyl-glycine buffer containing 200 mm NaCl and 5 mm KCl (ph 7.4) was used. The binding of the high-affinity choline uptake inhibitor 3 H-HC-3 to the high-affinity choline uptake transporter was measured in crude membrane preparations of the brain essentially as described by Sandberg and Coyle (1985), with modifications to reduce the total assay volume to 200 l. Preliminary kinetic studies indicated that the binding of 3 H-HC-3 ( nm) was best fit to a two-site model with Kd values of about and nm. Therefore, studies were conducted with a single concentration (10 nm) of 3 H-HC-3, to label the high-affinity site, at 37 C for 30 min. Specific binding was calculated as the total binding (incubated without 10 M unlabeled HC-3) minus nonspecific binding (incubated with 10 M unlabeled HC-3) and expressed as fmol/mg protein. Assays were performed on PND 6, 9, 12, and 30, since previous studies have shown that specific 3 H-HC-3 binding was first detectable around PND 5 7 (Aubert et al., 1996; Happe and Murrin, 1992). The binding of the acetylcholine transport inhibitor 3 H-AH5183 (vesamicol) to the vesicular acetylcholine transporter was measured in the same synaptosomal preparations as described above for NMS and QNB binding, essentially, by the method of Meyer et al. (1993). Preliminary kinetic studies indicated that the binding of 3 H-AH5183 was best fit to a single site model with a Kd of nm, when in the presence of 200 nm 1,3-di(2-tolyl)guanidine (DTG), to block binding of AH5183 to sigma receptors (Custers et al., 1997). Therefore, assays were conducted with a single concentration (100 nm) of 3 H-AH5183 in the presence of 200 nm DTG for 30 min at 37 C. Specific binding was calculated as the total binding (incubated without 10 M L- vesamicol) minus nonspecific binding (incubated with 10 M L-vesamicol) and expressed as fmol/mg protein. Protein determinations. Protein concentrations for synaptosomal preparations were determined by the bicinchoninic acid method (Smith et al., 1985), with bovine serum albumin as the standard. Protein concentration of all other preparations was quantified by the method of Lowry et al. (1951), with bovine serum albumin as the standard. Statistical analysis. Litter was considered the smallest unit of analysis, with each litter representing an independent replication (n 4 6 litters per treatment group). AChE and ChAT activities, along with machr, HC-3, and AH5183 binding data for each time point were log-transformed for comparisons involving heterogeneous variance and analyzed by the general linear model (GLM) using SAS on a personal computer. If a significant F was determined, means were separated by the Student-Newman-Keuls (SNK) post hoc test, with statistical significance reported for the p 0.05 level. RESULTS Dams treated with CPS showed no signs of overt toxicity and there were no adverse effects on pup growth rate noted (data not shown). Likewise, there were no differences in the sex ratios of the litters or numbers of pups per litter observed between treatment groups (data not shown). Brain ChE was inhibited in a dose-related manner in the offspring, with inhibition of 15 and 30% in the low- and high-dosage groups on PND 1, respectively (Fig. 1). Inhibition in the low-dosage group was still 15% on PND 3 and had returned to control levels by PND 6. Likewise, inhibition in the high-dosage group was 27% on PND 3 and was not significantly different than control levels by PND 6. Levels of machr receptors present on the cell surface, as measured by NMS binding, were decreased by 18 and 27% on PND 1 and 3, respectively, but only in the high-dosage group (Fig. 2A). Total machr levels, as measured by QNB binding, were decreased by 21 and 17% on PND 1 and 3, respectively, only in the high-dosage group (Fig. 2B). Levels of both cell surface and total machr had returned to control levels by PND 6. M1/M3 machr levels, as indicated by 4-DAMP binding, were decreased by 17 and 25% on PND 1 in the low- and high-dosage groups, respectively (Fig. 3A). On PND 3, these levels had returned to control values in the low-dosage group. However, levels in the high-dosage group were decreased by FIG. 1. Specific activity of brain cholinesterase in rat pups exposed to 0 (control), 3 (low), or 7 (high) mg/kg/day chlorpyrifos from gestation days 6 through 20: Bars labeled with the same letter on the same sampling day are not significantly different from each other (p 0.05) by the Student-Newman- Keuls (SNK) test. Data are presented as the mean SEM (n 4 6).

4 86 RICHARDSON AND CHAMBERS FIG. 2. Levels of (A) cell surface machr as measured by 3 H-N-methylscopolamine (NMS) and (B) total machr as measured by 3 H-quinuclidinyl benzilate (QNB) binding in rat pups exposed to 0 (control), 3 (low), or 7 (high) mg/kg/day chlorpyrifos from gestation day 6 through 20: Bars labeled with the same letter on the same sampling day are not significantly different from each other (p 0.05) by SNK. Data are presented as the mean SEM (n 4 6). 15%, returning to control values by PND 6. In contrast, M2/M4 machr levels, as indicated by AF-DX 384 binding, were not significantly different from control values at any of the time points studied (Fig. 3B). ChAT activity was unaffected by treatment until PND 9, where activity was decreased in the high-dosage group by about 11% (Fig. 4). The decrease in ChAT activity persisted in FIG. 4. Specific activity of brain choline acetyltransferase (ChAT) in rat pups exposed to 0 (control), 3 (low), or 7 (high) mg/kg/day chlorpyrifos from gestation days 6 through 20: Bars labeled with the same letter on the same sampling day are not significantly different from each other (p 0.05) by SNK. Data are presented as the mean SEM (n 3 5). the high-dosage group through PND 30, the last sampling day, with decreases of 13 and 10% on PND 12 and 30, respectively. High-affinity choline uptake (HACU) transporter levels, as measured by HC-3 binding, were decreased by about 27 and 25% on PND 6 in the low- and high-dosage groups, respectively (Fig. 5). HACU levels in the low- and high-dosage groups were not significantly different from control levels on PND 9. However, HACU levels in the high-dosage group were decreased compared to controls by about 14% on PND 12, and by about 21% on PND 30. FIG. 3. Levels of (A) M1/M3 machr as measured by 3 H-4-DAMP or (B) M2/M4 machr as measured by 3 H-AF-DX 384 binding of rat pups exposed to 0 (control), 3 (low), or 7 (high) mg/kg/day chlorpyrifos from gestation days 6 through 20: Bars labeled with the same letter on the same sampling day are not significantly different from each other (p 0.05) by SNK. Data are presented as the mean SEM (n 4). FIG. 5. High affinity choline uptake transporter levels as measured by 3 H-HC-3 binding in rat pups exposed to 0 (control), 3 (low), or 7 (high) mg/kg/day chlorpyrifos from gestation days 6 through 20: Bars labeled with the same letter on the same sampling day are not significantly different from each other (p 0.05) by SNK. Data are presented as the mean SEM (n 4 6).

5 NEUROCHEMICAL EFFECTS OF GESTATIONAL CHLORPYRIFOS 87 Synaptosomal levels of the vesicular acetylcholine transporter (VAChT), as measured by AH5183 binding, were decreased at all sampling times except PND 1 in the high-dosage group (Fig. 6). Decreases of 13, 10, 12, 31, and 26% compared to controls were observed on PND 3, 6, 9, 12, and 30, respectively. AH5183 binding in the low-dosage group was not different from that in controls at any sampling point. DISCUSSION Previously, we had established that exposure to CPS during gestation resulted in relatively persistent inhibition of brain ChE, and a delayed decrease in ChAT after ChE activity had returned to control levels (Richardson and Chambers, 2003). Therefore, this study was undertaken to determine if other neurochemical components of the cholinergic system are affected by gestational exposure to CPS and what the persistence of these effects would be. ChE activity was inhibited in a dose-related manner, with inhibition values similar to those of Mattsson et al. (2000) and Lassiter et al. (1998, 1999), although somewhat less in this study compared with our previous study (Richardson and Chambers, 2003). Inhibition persisted in both treatment groups through PND 3 and had returned to control values by PND 6. Previously we had suggested that the relatively persistent inhibition of brain ChE might be the result of the phosphorylated ChE being permanently inactivated or aged (Richardson and Chambers, 2003). Therefore, we tested the ability of the oxime reactivator, TMB-4 (Chambers and Chambers, 1989), to reactivate inhibited ChE from these animals, and we determined that all of the inhibited ChE could be reactivated on PND 1 and 3 (data not shown). Therefore, either lactational exposure to FIG. 6. Vesicular acetylcholine transporter levels as measured by 3 H- AH5183 binding in rat pups exposed to 0 (control), 3 (low), or 7 (high) mg/kg/day chlorpyrifos from gestation day 6 through 20. Bars labeled with the same letter on the same sampling day are not significantly different from each other (p 0.05) by SNK. Data are presented as the mean SEM (n 4 6). CPS or residual CPS present in the neonates, or a combination of the two, was responsible for the ChE inhibition in the offspring after cessation of treatment. Mattsson et al. (2000) reported that exposure of dams to 5 mg/kg/day CPS from GD 6 through PND 10 resulted in milk levels of 3 g/ml on PND 1, and estimated that the pups would be exposed to approximately mg/kg/day CPS, similar to the threshold for plasma ChE inhibition in adult rats (Breslin et al., 1996). In this study, brain ChE activity returned to control values by PND 6, while the rats were still nursing, similar to that observed by Mattsson et al. (2000), in which brain ChE activity of the offspring had returned to control levels by PND 5. Therefore, it is likely that the observed short-term ChE inhibition noted in the offspring on PND 1 and 3 was the result of a combination of residual CPS present in the neonates from in utero exposure concurrent with lactational exposure. Accumulation of ACh resulting from ChE inhibition in adult animals can result in decreased levels (downregulation) of machr (Russell and Overstreet, 1987). In the present study, total machr levels, as measured by QNB binding, were only affected in the high-dosage group and had returned to control levels by PND 6, suggesting that the decreases were dependent on ChE inhibition. The decreases in machr noted in this study on PND 3 (21%) were similar to those of Chanda and Pope (1996), who observed a 27% decrease on PND 3 in the offspring of dams exposed to 25 mg/kg/day CPS subcutaneously from GD While decreases in QNB binding in adult animals represent downregulation of machr following sustained hyperstimulation, decreases in cell surface machr, as measured by the hydrophilic ligand NMS, represent the sequestration of these receptors from the cell surface in response to short-term hyperstimulation (Cioffi and El-Fakahany, 1986). In this study, decreases in NMS binding were observed on PND 1 and 3, only in the high-dosage group (7 mg/kg/day), with a return to control levels on PND 6. Unpublished data from our laboratory with a limited number of samples suggest that this response is dependent on the magnitude of ChE inhibition, as the offspring of dams exposed to a lower dosage, 5 mg/kg/day, of CPS during gestation exhibited decreases in NMS levels on PND 1 and 3, and with no corresponding effect on QNB levels. In the brain, there are five types of machr (M1 M5), which are often divided into two distinct pairs, M1/M3 and M2/M4 based on their coupling to second messenger systems (Bowen and Marek, 1982). M1/M3 machr are coupled to the hydrolysis of inositol triphosphate and are of particular interest because of their early development (Aubert et al., 1996), and several reports indicating that M1 and M3 machr are more efficiently coupled to their signal transduction mechanisms in developing rats than are their adult counterparts (Balduini et al., 1987; Heacock et al., 1987). M1/M3 levels, as measured by the binding of 4-DAMP, were significantly reduced in both the low- and high-treatment groups on PND 1 and in the high-treatment group on PND 3. The return of these receptor

6 88 RICHARDSON AND CHAMBERS levels to control values paralleled that of ChE activity, suggesting these reductions are the result of ChE inhibition and not a developmental delay in expression from gestational exposure to CPS. M2/M4 machr, which is coupled to the inhibition of adenyl cyclase (Peralta et al., 1988), typically develop later than M1/M3 receptors (Aubert et al., 1996) and are not effectively coupled to their signal transduction systems until the third postnatal week (Lee et al., 1990). In contrast to the robust effects on M1/M3 receptors, M2/M4 receptor levels were not altered at any of the time points studied, suggesting that receptors of the M1/M3 class are particularly sensitive to CPS exposure, possibly because of their earlier development, as compared to the M2/M4 subtypes. ChAT activity, while not the rate-limiting step in ACh synthesis (Simon et al., 1976), provides insight into the potential rate of ACh synthesis and is an indirect measure of functional cholinergic neurons. We have previously reported a nonstatistically significant decrease (13%) of ChAT activity on PND 9 and a significant decrease of 13% on PND 12, a time at which ChE activity had returned to control values, in the offspring of dams exposed to 7 mg/kg/day during gestation (Richardson and Chambers, 2003). This was confirmed in the present study, with significant decreases in ChAT activity on PND 9 and 12. ChAT activity was also significantly decreased on PND 30, a time at which ChAT activity is reported to reach adult levels (Coyle and Yamamura, 1976). Thus, it appears that exposure of dams to CPS during gestation at 7 mg/kg/day but not 3 mg/kg/day causes a long-term reduction of ChAT activity in the offspring. The high-affinity choline uptake (HACU) system develops in parallel with ChAT activity (Coyle and Yamamura, 1976) and is the rate-limiting step in the synthesis of ACh (Simon et al., 1976). In addition, HACU levels have been shown to be reduced by increased nerve impulse activity in response to ChE inhibition (Swann and Hewitt, 1988). Therefore, we sought to determine the effects of gestational exposure to CPS on the development of the HACU system. HACU levels were significantly decreased in both the low- and high-dosage groups on PND 6, and returned to near control levels by PND 9. However, starting on PND 9 there was a progressive decline in HACU levels in the high-dosage group, which reached a maximum reduction of 21% on PND 30, the last day examined. A similar long-term reduction of HACU levels has also been observed by Qiao et al. (2003) in the offspring of dams subcutaneously exposed to 1 or 5 mg/kg/day CPS in DMSO from GD Although the study by Qiao and coworkers observed effects on HACU levels at lower dosages than that observed in this study, caution must be taken in comparing the studies because of the different vehicles used, since DMSO has been shown to inhibit ChE activity (Jacob and Herschler, 1986) and may enhance the actions of CPS. The VAChT is responsible for the transport of newly synthesized ACh into vesicles for release (Parsons et al., 1993) and is present at high levels early in development, suggesting a role in neural development (Aubert et al., 1996). As with ChAT activity, VAChT levels were only affected in the highdosage group, with significant decreases on PND 3, 6, 9, 12, 22, and 30. In addition, there appeared to be a progressive decline in VAChT levels from PND 9 to PND 30 in the high-dosage group. This is the first study, of which we are aware, that reports reductions of VAChT levels in animals exposed to organophosphorus insecticides, either developmentally or as adult animals. The reductions observed in ChAT activity, along with reductions in VAChT and HACU levels, suggest that presynaptic cholinergic neurons are especially sensitive to the effects of gestational exposure to CPS at the doses used in this study. However, the mechanism behind these selective decreases is not clear, since the time points demonstrating the most notable effects on these markers were times at which there were no corresponding decreases in brain ChE activities. However, there are two possible explanations. First, the expression of ChAT and VAChT are coordinately regulated and share a common gene locus and regulatory elements for gene expression (reviewed by Eiden, 1998). In addition, acute in vitro exposure of mouse brain slices to anticholinesterases has been shown to coordinately decrease ChAT and VAChT mrna expression (Kaufer et al., 1999). However, there are currently no data on the effects of gestational exposure to CPS on the mrna expression of ChAT and VAChT. Also, there are no current data on whether HACU is regulated in a similar manner to ChAT and VAChT, since the HACU has just recently been cloned (Okuda et al., 2000) and there are no data currently available on its regulatory elements. Secondly, it is possible that these reductions represent a selective loss of presynaptic cholinergic neurons. Antibodies to ChAT, VAChT, and HACU have been used to map the distribution of cholinergic neurons in mammalian brain (Armstrong et al., 1983; Gilmor et al., 1996; Kus et al., 2003) and are measures of intact cholinergic neurons; thus, the loss of these specific markers could be inferred to represent a loss of cholinergic neurons. Maurissen et al. (2000) reported that the offspring of rats exposed to CPS from GD 6 through PND 10 displayed no overt neuropathology, as determined by hematoxylin and eosin (H&E) staining. Although this observation suggests that no overt neuronal loss occurs after gestational CPS exposure, H&E staining is not specific for cholinergic neurons, and thus may not have been sensitive enough to allow for determination of cholinergic neuron loss. Likewise, our neurochemical determinations were performed on whole brain without cerebellum and medullapons, and therefore do not possess the anatomical resolution required to determine whether there is specific cholinergic loss. Therefore, further study is needed to delineate the mechanism responsible for the selective targeting of presynaptic cholinergic markers observed in the high-dosage group in this study. In summary, repeated exposure of developing rats to CPS during gestation resulted in transient decreases in ChE activity and machr levels, with the M1/M3 subtypes being the most

7 NEUROCHEMICAL EFFECTS OF GESTATIONAL CHLORPYRIFOS 89 sensitive to exposure. In contrast to these transient effects, there were long-lasting alterations of presynaptic components of the cholinergic system, i.e., HACU levels, ChAT activity, and VAChT levels, which were still noted longer than a month after the last treatment of the dams. In addition, these effects were primarily associated with time points at which there was no corresponding ChE inhibition. Taken in concert, these data suggest that gestational exposure of rats to 7 mg/kg/day of CPS, but not 3 mg/kg/day, results in long-term alterations of presynaptic cholinergic neurochemistry. ACKNOWLEDGMENTS The authors wish to acknowledge the generous gifts of chlorpyrifos from Dow Agrosciences and AF-DX 384 from Boehringer-Ingelheim. The authors would also like to thank Dr. Russell Carr for assistance with preparation of this manuscript. This research was partially supported by the National Science Foundation (EPS ), the National Institutes of Health (R01 ES10386), the Mississippi Agricultural and Forestry Experiment Station (MAFES) (under MAFES project MISV ), and the College of Veterinary Medicine, Mississippi State University. This paper is MAFES publication J and the Center for Environmental Health Sciences publication 103. REFERENCES Araujo, D. M., Lapchak, P. A., and Quirion, R. (1991). Heterogeneous binding of [ 3 H] 4-DAMP to muscarinic cholinergic sites in rat brain: Evidence from membrane binding and autoradiographic studies. Synapse 9, Armstrong, D. M., Saper, C. B., Levey, A. I., Wainer, B. H., and Terry, R. D. (1983). Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase. J. Comp. Neurol. 216, Atterberry, T. T., Burnett, W. T., and Chambers, J. E. (1997). Age-related differences in parathion and chlorpyrifos in male rats: Target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol. Appl. Pharmacol. 147, Aubert, I., Cecyre, D., Gauthier, S., and Quirion, R. (1996). Comparative ontogenic profile of cholinergic markers, including nicotinic and muscarinic receptors in the rat brain. J. Comp. Neurol. 369, Balduini, W., Murphy, S. D., and Costa, L. G. (1987). Developmental changes in muscarinic receptor-stimulated phosphoinositide metabolism in rat brain. J. Pharmacol. Exper. Ther. 235, Bowen, D. M., and Marek, K. L. (1982). Evidence for the pharmacological similarity between the central presynaptic muscarinic autoreceptor and postsynaptic muscarinic receptors. Br. J. Pharmacol. 75, Breslin, W. J., Liberacki, A. B., Dittenber, D. A., and Quast, J. F. (1996). Evaluation of the developmental and reproductive toxicity of chlorpyrifos in the rat. Fundam. Appl. Toxicol. 29, Carr, R. L., Chambers, H. W., Guarisco, J. A., Richardson, J. R., Tang, J., and Chambers, J. E. (2001). Effects of repeated oral postnatal exposure to chlorpyrifos on open-field behavior in juvenile rats. Toxicol. Sci. 59, Castoldi, A. F., Fitzgerald, B., Manzo, L., Tonini, M., and Costa, L. G. (1991). Muscarinic M2 receptors in rat brain labeled with [ 3 H]AF-DX 384. Res. Commun. Chem. Path. Pharmacol. 74, Chambers, H. W., and Chambers, J. E. (1989). An investigation of acetylcholinesterase inhibition and aging, and choline acetyltransferase activity following a high-level acute exposure to paraoxon. Pestic. Biochem. Physiol. 33, Chambers, J. E., Wiygul, S. H., Harkness, J. E., and Chambers, H. W. (1988). Effects of acute paraoxon and atropine exposures on retention of shuttle avoidance behavior in rats. Neurosci. Res. Commun. 3, Chanda, S. M., Harp, P., Liu, J., and Pope, C. N. (1995). Comparative developmental and maternal neurotoxicity following acute gestational exposure to chlorpyrifos in rats. J. Toxicol. Environ. Health 44, Chanda, S. M., and Pope, C. N. (1996). Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol. Biochem. Behav. 53, Cioffi, C. L., and el-fakahany, E. E. (1986). Decreased binding of the muscarinic antagonist [ 3 H]N-methylscopolamine in mouse brain following acute treatment with an organophosphate. Eur. J. Pharmacol. 132, Coyle, J. T., and Yamamura, H. I. (1976). Neurochemical aspects of the ontogenesis of cholinergic neurons in the rat brain. Brain Res. 118, Custers, F. G., Leysen, J. E., Stoof, J. C., and Herscheid, J. D. (1997). Vesamicol and some of its derivatives: Questionable ligands for selectively labeling acetylcholine transporters in rat brain. Eur. J. Pharmacol. 338, Dam, K., Garcia, S. J., Seidler, F. J., and Slotkin, T. A. (1999). Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Dev. Brain Res. 116, Eiden, L. E. (1998). The cholinergic gene locus. J. Neurochem. 70, Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, Environmental Protection Agency (EPA) (2001). Chlorpyrifos: End-use products cancellation order. Federal Register 66, Fonnum, F. (1975). A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24, Gilmor, M. L., Nash, N. R., Roghani, A., Edwards, R. H., Yi, H., Hersch, S. M., and Levey, A. I. (1996). Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J. Neurosci. 16, Gray, E. G., and Whittaker, V. P. (1962). The isolation of nerve endings from brain: An electromicroscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, Happe, H. K., and Murrin, L. C. (1992). Development of high-affinity choline transport sites in rat forebrain: A quantitative autoradiography study with [ 3 H]hemicholinium-3. J. Comp. Neurol. 321, Heacock, A. M., Fisher, S. K., and Agranoff, B. W. (1987). Enhanced coupling of neonatal muscarinic receptors in rat brain to phosphoinositide turnover. J. Neurochem. 48, Jacob, S. W., and Herschler, R. (1986). Pharmacology of DMSO. Cryobiology 23, Kaufer, D., Friedman, A., Seidman, S., and Soreq, H. (1999). Anticholinesterases induce multigenic feedback response suppressing cholinergic neurotransmission. Chem. Biol. Interact. 14, Kus, L., Borys, E., Ping Chu, Y., Ferguson, S. M., Blakely, R. D., Emborg, M. E., Kordower, J. H., Levey, A. I., and Mufson, E. J. (2003). Distribution of high-affinity choline transporter immunoreactivity in the primate central nervous system. J. Comp. Neurol. 463, Lassiter, T. L., Barone, S., Jr., Moser, V. C., and Padilla, S. (1999). Gestational exposure to chlorpyrifos: Dose-response profiles for cholinesterase and carboxylesterase activity. Toxicol. Sci. 52, Lassiter, T. L., Padilla, S., Mortensen, S. R., Chanda, S. M., Moser, V. C., and Barone, S., Jr. (1998). Gestational exposure to chlorpyrifos: Apparent protection of the fetus? Toxicol. Appl. Pharmacol. 152, Lee, W., Nicklaus, K. J., Manning, D. R., and Wolfe, B. B. (1990). Ontogeny of cortical muscarinic receptor subtypes and muscarinic receptor-mediated responses in rat. J. Pharmacol. Exp. Ther. 252,

8 90 RICHARDSON AND CHAMBERS Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, Mattsson, J. L., Maurissen, J. P. J., Nolan, R. J., and Brzak, K. A. (2000). Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos. Toxicol. Sci. 53, Maurissen, J. P. J., Hoberman, A. M., Garman, R. H., and Hanley, T. R., Jr. (2000). Lack of selective developmental neurotoxicity in rat pups from dams treated by gavage with chlorpyrifos. Toxicol. Sci. 57, Meyer, E. M., Bryant, S. O., Wang, R. H., and Watson, R. J. (1993). Characterization of [ 3 H] vesamicol binding in rat brain preparations. Neurochem. Res. 18, Moser, V. C., and Padilla, S. (1998). Age- and gender-related differences in the time course for behavioral and biochemical effects produced by oral chlorpyrifos in rats. Toxicol. Appl. Pharmacol. 149, Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., and Katsura, I. (2000). Identification and characterization of the high-affinity choline transporter. Nat. Neurosci. 3, Parsons, S. M., Prior, C., and Marshall, I. G. (1993). Acetylcholine transport, storage, and release. Int. Rev. Neurobiol. 35, Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J., and Capon, D. J. (1988). Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, Qiao, D., Seidler, F. J., Tate, C. A., Cousins, M. M., and Slotkin, T. A. (2003). Fetal chlorpyrifos exposure: Adverse effects on brain cell development and cholinergic biomarkers emerge postnatally and continue into adolescence and adulthood. Environ. Health Perspect. 111, Richardson, J. R., and Chambers, J. E. (2003). Effects of gestational exposure to chlorpyrifos on postnatal central and peripheral cholinergic neurochemistry. J. Toxicol. Environ. Health Part A 66, Russell, R. W., and Overstreet, D. H. (1987). Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog. Neurobiol. 28, Sandberg, K., and Coyle, J. T. (1985). Characterization of [ 3 H] hemicholinium-3 binding associated with neuronal choline uptake sites in rat brain membranes. Brain Res. 348, Simon, J. R., Atweh, S., and Kuhar, M. J. (1976). Sodium-dependent highaffinity choline uptake: A regulatory step in the synthesis of acetylcholine. J. Neurochem. 26, Slotkin, T. A., Cousins, M. M., Tate, C. A., and Seidler, F. J. (2001). Persistent cholinergic presynaptic deficits after neonatal chlorpyrifos exposure. Brain Res. 902, Smith, P., Krohn, R., Hermanson, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B., and Klenk, D. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, Swann, A. C., and Hewitt, L. O. (1988). Hemicholinium-3 binding: Correlation with high-affinity choline uptake during changes in cholinergic activity. Neuropharmacology 27, Tang, J., Carr, R. L., and Chambers, J. E. (1999). Changes in rat brain cholinesterase activity and muscarinic receptor density during and after repeated oral exposure to chlorpyrifos in early postnatal development. Toxicol. Sci. 51, Yamamura, H. I., and Snyder, S. H. (1974). Muscarinic cholinergic binding in rat brain. Proc. Natl. Acad. Sci U.S.A. 71, Zheng, Q., Olivier, K., Won, Y. K., and Pope, C. N. (2000). Comparative cholinergic neurotoxicity of oral chlorpyrifos exposures in preweanling and adult rats. Toxicol. Sci. 55,

Lower Birth Weight as A Critical Effect of. Chlorpyrifos: A Comparison of Human and. Animal Data

Lower Birth Weight as A Critical Effect of. Chlorpyrifos: A Comparison of Human and. Animal Data Regulatory Toxicology and Pharmacology 42(2005) 55-63 Lower Birth Weight as A Critical Effect of Chlorpyrifos: A Comparison of Human and Animal Data Qiyu Zhao* Bernard Gadagbui And Michael Dourson Toxicology

More information

418 Adopted:

418 Adopted: 418 Adopted: 27.07.95 OECD GUIDELINE FOR TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Delayed Neurotoxicity of Organophosphorus Substances Following Acute Exposure INTRODUCTION 1. OECD

More information

Differential acetylcholinesterase activity in rat cerebrum, cerebellum and hypothalamus

Differential acetylcholinesterase activity in rat cerebrum, cerebellum and hypothalamus Indian Journal of Experimental Biology Vol. 44, May 2006, pp. 381-386 Differential acetylcholinesterase activity in rat cerebrum, cerebellum and hypothalamus Rini Roy (Pal) & Aditi Nag Chaudhuri* Department

More information

Time-Course, Dose-Response, and Age Comparative Sensitivity of N-Methyl Carbamates in Rats

Time-Course, Dose-Response, and Age Comparative Sensitivity of N-Methyl Carbamates in Rats TOXICOLOGICAL SCIENCES 114(1), 113 123 (2010) doi:10.1093/toxsci/kfp286 Advance Access publication November 24, 2009 Time-Course, Dose-Response, and Age Comparative Sensitivity of N-Methyl Carbamates in

More information

Enzymatic Assay of PHOSPHOLIPASE C, PHOSPHATIDYLINOSITOL-SPECIFIC (EC )

Enzymatic Assay of PHOSPHOLIPASE C, PHOSPHATIDYLINOSITOL-SPECIFIC (EC ) PRINCIPLE: Step 1: Enzymatic Assay of PHOSPHOLIPASE C, PHOSPHATIDYLINOSITOL-SPECIFIC Acetylcholinesterase (membrane stroma bound) PLP C > Acetylcholinesterase (unbound) Step 2: ATI + DTNB Acetylcholinesterase

More information

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of

I. OVERVIEW DIRECT. Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of THE CHOLINERGIC NEURON 1 I. OVERVIEW DIRECT Drugs affecting the autonomic nervous system (ANS) are divided into two groups according to the type of ACTING neuron involved in their mechanism of action.

More information

Autonomic Nervous System. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Autonomic Nervous System. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Autonomic Nervous System Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Peripheral Nervous System A. Sensory Somatic Nervous System B. Autonomic Nervous System 1. Sympathetic Nervous

More information

What effect would an AChE inhibitor have at the neuromuscular junction?

What effect would an AChE inhibitor have at the neuromuscular junction? CASE 4 A 32-year-old woman presents to her primary care physician s office with difficulty chewing food. She states that when she eats certain foods that require a significant amount of chewing (meat),

More information

DNA, RNA, protein and DNases in developing rat cerebellum: Effects of early postnatal nutritional deprivation

DNA, RNA, protein and DNases in developing rat cerebellum: Effects of early postnatal nutritional deprivation Biosci.,Vol. 4, Number 4, December 1982, pp. 391-400. Printed in India. DNA, RNA, protein and DNases in developing rat cerebellum: Effects of early postnatal nutritional deprivation K. V. SUBBA RAO AND

More information

Lojayn Salah. Razan Aburumman. Faisal Muhammad

Lojayn Salah. Razan Aburumman. Faisal Muhammad 20 Lojayn Salah Razan Aburumman Faisal Muhammad Note: I tried to include everything that's important from the doctor's slides but you can refer back to them after studying this sheet.. After you read this

More information

Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male but not female offspring

Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male but not female offspring 1 2 3 4 5 6 7 8 9 1 11 12 13 14 Supplementary information for: Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male but not female offspring Stephane L Bourque,

More information

DANIEL R. DOERGE U.S. Food and Drug Administration National Center for Toxicological Research Jefferson, AR

DANIEL R. DOERGE U.S. Food and Drug Administration National Center for Toxicological Research Jefferson, AR Research support by Interagency Agreement between NTP/NIEHS and NCTR/FDA The opinions presented are not necessarily those of the U.S. FDA or NTP NCTR/FDA Research on BPA: Integrating pharmacokinetics in

More information

A Protein Kinase Inhibitor in Brown Adipose Tissue of Developing Rats

A Protein Kinase Inhibitor in Brown Adipose Tissue of Developing Rats Biochem. J. (1974) 138, 195-199 Printed in Great Britain 195 A Protein Kinase Inhibitor in Brown Adipose Tissue of Developing Rats By JOSEF P. SKALA, GEORGE I. DRUMMOND and PETER HAHN Departments ofpaediatrics,

More information

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6 Neurotransmitter Systems II Receptors Reading: BCP Chapter 6 Neurotransmitter Systems Normal function of the human brain requires an orderly set of chemical reactions. Some of the most important chemical

More information

Cytidine and Uridine Increase Striatal CDP-Choline Levels Without Decreasing Acetylcholine Synthesis or Release

Cytidine and Uridine Increase Striatal CDP-Choline Levels Without Decreasing Acetylcholine Synthesis or Release Cellular and Molecular Neurobiology ( C 2006) DOI: 10.1007/s10571-006-9004-5 Cytidine and Uridine Increase Striatal CDP-Choline Levels Without Decreasing Acetylcholine Synthesis or Release Ismail H. Ulus,

More information

Neuron types and Neurotransmitters

Neuron types and Neurotransmitters Neuron types and Neurotransmitters Faisal I. Mohammed. PhD, MD University of Jordan 1 Transmission of Receptor Information to the Brain the larger the nerve fiber diameter the faster the rate of transmission

More information

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS The European Agency for the Evaluation of Medicinal Products Veterinary Medicines Evaluation Unit EMEA/MRL/114/96-FINAL June 1996 COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS EPRINOMECTIN SUMMARY REPORT

More information

Comparative measurement of serum Acetyl Cholinesterase Enzyme using three different methods

Comparative measurement of serum Acetyl Cholinesterase Enzyme using three different methods Jamshhidzade et al. Comparative measurement of serum Acetyl Cholinesterase Enzyme using three different methods Akram Jamshhidzade 1*, Hossein Nicknahad 1, Mohammadi-Bardbori A 1, Talati M 1 ABSTRACT Introduction:

More information

The Nervous System Mark Stanford, Ph.D.

The Nervous System Mark Stanford, Ph.D. The Nervous System Functional Neuroanatomy and How Neurons Communicate Mark Stanford, Ph.D. Santa Clara Valley Health & Hospital System Addiction Medicine and Therapy Services The Nervous System In response

More information

Review of Neurochemistry

Review of Neurochemistry Review of Neurochemistry UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY PBL MBBS YEAR III SEMINAR VJ Temple 1 CEREBRAL METABOLISM What are some

More information

Enzymatic Conversion of Heme to Bilirubin in Normal and Starved Fetuses and Newborn Rats

Enzymatic Conversion of Heme to Bilirubin in Normal and Starved Fetuses and Newborn Rats Pediat. Res. (5/197-201 (1972) Bilirubin heme oxygenase developmental liver biochemistry spleen Enzymatic Conversion of Heme to Bilirubin in Normal and Starved Fetuses and Newborn Rats M. MICHAEL THALER

More information

vesicles (acetylcholine uptake/torpedo)

vesicles (acetylcholine uptake/torpedo) 'Proc. Nati. Acad. Sci. USA Vol. 78, No. 4, pp., 2048-2052, April 1981 Biochemistry Saturable acetylcholine transport into purified cholinergic synaptic vesicles (acetylcholine uptake/torpedo) DANIEL M.

More information

Advanced Receptor Psychopharmacology

Advanced Receptor Psychopharmacology Advanced Receptor Psychopharmacology Otsuka Pharmaceutical Development & Commercialization, Inc. 2017 Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD February 2017 Lundbeck,

More information

Integrated Cardiopulmonary Pharmacology Third Edition

Integrated Cardiopulmonary Pharmacology Third Edition Integrated Cardiopulmonary Pharmacology Third Edition Chapter 3 Pharmacology of the Autonomic Nervous System Multimedia Directory Slide 19 Slide 37 Slide 38 Slide 39 Slide 40 Slide 41 Slide 42 Slide 43

More information

ab Histone Deacetylase (HDAC) Activity Assay Kit (Fluorometric)

ab Histone Deacetylase (HDAC) Activity Assay Kit (Fluorometric) ab156064 Histone Deacetylase (HDAC) Activity Assay Kit (Fluorometric) Instructions for Use For the quantitative measurement of Histone Deacetylase activity in cell lysates This product is for research

More information

Dose response relationships: biological and modeling aspects

Dose response relationships: biological and modeling aspects Dose response relationships: biological and modeling aspects Jason Aungst, Ph.D. Office of Food Additive Safety Center for Food Safety and Applied Nutrition U.S. Food and Drug Administration The findings

More information

Experiment 1. Isolation of Glycogen from rat Liver

Experiment 1. Isolation of Glycogen from rat Liver Experiment 1 Isolation of Glycogen from rat Liver Figure 35: FIG-2, Liver, PAS, 100x. Note the presence of a few scattered glycogen granules (GG). Objective To illustrate the method for isolating glycogen.

More information

ab Complex II Enzyme Activity Microplate Assay Kit

ab Complex II Enzyme Activity Microplate Assay Kit ab109908 Complex II Enzyme Activity Microplate Assay Kit Instructions for Use For the quantitative measurement of Complex II activity in samples from Human, Rat, Mouse and Cow This product is for research

More information

AD-A ALo as-va./'is. M^&Stt&MS 1 58Xe"ft9I REPORT DOCUMENTATION PAQE JAN June 21, Esam E. El-Fakahany, Ph.D.

AD-A ALo as-va./'is. M^&Stt&MS 1 58Xeft9I REPORT DOCUMENTATION PAQE JAN June 21, Esam E. El-Fakahany, Ph.D. AD-A244 419 REPORT DOCUMENTATION PAQE Form Approved 0M9 No. 0704-0188 nq 4od f«*w*w^ tne

More information

Chlorpyrifos Studies: The Debate is in the Details

Chlorpyrifos Studies: The Debate is in the Details Chlorpyrifos Studies: The Debate is in the Details Chlorpyrifos Studies: The Debate is in the Details Page 1 of 13 Introduction Dow AgroSciences LLC, based in Indianapolis, Indiana, USA, is a top-tier

More information

ab ATP Synthase Enzyme Activity Microplate Assay Kit

ab ATP Synthase Enzyme Activity Microplate Assay Kit ab109714 ATP Synthase Enzyme Activity Microplate Assay Kit Instructions for Use For the quantitative measurement of ATP Synthase activity in samples from Human, Rat and Cow This product is for research

More information

Esposizione a livelli ambientali di xenoestrogeni: modelli di studio nel ratto in vivo e rilevanza degli effetti

Esposizione a livelli ambientali di xenoestrogeni: modelli di studio nel ratto in vivo e rilevanza degli effetti Esposizione a livelli ambientali di xenoestrogeni: modelli di studio nel ratto in vivo e rilevanza degli effetti Francesca Farabollini (a), Leonida Fusani (c), Daniele Della Seta (a), Francesco Dessì-Fulgheri

More information

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota Synaptic Communication Steven McLoon Department of Neuroscience University of Minnesota 1 Course News The first exam is next week on Friday! Be sure to checkout the sample exam on the course website. 2

More information

Drugs Affecting the Autonomic Nervous System-1. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia

Drugs Affecting the Autonomic Nervous System-1. Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia Drugs Affecting the Autonomic Nervous System-1 Assistant Prof. Dr. Najlaa Saadi PhD Pharmacology Faculty of Pharmacy University of Philadelphia The autonomic nervous system, along with the endocrine system,

More information

1NMR characterization of colostrum in pure breed sows and its influences on piglets performance

1NMR characterization of colostrum in pure breed sows and its influences on piglets performance WORKSHOP MEETING Importance of nutrition and environment on birth weight, muscle growth, health and survival of the neonate - 4th - 5th May 2017 Cork 1NMR characterization of colostrum in pure breed sows

More information

Effects of Chronic Dietary and Repeated Acute Exposure to Chlorpyrifos on Learning and Sustained Attention in Rats

Effects of Chronic Dietary and Repeated Acute Exposure to Chlorpyrifos on Learning and Sustained Attention in Rats TOXICOLOGICAL SCIENCES 87(2), 460 468 (2005) doi:10.1093/toxsci/kfi264 Advance Access publication July 20, 2005 Effects of Chronic Dietary and Repeated Acute Exposure to Chlorpyrifos on Learning and Sustained

More information

The Nervous System and Metabolism

The Nervous System and Metabolism = P1: JZP 8 The Nervous System and Metabolism Dendrites Cell body Axon (may be sheathed in myelin) Nucleus Axonal terminals (synapses) Figure 8.1 Basic structure of a nerve cell (neuron). CH 3_ CH 3 CH

More information

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n): Section: Chapter 5: Multiple Choice 1. The structure of synapses is best viewed with a(n): p.155 electron microscope. light microscope. confocal microscope. nissle-stained microscopic procedure. 2. Electron

More information

PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS

PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS TMM,5-2011 PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS Ice-cold means cooled in ice water. In order to prevent proteolysis, make sure to perform all steps on ice. Pre-cool glass homogenizers, buffers

More information

OxisResearch A Division of OXIS Health Products, Inc.

OxisResearch A Division of OXIS Health Products, Inc. OxisResearch A Division of OXIS Health Products, Inc. BIOXYTECH pl GPx Enzyme Immunoassay Assay for Human Plasma Glutathione Peroxidase For Research Use Only. Not For Use In Diagnostic Procedures. Catalog

More information

Some Currently Neglected Aspects of Cholinergic Function

Some Currently Neglected Aspects of Cholinergic Function DOI 10.1007/s12031-009-9247-y Some Currently Neglected Aspects of Cholinergic Function Victor P. Whittaker Received: 6 July 2009 /Accepted: 20 July 2009 # The Author(s) 2009. This article is published

More information

Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides

Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides Toxicology Letters 135 (2002) 89/93 www.elsevier.com/locate/toxlet Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides Gary B. Quistad, Daniel K. Nomura, Susan

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 11 2401 : Anatomy/Physiology Autonomic Nervous System TextBook Readings Pages 533 through 552 Make use of the figures in your textbook ; a picture is worth a thousand words! Work

More information

DIFFERENTIAL ph SENSITIVITY OF TISSUE SUPEROXIDE DISMUTASES

DIFFERENTIAL ph SENSITIVITY OF TISSUE SUPEROXIDE DISMUTASES Indian Journal of Clinical Biochemistry, 2006 / 21 (2) 129-133 DIFFERENTIAL ph SENSITIVITY OF TISSUE SUPEROXIDE DISMUTASES Samir P Patel and Surendra S Katyare Department of Biochemistry, Faculty of Science,

More information

Alterations in Synaptic Strength Preceding Axon Withdrawal

Alterations in Synaptic Strength Preceding Axon Withdrawal Alterations in Synaptic Strength Preceding Axon Withdrawal H. Colman, J. Nabekura, J.W. Lichtman presented by Ana Fiallos Synaptic Transmission at the Neuromuscular Junction Motor neurons with cell bodies

More information

Declarative memory includes semantic, episodic, and spatial memory, and

Declarative memory includes semantic, episodic, and spatial memory, and Gallo Taste Learning and Memory in Aging Milagros Gallo, PhD Declarative memory includes semantic, episodic, and spatial memory, and in humans involves conscious recall. 1 Visual recognition memory is

More information

The Scientific Basis for Chelation: Animal Studies and Lead Chelation

The Scientific Basis for Chelation: Animal Studies and Lead Chelation The Scientific Basis for Chelation: Animal Studies and Lead Chelation Donald Smith, PhD Microbiology and Environmental Toxicology University of California Santa Cruz, CA ACMT Conference, Atlanta, 212 Molecular

More information

Ontogeny of Hepatic Bile Acid Conjugation in the Rat

Ontogeny of Hepatic Bile Acid Conjugation in the Rat 3 1-3998/85/19 1-97$2./ PEDIATRIC RESEARCH Copyright O 1985 International Pediatric Research Foundation, Inc. ONTOGENY OF HEPATIC BILE ACID CONJUGATION IN RATS 97 Vol. 19, No. 1, 1985 Printed in U.S.A.

More information

EpiQuik Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

EpiQuik Total Histone H3 Acetylation Detection Fast Kit (Colorimetric) EpiQuik Total Histone H3 Acetylation Detection Fast Kit (Colorimetric) Base Catalog # PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE The EpiQuik Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

More information

INTERACTION OF SEVERAL TRADITIONAL MEDICINE PREPARATIONS WITH AMINOPYRINE IN RAT HEPATOCYTES

INTERACTION OF SEVERAL TRADITIONAL MEDICINE PREPARATIONS WITH AMINOPYRINE IN RAT HEPATOCYTES INTERACTION OF SEVERAL TRADITIONAL MEDICINE PREPARATIONS WITH AMINOPYRINE IN RAT HEPATOCYTES H.H. Abas, H.B. Saringat and A.A.Rozana The study looks at the in vitro interaction of three Malay (Air Gamat

More information

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse Neurotransmitters A chemical released by one neuron that affects another neuron or an effector organ (e.g., muscle, gland, blood vessel). Neurotransmitters are small molecules that serve as messengers

More information

2-deoxy[1-14C]glucose method (entrainment/circadian pacemaker/hypothalamus/regional brain metabolism)

2-deoxy[1-14C]glucose method (entrainment/circadian pacemaker/hypothalamus/regional brain metabolism) Proc. Natl. Acad. Sci. USA Vol. 77, No. 2, pp. 1204-1208, February 1980 Neurobiology Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: A study using the

More information

3 (200 uc/#mole) was prepared as described

3 (200 uc/#mole) was prepared as described THE UPTAKE OF H 3 -MELATONIN IN ENDOCRINE AND NERVOUS TISSUES AND THE EFFECTS OF CONSTANT LIGHT EXPOSURE RICHARD J. WURTMAN, JULIUS AXELROD AND LINCOLN T. POTTER Laboratory of Clinical Science, National

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Gen. Physiol. Biophys. (1987). 6,

Gen. Physiol. Biophys. (1987). 6, Gen. Physiol. Biophys. (1987). 6, 103 108 103 Short comnu»nication Modification of Primary Amino Groups in Rat Heart Sarcolemma by 2,4,6-Trinitrobenzene Sulfonic Acid in aspect to the Activities of (Na

More information

2013 W. H. Freeman and Company. 12 Signal Transduction

2013 W. H. Freeman and Company. 12 Signal Transduction 2013 W. H. Freeman and Company 12 Signal Transduction CHAPTER 12 Signal Transduction Key topics: General features of signal transduction Structure and function of G protein coupled receptors Structure

More information

Autonomic Targets. Review (again) Efferent Peripheral NS: The Autonomic & Somatic Motor Divisions

Autonomic Targets. Review (again) Efferent Peripheral NS: The Autonomic & Somatic Motor Divisions Review (again) Efferent Peripheral NS: The Autonomic & Somatic Motor Divisions Running Problem: Smoking Homeostasis and the Autonomic Division BP, HR, Resp., H 2 O balance, Temp... Mostly dual reciprocal

More information

Mechanism of Action of N-Acetylcysteine in the Protection Against the Hepatotoxicity of Acetaminophen in Rats In Vivo

Mechanism of Action of N-Acetylcysteine in the Protection Against the Hepatotoxicity of Acetaminophen in Rats In Vivo Mechanism of Action of N-Acetylcysteine in the Protection Against the Hepatotoxicity of Acetaminophen in Rats In Vivo BERNHARD H. LAUTERBURG, GEORGE B. CORCORAN, and JERRY R. MITCHELL, Baylor College of

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

FURTHER OBSERVATION ON THE LACK OF ACTIVE UPTAKE SYSTEM FOR SUBSTANCE P IN THE CENTRAL NERVOUS SYSTEM

FURTHER OBSERVATION ON THE LACK OF ACTIVE UPTAKE SYSTEM FOR SUBSTANCE P IN THE CENTRAL NERVOUS SYSTEM FURTHER OBSERVATION ON THE LACK OF ACTIVE UPTAKE SYSTEM FOR SUBSTANCE P IN THE CENTRAL NERVOUS SYSTEM Tomio SEGAWA, Yoshihiro NAKATA, Haruaki YAJIMA* and Kouki KITAGAWA* Department of Pharmacology, Institute

More information

Introduction to Autonomic

Introduction to Autonomic Part 2 Autonomic Pharmacology 3 Introduction to Autonomic Pharmacology FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM The autonomic nervous system (Figure 3 1) is composed of the sympathetic and parasympathetic

More information

EFFECT OF IRON DEFICIENCY ON DEVELOPING RAT BRAIN ABSTRACT KEYWORDS INTRODUCTION

EFFECT OF IRON DEFICIENCY ON DEVELOPING RAT BRAIN ABSTRACT KEYWORDS INTRODUCTION EFFECT OF IRON DEFICIENCY ON DEVELOPING RAT BRAIN Jyoti Batra * and P. K. Seth ** * Department of Biochemistry, Santosh Medical College, Ghaziabad. ** Director, Industrial Toxicology Research Centre, Lucknow

More information

Dopamine-s-Hydroxylase in the Rat Superior Cervical Ganglia

Dopamine-s-Hydroxylase in the Rat Superior Cervical Ganglia Proc. Nat. Acad. Sci. USA Vol. 68, No. 7, pp. 1598-1602, July 1971 Selective Induction by Nerve Growth Factor of Tyrosine Hydroxylase and Dopamine-s-Hydroxylase in the Rat Superior Cervical Ganglia (dopa

More information

The Abilities of Specific x -Opioid Agonists, U-50,488H and U-62,066E, to Cause Antitussive Tolerance Were Lower than That of Morphine

The Abilities of Specific x -Opioid Agonists, U-50,488H and U-62,066E, to Cause Antitussive Tolerance Were Lower than That of Morphine The Abilities of Specific x -Opioid Agonists, U-50,488H and U-62,066E, to Cause Antitussive Tolerance Were Lower than That of Morphine Junzo Kamei, Hiroaki Tanihara and Yutaka Kasuya Department of Pharmacology,

More information

2-Deoxyglucose Assay Kit (Colorimetric)

2-Deoxyglucose Assay Kit (Colorimetric) 2-Deoxyglucose Assay Kit (Colorimetric) Catalog Number KA3753 100 assays Version: 01 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information...

More information

DANIEL R. DOERGE U.S. Food and Drug Administration National Center for Toxicological Research Jefferson, AR

DANIEL R. DOERGE U.S. Food and Drug Administration National Center for Toxicological Research Jefferson, AR NCTR Research Plan for BPA: Integrating pharmacokinetics in rodent and primate species, rat toxicology studies, human biomonitoring, and PBPK modeling to assess potential human risks from dietary intake

More information

CONTRAINDICATIONS Hypersensitivity to any component of this product (4)

CONTRAINDICATIONS Hypersensitivity to any component of this product (4) HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use OMIDRIA safely and effectively. See full prescribing information for OMIDRIA. OMIDRIA (phenylephrine

More information

Targets of Psychopharmacological Drug Action

Targets of Psychopharmacological Drug Action Targets of Psychopharmacological Drug Action (page 33 in syllabus) Stephen M. Stahl, MD, PhD Adjunct Professor, Department of Psychiatry University of California, San Diego School of Medicine Honorary

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

CARDIOVASCULAR AND NEUROPSYCHIATRIC CONSEQUENCES OF A GENETIC LOSS OF THE HIGH-AFFINITY CHOLINE TRANSPORTER (CHT) Brett Alan English.

CARDIOVASCULAR AND NEUROPSYCHIATRIC CONSEQUENCES OF A GENETIC LOSS OF THE HIGH-AFFINITY CHOLINE TRANSPORTER (CHT) Brett Alan English. CARDIOVASCULAR AND NEUROPSYCHIATRIC CONSEQUENCES OF A GENETIC LOSS OF THE HIGH-AFFINITY CHOLINE TRANSPORTER (CHT) By Brett Alan English Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

Developmental Toxicity Study Designs for Preventive Vaccines: Issues and Challenges

Developmental Toxicity Study Designs for Preventive Vaccines: Issues and Challenges Developmental Toxicity Study Designs for Preventive Vaccines: Issues and Challenges Marion F. Gruber, Ph.D. Office of Vaccines Research and Review CBER/FDA HESI Annual Meeting June 8, 2011 Alexandria,

More information

Effects of Dietary Vitamin E Level and Source on Sow, Milk, and Piglet Concentrations of α-tocopherol 1

Effects of Dietary Vitamin E Level and Source on Sow, Milk, and Piglet Concentrations of α-tocopherol 1 Effects of Dietary Vitamin E Level and Source on Sow, Milk, and Piglet Concentrations of α-tocopherol N. W. Shelton, J. L. Nelssen, M. D. Tokach, S. S. Dritz 2, R. D. Goodband, J. M. DeRouchey, H. Yang

More information

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I BIO 211: ANATOMY & PHYSIOLOGY I 1 Ch 10 A Ch 10 B This set CHAPTER 10 NERVOUS SYSTEM 1 BASIC STRUCTURE and FUNCTION Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill.

More information

Enzymatic Assay of POLYGALACTURONASE (EC )

Enzymatic Assay of POLYGALACTURONASE (EC ) PRINCIPLE: Polygalacturonic Acid + H 2 O PG > Reducing Sugars Abbreviations: PG = Polygalacturonase CONDITIONS: T = 30 C, ph 5.0, A 540nm, Light path = 1 cm METHOD: Colorimetric REAGENTS: A. 50 mm Sodium

More information

Synaptic communication

Synaptic communication Synaptic communication Objectives: after these lectures you should be able to: - explain the differences between an electrical and chemical synapse - describe the steps involved in synaptic communication

More information

ALZHEIMER S DISEASE. Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey

ALZHEIMER S DISEASE. Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey ALZHEIMER S DISEASE Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey Topics Covered Demography Clinical manifestations Pathophysiology Diagnosis Treatment Future trends Prevalence and Impact

More information

Functional Neuroanatomy: Pretest

Functional Neuroanatomy: Pretest Functional Neuroanatomy: Pretest Name Email: 1. Define the term organelle. 2. What is a synapse? 3. To the best of your ability describe the process of transcription. 4. What does ganglia mean? 5. Define

More information

Choline as a tool to evaluate nicotinic receptor function in chromaffin cells.

Choline as a tool to evaluate nicotinic receptor function in chromaffin cells. Choline as a tool to evaluate nicotinic receptor function in chromaffin cells. Juana Mª González-Rubio a, Jonathan Rojo a, Laura Tapia a, Victoria Maneu d, José Mulet c, Luis M. Valor c, Manuel Criado

More information

Age at Puberty and First Litter Size in Early and Late Paired Rats 2

Age at Puberty and First Litter Size in Early and Late Paired Rats 2 BIOLOGY OF REPRODUCTION 34, 322-3 26 (1986) Age at Puberty and First Litter Size in Early and Late Paired Rats 2 ALIDA M. EVANS Cancer Prevention Program 1300 University Avenue-7C University of Wisconsin

More information

Properties of the separated catalytic and regulatory units of brain

Properties of the separated catalytic and regulatory units of brain Proc. Natl. Acad. Sci. USA Vol. 77, No. 11, pp. 6344-6348, November 1980 Biochemistry Properties of the separated catalytic and regulatory units of brain adenylate cyclase (guanine nucleotide regulation/detergent

More information

Calcium alters the sensitivity of intact horizontal cells to

Calcium alters the sensitivity of intact horizontal cells to Proc. Natd Acad. Sci. USA Vol. 79, pp. 335-3354, May 1982 Neurobiology Calcium alters the sensitivity of intact horizontal cells to dopamine antagonists (dopamine receptors/adenylate cyclase/retina) ROBERT

More information

Role of Interferon in the Propagation of MM Virus in L Cells

Role of Interferon in the Propagation of MM Virus in L Cells APPLIED MICROBIOLOGY, Oct. 1969, p. 584-588 Copyright ( 1969 American Society for Microbiology Vol. 18, No. 4 Printed in U S A. Role of Interferon in the Propagation of MM Virus in L Cells DAVID J. GIRON

More information

GUIDELINES: This is an investigative study with no applicable guidelines.

GUIDELINES: This is an investigative study with no applicable guidelines. CITATION: Handa R, 2014. Terbuthylazine: An oral (gavage) study to assess the effects on the hormoneinduced luteinizing hormone surge in ovariectomized female Wistar rats. College of Medicine, The University

More information

Dopamine-Sensitive Adenylate Cyclase in Caudate Nucleus of Rat Brain,

Dopamine-Sensitive Adenylate Cyclase in Caudate Nucleus of Rat Brain, Proc. Nat. Acad. Sci. USA Vol. 69, No. 8, pp. 2145-2149, August 1972 Dopamine-Sensitive Adenylate Cyclase in Caudate Nucleus of Rat Brain, and Its Similarity to the "Dopamine Receptor" (extrapyramidal

More information

Alanine Aminotransferase Activity in Human Liver Mitochondria

Alanine Aminotransferase Activity in Human Liver Mitochondria Gen. Physiol. Biophys. (1983), 2, 51 56 51 Alanine Aminotransferase Activity in Human Liver Mitochondria M. RUŠČÁK', J. ORLICKÝ', J. RUŠČÁK' and R. MORA VEC 2 1 Institute of Normal and Pathological Physiology,

More information

OCFP 2012 Systematic Review of Pesticide Health Effects: Executive Summary

OCFP 2012 Systematic Review of Pesticide Health Effects: Executive Summary OCFP 2012 Systematic Review of Pesticide Health Effects: Executive Summary The second Ontario College of Family Physicians (OCFP) Systematic Review of Pesticide Health Effects reviewed the relevant literature

More information

CONTRAINDICATIONS None.

CONTRAINDICATIONS None. HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use PAZEO safely and effectively. See full prescribing information for PAZEO. PAZEO (olopatadine hydrochloride

More information

Key words: Collagen synthesis - N-Terminal peptide of type III procollagen - Tumor marker - Liver cancer - Liver cirrhosis

Key words: Collagen synthesis - N-Terminal peptide of type III procollagen - Tumor marker - Liver cancer - Liver cirrhosis [Gann, 75, 130-135; February, 1984] HIGH CONCENTRATIONS OF N-TERMINAL PEPTIDE OF TYPE III PROCOLLAGEN IN THE SERA OF PATIENTS WITH VARIOUS CANCERS, WITH SPECIAL REFERENCE TO LIVER CANCER Terumasa HATAHARA,

More information

FENPYROXIMATE (addendum) First draft prepared by T.C. Marrs Food Standards Agency, London, England. Explanation

FENPYROXIMATE (addendum) First draft prepared by T.C. Marrs Food Standards Agency, London, England. Explanation 35 FENPYROXIMATE (addendum) First draft prepared by T.C. Marrs Food Standards Agency, London, England Explanation... 35 Evaluation for an acute reference dose... 35 Toxicological studies... 35 Short-term

More information

3 DOSAGE FORMS AND STRENGTHS

3 DOSAGE FORMS AND STRENGTHS PATADAY- olopatadine hydrochloride solution/ drops Alcon Laboratories, Inc. ---------- HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use PATADAY safely

More information

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn.

Supplementary Figure 1. SybII and Ceb are sorted to distinct vesicle populations in astrocytes. Nature Neuroscience: doi: /nn. Supplementary Figure 1 SybII and Ceb are sorted to distinct vesicle populations in astrocytes. (a) Exemplary images for cultured astrocytes co-immunolabeled with SybII and Ceb antibodies. SybII accumulates

More information

DOSAGE FORMS AND STRENGTHS White toothpaste containing 1.1% sodium fluoride (3)

DOSAGE FORMS AND STRENGTHS White toothpaste containing 1.1% sodium fluoride (3) HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use 3M TM ESPE TM Clinpro TM 5000 Anti-Cavity Toothpaste safely and effectively. See full prescribing

More information

Autonomic Nervous System (ANS):

Autonomic Nervous System (ANS): Autonomic Nervous System (ANS): ANS is the major involuntary, unconscious, automatic portion of the nervous system. involuntary voluntary The motor (efferent)portion of the ANS is the major pathway for

More information

Role of the M 1 receptor in regulating circadian rhythms

Role of the M 1 receptor in regulating circadian rhythms Life Sciences 68 (2001) 2467 2472 Role of the M 1 receptor in regulating circadian rhythms Martha U. Gillette a,b,c,d, *, Gordon F. Buchanan b,d, Liana Artinian b, Susan E. Hamilton e, Neil M. Nathanson

More information

The Effect of Plasma Lipids on the Pharmacokinetics of Chlorpyrifos and the Impact on Interpretation of Blood Biomonitoring Data

The Effect of Plasma Lipids on the Pharmacokinetics of Chlorpyrifos and the Impact on Interpretation of Blood Biomonitoring Data TOXICOLOGICAL SCIENCES 108(2), 258 272 (2009) doi:10.1093/toxsci/kfp034 Advance Access publication February 17, 2009 The Effect of Plasma Lipids on the Pharmacokinetics of Chlorpyrifos and the Impact on

More information

Antimicrobial AlphaSan Test Report Summary Table 08/21/01

Antimicrobial AlphaSan Test Report Summary Table 08/21/01 AlphaSan RC 5000 Physical Chemical Properties Acute Oral Toxicity, Rat EPA FIFRA 81-1 Acute Dermal Toxicity, Rat EPA FIFRA 81-2 Primary Dermal Irritation Rabbit EPA FIFRA 81-5 Primary Eye Irritation Rabbit

More information

THE NERVOUS SYSTEM AS A TARGET ORGAN

THE NERVOUS SYSTEM AS A TARGET ORGAN THE NERVOUS SYSTEM AS A TARGET ORGAN Summary A target organ is an organ or organs of the body which adversely responds to systemic exposure of a chemical. The function of the nervous system is to communicate

More information

Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination

Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effects of EGCG and Chlorpyrifos on the Mortality, AChE and GSH of Adult Zebrafish: Independent and Combination To cite this article:

More information