vesicles (acetylcholine uptake/torpedo)

Size: px
Start display at page:

Download "vesicles (acetylcholine uptake/torpedo)"

Transcription

1 'Proc. Nati. Acad. Sci. USA Vol. 78, No. 4, pp., , April 1981 Biochemistry Saturable acetylcholine transport into purified cholinergic synaptic vesicles (acetylcholine uptake/torpedo) DANIEL M. MICHAELSON AND ITZCHAK ANGEL The George S. Wise Faculty of Life Sciences, Department of Biochemistry, Tel-Aviv University, Tel-Aviv, Israel Communicated by Julius Axelrod, November 24, 1980 ABSTRACT The uptake of [3H]acetylcholine ([3H]AcCho) into cholingeric synaptic vesicle ghosts purified from Torpedo electric organ was studied at concentrations of [3H]AcCho ranging from 0.1 to 10 mm. The accumulated [3H]AcCho can be released either by hypoosmotic buffer or by low levels of the detergent Triton X Kinetic analysis ofthe initial rate of [3H]AcCho uptake reveals temperature-dependent saturation kinetics which are best fitted by high-affinity (KTh 0.3 mm) and = low-affinity (KT1 10 mm) vesicular [3H]AcCho transport systems. Several lines of evidence suggest that [3H]AcCho transport is mediated by vesicle-associated transport systems and not by a contaminant of other subcellular moieties such as the plasma membrane choline transport system. (i) The specific activity of the [3H]AcCho transport systems is higher in the purest vesicular fraction than in the less-pure fractions. (ii) Ghosts prepared from isolated synaptosomes manifest only low levels of low-affimity [3H]AcCho transport and no highaffinity [3H]AcCho transport. (iii) The vesicular AcCho transport systems lack some of the typical characteristics of synaptosomal choline transport, such as Na' activation. (iv) The ratio of uptakes of [3H]AcCho and [3H]choline (10,uM) is about 5-fold higher in the pure vesicles than in isolated synaptosomal membranes. Addition of Mg2a-ATP decreases the rate of vesicular [3H]AcCho uptake by about 50%. The simultaneous addition of NaHCO3 and Mg2a-ATP results in activation of [3H]AcCho uptake to about 125% (relative to control), which is a 2.54fold enhancement relative to the rate observed with Mg2+-ATP. The present findings demonstrate'the presence of novel vesicle-associated AcCho transport systems. Their physiological role in the life cycle of the cholinergic synaptic vesicle and nerve terminal are discussed. Acetylcholine (AcCho) is stored in synaptic vesicles at a concentration of ca M (1-3) which is about 1 order of magnitude higher than in the presynaptic cytoplasm (=='30 mm) (4). AcCho is believed to be synthesized in the cytoplasm (5, 6). Hence, a carrier and a mechanism to provide the energy for its active transport into the synaptic vesicles are essential. In catecholaminergic synaptic vesicles and storage granules, for example, it has been shown that the biogenic amines are transported into the vesicles by a specific, reserpine-inhibited carrier and that the energy needed for concentrating the catecholamines in the vesicles-is provided by a vesicle-associated proton ATPase (for review, see refs. 7 and 8). Previous attempts have failed to demonstrate accumulative AcCho uptake in vitro into coritcal slices (9), sympathetic ganglion (10), or Torpedo cholinergic vesicles (11). Recently, Carpenter and Parsons (12) have demonstrated electrogenic AcCho uptake into hyperpolarized (interior negative) Torpedo vesicles. We have recently shown (13, 14) that the interior of isolated intact Torpedo synaptic vesicles is acidic, and that dissipation of the vesicular proton gradient results in AcCho release from The publication costs ofthis article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C solely to indicate this fact the vesicles. These findings suggest that uptake and storage of AcCho in cholinergic synaptic vesicles are affected by the internal ph and by the electric potential across the vesicular membrane. The presence of saturable AcCho transport has not yet been reported. In this communication we report that purified cholinergic Torpedo synaptic- vesicles take up [3H]AcCho and that the rate of [3H]AcCho transport follows saturation kinetics which are best fitted by two transport systems with affinity constants of ca. 0.3 mm and ca. 10 mm. EXPERIMENTAL Materials. Live Torpedo ocellata were caught off the coast of Tel-Aviv. Acetylcholine, choline, ethylene glycol bis(,b-ami noethyl ether)-n,n.n',n'-tetraacetic acid (EGTA), and ATP were from Sigma. Phospholine iodide was from Ayerst Laboratories. [3H]AcCho (90.0 mci/mmol; 1 Ci = 3.7 X 10' becquerels) was from New England Nuclear. [3H]Choline (8.3 Ci/mmol) was from The Radiochemical Centre (Amersham, England). All other chemicals were of reagent grade. Purification of Synaptic Vesicles. The electric organs were excised from chilled live T. ocellata. The excised tissue, 10-15% (wt/vol) in 0.8 M glycine/1 mm EGTA, ph 6.6, was homogenized and fractionated by differential centrifugation as described (15, 16). The S2 supernatant was then centrifuged at '250,000 X g for 1 hr; the resulting pellet (P3) which contained synaptic vesicles, was resuspended on 0.1 M sucrose/0.35 M NaCl/0.5 mm EGTA, ph 7.4, and loaded on a discontinuous density gradient as described (17). Density gradient centrifugation yielded a vesicle fraction (12) that was further purified (fraction SV) by gel filtration chromatography through a column packed with controlled-pore glass beads (Sigma, CPG ). Vesicle purity was determined both biochemically and morphologically (17). AcCho and ATP were present in a ratio of 3:1 and at a specific concentration of 1010 nmol of AcCho per mg of SV membrane phospholipid. Preparation of Vesicular Ghosts. Synaptic vesicle ghosts were prepared from the P3, 12, and SV fractions by hypoosmotic treatment. The crude vesicular fraction (P3) was resuspended in 100 mm sucrose/350 mm NaCl/0.5 mm EGTA, ph 7.4, lysed by a 1:10 dilution with 10 mm Tris-HCl (ph 6.8), pelleted (250,000 X g for 1 hr), and resuspended in 0.8 M glycine/10 mm Tris-HCl, ph 6.8, at a concentration of 5-10 mg of protein The vesicle fraction 12 was lysed by a 1:10 dilution with 10 mm Tris'HCl (ph 6.8), pelleted, and resuspended at a concentration of mg ofprotein per ml as described above. Fraction SV, after centrifugation and resuspension in 0.8 M glycine/ Abbreviations: AcCho, acetylcholine; EGTA, ethylene glycol bis(,1- aminoethyl ether)-nn,n',n'-tetraacetic acid.

2 Biochemistry: Michaelson and Angel 10 mm Tris1HCl, ph 6.8, was lysed by a 1:10 dilution with 10 mm Tris HCl (ph 6.8); the lysed vesicles were then pelleted and resuspended at a concentration of mg of protein All vesicular ghosts were stored in liquid nitrogen. Prior to use, they were thawed and washed by centrifugation and resuspension in 0.8 M glycine/10 mm Tris HCI, ph 6.8, at the concentrations indicated above. Preparation of Torpedo Synaptosomes and Synaptosomal Ghosts. Torpedo synaptosomes were prepared as described (15, 16). The synaptosomes (fraction a2j were pelleted (20,000 X g for 30 min) and resuspended in 0.8 M glycine/ 10mM Tris HCI, ph 6.8, at a concentration of 2 mg of protein They were lysed by a 1:10 dilution with 10 mm Tris HCI (ph 6.8), and the resulting synaptosomal ghosts were pelleted. The pellet was washed twice by resuspension in 0.8 M glycine/10 mm Tris HCI, ph 6.8, and centrifugation. It was finally suspended at a concentration of mg of protein per ml in 0.8 M glycine/10 mm Tris HCI, ph 6.8. [3H]AcCho and [3H]Choline Uptake. Synaptic vesicles and synaptosomal ghosts, 0.7 ml at the concentrations depicted above, were preincubated for 20 min at 25 C and at least 15 min at 4 C with 80,umol of the acetylcholinesterase inhibitor phospholine iodide. [3H]AcCho uptake was routinely studied at 25 C. It was initiated by a 1:1 dilution ofthe membrane fractions with 0.8 M glycine/10 mm Tris-HCl, ph 6.8, containing [3H]AcCho (=3 X 106 cpm/ml) at the specified concentration. At various time intervals, aliquots (0.1 ml) were placed in duplicate on GF/C filters (Whatman) which were rapidly washed (five times with 2-ml portions)- with ice-cold 0.8 M glycine/10 mm Tris HCl, ph 6.8. The filters were placed in vials containing 5 ml of Hydroluma (Lumuc) scintillation fluid and maintained at 25 C for 30 min. The radioactivity was then assayed by liquid scintillation spectrometry (Packard Prias, model PL). Standard tritiated water (Packard) was used to establish the efficiency of counting (40-45%). In order to reduce nonspecific adsorption of [3H]AcCho, prior to the experiment the GF/C filters were treated for 10 min by immersion in 0.8 M glycine/ 10 mm Tris1HCI, ph 6.8, containing 50 jig ofpolylysine (Sigma) Under these conditions the amount of [3H]AcCho taken up by the vesicular ghosts (at t =- 2 min) was about 3-fold higher than the blank measured at t = 0. When the effect of buffer composition on [3H]AcCho uptake was examined, the reaction was initiated by diluting the vesicles with the appropriate isoosmotic buffer (1:1) to yield the desired final concentrations. The validity of the filtration method was ascertained by control experiments in which intact vesicles were filtered on GF/C filters. After filtration, the AcCho retained on the filters was extracted and measured by bioassay (18). This control revealed that 95 ± 5% of the vesicular AcCho was retained by the filter, thus demonstrating that the vesicles are trapped by the filter and that they are not ruptured by the filtration procedure. [3H]Choline uptake was similarly assayed except that the reaction mixture contained [3H]choline (-3 x 10' cpm/ml) at the desired concentration and no AcCho. The reaction was initiated by a 1:1 dilution ofthe membrane fractions with 200 mm NaCl/ 6 mm KCI/400 mm glycine/10 mm Tris HCl, ph 7.0, for [3H]choline uptake in the presence ofna+ or with 0.8 M glycine/ 10 mm Tris HCl, ph 6.8 for [3H]choline uptake in the absence of Na+. Control experiments in which [3H]choline was added in trace amounts to the vesicles and synaptosomes prior to lysis, coupled with direct measurements ofthe AcCho contents ofthe ghosts (18), revealed that less than 0.1% of the original choline and AcCho were retained after lysis and washing. Thus, the concentrations of external choline derived from the membranes Proc. Natl. Acad. Sci. USA 78 (1981) 2049 was less than 0.1 pm in the reaction mixture and therefore did not affect the results. Measurement of Internal Volume. The internal volume of purified synaptic vesicles was measured as described (14), except that protein was determined according to Bradford (19). RESULTS Incubation of ghosts prepared from the I2 synaptic vesicle fraction and suspended in 0.8 M glycine/10 mm Tris HCl, ph 6.8, with 0.2 mm [3H]AcCho resulted in accumulation of radiolabel in the vesicles. Uptake was linear for 2 min and then leveled off to a plateau (Fig. 1). Similar results were observed with the P3 and SV fractions. The greatest extent of [3H]AcCho accumulation, as measured at the plateau, was seen in the pure vesicles. Incubation of the pure vesicles with 0.2 mm [3H]AcCho resulted in uptake of ca nmol of [3H]AcCho per mg of protein, whereas the less pure (12 fraction) (Fig. 1) and the crude P3 vesicle fractions took up only ca. 1 nmol of [3H]AcCho per mg of protein. All uptake experiments were performed in the presence of 40,uM phospholine iodide, which completely inhibits the trace acetylcholinesterase activity associated with the synaptic vesicle fractions (17). Furthermore, deliberate hydrolysis of [3H]AcCho prior to the experiment resulted in complete abolition of uptake, confirming that the radiolabel accumulated in the vesicles was [3H]AcCho and not any of its breakdown products. Dilution of the vesicles with hypoosmotic buffer resulted in loss ofthe vesicle-bound [3H]AcCho (t,12 2 min) (Fig. 1). Efflux of[3h]accho was likewise observed after dilution ofthe vesicles with isoosmotic buffer containing unlabeled AcCho or no AcCho (Fig. 1). A similar effect was achieved by treating the vesicles with the nonionic detergent Triton X-100 at 0.1% (not shown) except that, under these conditions, the rate of liberation of the vesicle-bound [3H]AcCho was faster (t/2 0.5 min). Measurements of the rate of vesicular [3H]AcCho uptake as a function of [3H]AcCho concentration revealed that, within the ~~~~~~~ ~0.4f I 0 ~ ~ ~ ~~~~~~~~ Time, min FIG. 1. Time course of [3H]AcCho uptake by isolated cholinergic synaptic vesicles ghosts (o) at 25 C. At the indicated (vertical arrow) time the vesicles were diluted 1:10 with either water (o) or a reaction buffer that contained no [3H]AcCho (e). The ghosts were prepared from vesicles purified by density gradient centrifugation (fraction I2). Results presented are mean ± SD of three experiments.

3 2050 Biochemistry: Michaelson and Angel Proc. Natl. Acad - Sci - USA 78 (1981) 1/[3H]AcCho, mm-1 V FIG. 2. (A) Double-reciprocal plot of initial rate of [3H]AcCho uptake by isolated synaptic vesicles ghosts. Data are best described by two straight lines with.positive ordinate intercepts, indicating a two-component system. The lines were calculated by using linear regression analysis. The experiments were performed in duplicate at 25TC, and.the ghosts were preparedfom vesicles purified by density gradient centrifugation (fraction I2). The velocity (V) is expressed as nmol of [3H]AcCho accumulated per mg ofprotein per min. (B).Scatchard (20) plot of the data in A. The presynaptic membrane ofcholinergic nerve endings contains a Na'-dependent high-affinity choline carrier (21, 22). Hence, it may be argued that the results presented above are due to transport of [3H]AcCho by the choline carrier and not via the novel vesicular [3H]AcCho transport system described here. As shown in Fig. 4, membrane ghosts prepared from iso-.lated Torpedo synaptosomes did accumulate [3H]AcCho. However, careful analysis revealed that the data are best fitted by a-single transport system (r = 0.99) with an affinity of KT = 5.5 ± 0.6 mm and V..s about one-seventh that ofthe synaptic vesicle ghosts (Fig. 3). We further examined the possibility that [3H]AcCho uptake by the synaptic vesicles.may be due to the high-affinity choline carrier in the plasma membrane by measuring the rate of [3H]choline uptake by the various subcellular fractions. In the presence of 100 mm Na+, the initial rate of [3H]choline uptake (measured at 10,uM external [3H]choline) by the synaptosomal membranes ( ± 0.03 nmol of [3H]choline per mg ofprotein per min; mean ± SD of four experiments) was similar to that in the SV fraction (0.098 ± nmol; three experiments). A B range investigated ( mm), uptake was.linear for at least 2 min. Analysis of the initial rate of the vesicular [3H]AcCho uptake (determined from the slopes ofthe uptake curves during the first 2 min) as a function of ligand concentration revealed that [3H]AcCho transport follows saturation kinetics which, in the [3H]AcCho concentration range of 0.1 to 10 mm, is best fitted by two transport systems (Fig. 2). Regression analysis revealed that a fit of the data to a two transport systems model has a higher correlation coefficient (r = 0.95) than that of a single transport system (r = 0.70). -In the I2 vesicles, the high-affinity [3H]AcCho transport had an affinity constant KTh of0. 32 ± 0.04mM and a specific activity.of 2.17 ± 0.96 nmol of [3H]AcCho per mg of protein per min (mean ± SD of three determinations). The KTh of the pure (SV) and of the crude (P3) vesicles was similar to that of I2. The specific activity ofthe high-affinity transport of the SV fraction was more than 2-fold higher than that of the 12 fraction, whereas the rate of uptake by the P3 vesicles was lower than that in the I2 vesicles (Fig. 3). Similarly, the specific activity of the low-affinity [3H]AcCho transport was highest in the pure SV fraction (Fig. 3). The affinity constant (KT1) of the low-affinity transport system in the I2 and P3 vesicles was ca. 10 mm (Fig. 2), whereas that in the SV is about 2-fold larger >4-80- <_IlK 2 Ti 40- JrLLI P3 12 SV a2 P3 I2 SV a2 FIG. 3. V.. values of the high-affinity (A) and low-affinity (B) [3H]AcCho transports in the synaptic vesicle and synaptosomal fractions.'the experiments were performed at 25TC. Values presented were obtained by'linear regression analysis of double-reciprocal plots ofthe initial rate ofj5h]accho uptake, determined over an [3H]AcCho concentration range of 0.1 to 10 mm. Values presented are mean + SD of at least three determinations. (For definition of subcellular fractions, see text.) /[3H]AcCho, mm-' FIG. 4. Double-reciprocal plot of the initial rate of [3H]AcCho uptake by Torpedo synaptosomal ghosts. Data are best described by a single straight line with positive ordinate intercept, indicating a single-component system. Each point is the mean of duplicate determinations. The experiments were performed at 250C, and the velocity (V) is expressed as nmol of [3HlAcCho accumulated per mg of protein per min.

4 Biochemistry: Michaelson and Angel Table 1. by Torpedo synaptic vesicles [3H]AcCho uptake, Addition % of control Control 100 Mg2+ +ATP 57 ± 26 (4) Ca2+ + Mg2+ +ATP 74 ± 34 (2) Me+ + ATP + NaHCO3 125 ± 18 (3) The rates of high-affinity [3H]AcCho transport were measured at [3H]AcCho concentrations of mm. Results are presented as a percentage of the control rate of [3H]AcCho uptake by either 12 or SV vesicles in the absence of additions. Concentrations were: ATP, 5 mm; Mg2+, 4 mm; Ca2+, 0.1 mm; and NaHCO3, 10 mm. Values are means ± SD. The number of determinations is indicated in parentheses. Effect of Mg2e-ATP and NaHCO3 on [3H]AcCho uptake However, in the absence of Na+ there was a 50% inhibition of the synaptosomal [3H]choline uptake whereas the rate of [3H]choline uptake by the pure (SV) vesicles was somewhat increased. The finding that the vesicular [3H]choline transport was not activated by Na+ demonstrates that it is not due to a contaminant of presynaptic plasma membranes and that it may therefore be mediated by the AcCho transport systems. Cholinergic synaptic vesicles contain a Ca2+, Mg2+ ATPase (17, 23, 24) which is outwardly oriented (25). We therefore examined the effect of ATP on the accumulation of [3H]AcCho in the vesicles. The rate of [3H]AcCho transport (measured at external [3H]AcCho of mm) was slightly decreased in the presence of Mg2+ (4 mm) and ATP (3 mm) as well as by Ca2+ (0.1 mm) and similar Mg2e and ATP concentrations (Table 1). By contrast, addition of Mg2+ and ATP in the presence of NaHCO3 (10 mm) resulted in an increase in the rate of [3H]AcCho uptake. Under these conditions, NaHCO3 by itself had no effect. These findings are similar to those recently reported by Koenigsberger and Parsons (26) and suggest that [3H]AcCho accumulation by the vesicles may be affected by ATP and the appropriate ions. DISCUSSION The findings presented in this communication demonstrate that purified cholinergic synaptic vesicles take up [3H]AcCho and that the rate of [3H]AcCho transport into the vesicles follows saturation kinetics which are best fitted by two transport systems having affinity constants in the range of 0.3 mm and 10 mm, respectively. The finding that [3H]AcCho is released from the vesicles by hypoosmotic treatment and by low levels of detergent suggests that the accumulated AcCho is indeed transported into the vesicles. It should be noted that the affinity constants reported here are lower than the estimated concentration of cytoplasmic AcCho in Torpedo nerve endings (-30 mm) (4) and thus are compatible with the concept of AcCho transport in vivo from the presynaptic cytoplasm into the synaptic vesicles. Three criteria were used to demonstrate that AcCho is indeed taken up by synaptic vesicles and not by nonvesicular contaminants such as the plasma membrane high-affinity choline carrier. (i) The specific activity of both the high-affinity and low-affinity AcCho transport systems is higher in the pure synaptic vesicles than in the less-pure vesicle fractions. Furthermore, during the purification procedure the increase in specific rates of [3H]AcCho transport by the vesicular ghosts correlates well with the AcCho content ofthe intact vesicles. The maximal rates of the high-affinity and low-affinity AcCho transport systems in the pure vesicles (SV) (4.7 ± 1.9 and 138 ± 33 nmol of AcCho Proc. Natl. Acad. Sci. USA 78 (1981) 2051 per mg protein per min, respectively) were 3- and 4.5-fold higher than those of the crude (P3) vesicles fractions, whereas the AcCho content of the intact SV vesicles (1010 nmol ofaccho per mg ofmembrane phospholipid) (17) is 5-fold higher than that of P3. (ii) The rate of [3H]AcCho transport in Torpedo synaptosomal membranes is much lower than that in the synaptic vesicles. Kinetic analysis of synaptosomal [3H]AcCho transport revealed low-affinity [3H]AcCho transport with a Vm about one-seventh that of the vesicles. Because the intact synaptosomes contain synaptic vesicles (27, 28), it is possible that [3H]AcCho transport by the synaptosomal preparation is in fact due to the presence of vesicular membranes. (iii) Examination of Na'-dependent [3H]choline uptake revealed no such activity in the pure synaptic vesicles, whereas, consistent with previous reports (20, 21, 29, 30), it does occur in the plasma membrane and to a fairly marked extent. The pharmacological properties ofthe AcCho transport systems described here are not yet known. The finding that the vesciles take up [3H]choline may be interpreted to suggest that [3H]choline transport is mediated by the AcCho transporters. The ratio of the Vm. values of the low- and high-affinity AcCho transport systems in the SV fraction, is ca. 30 and differs from that of the less pure 12 and P3 vesicular fractions (ca. 7 and 18, respectively). This suggests that not all the vesicles contain the two transport systems to the same extent. It should be noted that the purification procedure (17) used in this study was designed for obtaining pure vesicles, taking as a criterion of purity the highest possible concentration ofaccho relative to vesicular protein and membrane phospholipid. Hence, it is possible that the low-affinity transport system is present mainly in the fully mature vesicles and the high-affinity system is more abundant in vesicles at a different stage of their life cycle. Heterogeneity in cholinergic synaptic vesicles has been demonstrated (31, 32) and two populations of synaptic vesicles, differing in size and turnover oftheir AcCho and ATP contents, have been identified and partially purified. It may be ofinterest to examine the extent of the high- and low-affinity AcCho transport systems in these vesicular populations; in addition, it may be possible to use AcCho transport as an assay for the isolation offunctionally different vesicular subpopulations. The molecular properties and the mechanisms of AcCho transport by the high- and low-affinity systems are not known. We have recently found that the AcCho affinities of both systems may be modified experimentally (unpublished data). This finding as well as the variability of the affinity ofthe low-affinity AcCho transport system among various subcellular fractions, suggests that the two systems might in fact represent two different states of a single moiety. Utilizing the known amount of [3H]AcCho accumulated within the vesicles (12.1 nmol of [3H]AcCho per mg of SV protein at 0.2 mm external [3H]AcCho) and the measured intravesicular volume (3.8,ul/mg of SV protein) (14), we can calculate that under these conditions the average intravesicular concentration of [3H]AcCho is about 3 mm-i. e., more than 10- fold higher than the external [3H]AcCho concentration. Assuming that the vesicle ghosts contained no AcCho prior to [3H]AcCho uptake, this finding would suggest that the vesicle ghosts are capable of concentrating AcCho against a concentration gradient. We have recently shown (14) that in the intact vesicles an acidic storage complex may provide part of the driving force for the retention ofaccho within the vesicles. Hence, it is possible that the complex-forming apparatus is retained in the vesicular ghosts and thus, by removing AcCho from the intravesicular aqueous compartment, it provides an apparent driving force for the accumulation ofaccho within the vesicular

5 2052 Biochemistry: Michaelson and Angel ghosts. The finding that the release of the accumulated [3H]AcCho by hypoosmotic treatment is relatively slow (t,,2 2 min) may also be interpreted in terms of a slow dissociation ofan intravesicular AcCho complex. An alternative explanation is that some AcCho (less than 0.1% of the total AcCho content of the intact vesicles as determined by bioassay) is retained within the vesicular ghosts and that the carrier-mediated [3H]AcCho transport results in the labeling ofthis intravesicular AcCho pool. In the intact vesicles the concentration of membrane-bound AcCho has been estimated at M (1-3), whereas the concentration of free cytoplasmic AcCho is about 1 order of magnitude lower (4, 33). Hence, an energy source must be required for the accumulation ofaccho in the vesicles. The finding, originally reported by Koenigsberger and Parsons (26), that Mg2e and ATP in the presence of HC03- enhance [3H]AcCho uptake, suggests that under the appropriate conditions ATP may provide this energy source for AcCho accumulation. We also found (Table 1) that Mg2+-ATP did not activate, but rather inhibited, transport and that, in the presence of HCO3-, Mg2- ATP-activated AcCho tsport Thus, mere activation of the vesicle-associated Ca2,Mg2 -ATPase (17, 23-25) is not sufficient for driving AcCho uptake. Carpenter et al. (12, 34) have demonstrated that hyperpolarization (interior negative) of Torpedo synaptic vesicles leads to accumulation ofaccho. Hence, it is possible, that, under suitable ionic conditions, ATP may bring about a change in the electrochemical and ionic gradients across the vesicles, which in turn will provide the energy for AcCho accumulation. Further studies in which the intra- and extravesicular ionic contents are systematically altered will help in unraveling the role ofatp, ionic gradients, and the vesicular Ca2+,Mg2+-ATPase in AcCho accumulation. We thank Prof. M. Sokolovsky for his assistance and for helpful discussions. This work was supported in part by a grant from the Muscular Dystrophy Association. 1. Whittaker, V. P. & Sheridan, M. W. (1965) J. Neurochem. 12, Breer, H., Morris, S. J. & Whittaker, V. P. (1978) Biochemistry 87, Ohsawa, K., Dow, G. H. C., Morris, S. J. & Whittaker, V. P. (1979) Brain Res. 161, Israel, M., Dunant, Y. & Manaranche, R. (1979) Prog. Neurobiol. 13, Proc. Natl. Acad - Sci USA 78 (1981) 5. Fonnum, F. (1967) Biochem. J. 103, Fonnum, F. (1968) Biochem. J. 109, Winkler, A. (1977) Neuroscience 2, Njus, D. & Radda, G. K. (1978) Biochim. Biophys. Acta 463, Kuhar, M. J. & Simon, J. R. (1974)J. Neurochem. 22, Marchbanks, R. M. (1968) Biochem. J. 106, Suszkiw, J. B. (1976)J. Neurochem. 27, Carpenter, R. S. & Parsons, S. M. (1978) J. Biol. Chem. 253, Michaelson, D. M., Pinchasi, I., Angel, I., Ophir, I. & Rudnik, G. (1979) in Molecular Mechanisms of Biological Recognition, ed. Balaban, M. (Elsevier/North-Holland, Amsterdam), pp Michaelson, D. M. & Angel, I. (1980) Life Sci. 27, Michaelson, D. M. & Sokolovsky, M. (1976) Biochem. Biophys. Res. Commun. 73, Michaelson, D. M. & Sokolovsky, M. (1978)J. Neurochem. 30, Michaelson, D. M. & Ophir, I. (1980) in Neurobiology ofcholinergic and Adrenergic Transmitters, Monographs in Neural Sciences, ed. Cohen M. M. (Karger, Basel), Vol. 7, pp The Edinburgh Staff (1970) Pharmacological Experiments on Isolated Preparations (Livingston, London). 19. Bradford, M. M. (1976) Anal. Biochem. 72, Scatchard, G. (1949) Ann. N.Y. Acad. Sci. 51, Dowdall, M. J. & Simon, E. J. (1973)J. Neurochem. 21, Jope, J. S. (1979) Brain Res. Rev. 1, Breer, H., Morris, S. J. & Whittaker, V. P. (1977) Eur. J. Biochem. 80, Rothlein, J. E. & Parsons, S. M. (1979) Biochem. Biophys. Res. Commun. 88, Michaelson, D. M. & Ophir, I. (1980) J. Neurochem. 34, Koenigsberger, R. & Parsons, S. M. (1980) Biochem. Biophys. Res. Commun. 94, Israel, M., Manaranche, R., Mastour-Franchon, P. & Morel, N. (1976) Biochem. J. 160, Michaelson, D. M., Bilen, J. & Volsky, D. (1978) Brain Res. 154, Yamamura, H. J. & Snyder, S. H. (1973) J. Neurochem. 21, Wheeler, D. D. (1979)J. Neurochem. 32, Zimmermann, H. & Denston, C. R. (1977) Neuroscience 2, Suszkiw, J. B., Zimmermann, H. & Whittaker, V. P. (1978) J. Neurochem. 30, Morel, N., Israel, M. & Manaranche, R. (1978) J. Neurochem. 30, Carpenter, R. S., Koenigsberger, R. & Parsons, S. M. (1980) Biochemistry, 15,

these endings use various neurotransmitters. Consequently, the

these endings use various neurotransmitters. Consequently, the Proc. Natl. Acad. Sci. USA Vol. 76, No. 12, pp. 6336-6340, December 1979 Biochemistry Mechanism of acetylcholine release: Possible involvement of presynaptic muscarinic receptors in regulation of acetylcholine

More information

LITHIUM ADMINISTRATION TO PATIENTS

LITHIUM ADMINISTRATION TO PATIENTS Br. J. Pharmac. (1976), 57, 323-327 AN IRREVERSIBLE EFFECT OF LITHIUM ADMINISTRATION TO PATIENTS C. LINGSCH & K. MARTIN Department of Pharmacology, University of Cambridge, Hills Road, Cambridge CB2 2QD

More information

ENHANCEMENT BY F-ACTIN OF MGATP-DEPENDENT DOPAMINE UPTAKE INTO ISOLATED CHROMAFFIN GRANULES

ENHANCEMENT BY F-ACTIN OF MGATP-DEPENDENT DOPAMINE UPTAKE INTO ISOLATED CHROMAFFIN GRANULES Vol. 4, No. 1, September 1996 BIOCHEMISTRY and MOLECULAR BIOLOGY INTERNATIONAL Pages 61-66 ENHANCEMENT BY F-ACTIN OF MGATP-DEPENDENT DOPAMINE UPTAKE INTO ISOLATED CHROMAFFIN GRANULES Kyoji Morita ~)*,

More information

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells Journal of Supramolecular Structure 4:441 (401)-447 (407) (1976) TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

More information

Monoamine oxidase in sympathetic nerves: a transmitter specific enzyme type

Monoamine oxidase in sympathetic nerves: a transmitter specific enzyme type Br. J. Pharmac. (1971), 43, 814-818. Monoamine oxidase in sympathetic nerves: a transmitter specific enzyme type C. GORIDIS AND N. H. NEFF Laboratory of Preclinical Pharmacology, National Institute of

More information

DIDS INHIBITION OF SARCOPLASMIC RETICULUM ANION EFFLUX AND CALCIUM TRANSPORT

DIDS INHIBITION OF SARCOPLASMIC RETICULUM ANION EFFLUX AND CALCIUM TRANSPORT DIDS INHIBITION OF SARCOPLASMIC RETICULUM ANION EFFLUX AND CALCIUM TRANSPORT Kevin P. Campbell and David H. MacLennan Reprinted from ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Volume 358 Pages 328-331

More information

actin-troponin-tropomyosin complex (muscle relaxation/cooperativity/regulated actin)

actin-troponin-tropomyosin complex (muscle relaxation/cooperativity/regulated actin) Proc. Nati. Acad. Sci. USA Vol. 77, No. 5, pp. 2616-2620, May 1980 Biochemistry Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex (muscle relaxation/cooperativity/regulated

More information

Neurotoxin Binding to Receptor Sites Associated with Voltagesensitive Sodium Channels in Intact, Lysed, and Detergent-solubilized Brain Membranes*

Neurotoxin Binding to Receptor Sites Associated with Voltagesensitive Sodium Channels in Intact, Lysed, and Detergent-solubilized Brain Membranes* Vol. 254, No. 22, Issue of November 25, pp. 11379-11387, 1979 Printed in U.S. A Neurotoxin Binding to Receptor Sites Associated with Voltagesensitive Sodium Channels in Intact, Lysed, and Detergent-solubilized

More information

PART II EXPERIMENTAL

PART II EXPERIMENTAL PART II EXPERIMENTAL 18 Chemicals Acetylcholine chloride, acetylcholinesterase, acetyl-coa, acetylthiocholine iodide, adenosine 5-triphosphate, ammonium reineckate, bovine serum albumin, l,5-bis(4-allyldimethyl-ammoniumphenyl)pentan-

More information

ab Histone Deacetylase (HDAC) Activity Assay Kit (Fluorometric)

ab Histone Deacetylase (HDAC) Activity Assay Kit (Fluorometric) ab156064 Histone Deacetylase (HDAC) Activity Assay Kit (Fluorometric) Instructions for Use For the quantitative measurement of Histone Deacetylase activity in cell lysates This product is for research

More information

Biol110L-Cell Biology Lab Spring Quarter 2012 Module 1-4 Friday April 13, 2012 (Start promptly; work fast; the protocols take ~4 h)

Biol110L-Cell Biology Lab Spring Quarter 2012 Module 1-4 Friday April 13, 2012 (Start promptly; work fast; the protocols take ~4 h) Biol110L-Cell Biology Lab Spring Quarter 2012 Module 1-4 Friday April 13, 2012 (Start promptly; work fast; the protocols take ~4 h) A. Microscopic Examination of the Plasma Membrane and Its Properties

More information

J. Biosci., Vol. 7, Number 2, March 1985, pp Printed in India.

J. Biosci., Vol. 7, Number 2, March 1985, pp Printed in India. J. Biosci., Vol. 7, Number 2, March 1985, pp. 123 133. Printed in India. Irreversibility of the interaction of human growth hormone with its receptor and analysis of irreversible reactions in radioreceptor

More information

MEK1 Assay Kit 1 Catalog # Lot # 16875

MEK1 Assay Kit 1 Catalog # Lot # 16875 MEK1 Assay Kit 1 Kit Components Assay Dilution Buffer (ADB), Catalog # 20-108. Three vials, each containing 1.0ml of assay dilution buffer (20mM MOPS, ph 7.2, 25mM ß-glycerol phosphate, 5mM EGTA, 1mM sodium

More information

erythrocyte membranes (transport/inhibition/isozyme)

erythrocyte membranes (transport/inhibition/isozyme) Proc. Nad. Acad. Sci. USA Vol. 84, pp. 7373-7377, November 1987 Biochemistry Glutathione disulfide-stimulated Mg2+-ATPase of human erythrocyte membranes (transport/inhibition/isozyme) TAKAHITO KONDO*,

More information

Effect of a Selenium Analogue of [L Title Transport of Candida pelliculosa (C Dedicated to Professor Masaya Okano Retirement) Author(s) Shimizu, Eiichi; Yamana, Ryutaro; T Kenji Citation Bulletin of the

More information

The incorporation of labeled amino acids into lens protein. Abraham Speclor and Jin H. Kinoshita

The incorporation of labeled amino acids into lens protein. Abraham Speclor and Jin H. Kinoshita The incorporation of labeled amino acids into lens protein Abraham Speclor and Jin H. Kinoshita Calf and rabbit lenses cultured in a medium containing a radioactive amino acid incorporate some labeled

More information

Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich Ascites Tumor Cells

Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich Ascites Tumor Cells Journal of Supramolecular Structure 7:481-487 (1977) Molecular Aspects of Membrane Transport 5 1 1-5 17 Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich

More information

III. TOXICOKINETICS. Studies relevant to the toxicokinetics of inorganic chloramines are severely

III. TOXICOKINETICS. Studies relevant to the toxicokinetics of inorganic chloramines are severely III. TOXICOKINETICS Introduction Studies relevant to the toxicokinetics of inorganic chloramines are severely limited. However, studies done with various chlorinated amino compounds (including organic

More information

Note: During 30 minute incubation; proceed thru appropriate sections below (e.g. sections II, III and V).

Note: During 30 minute incubation; proceed thru appropriate sections below (e.g. sections II, III and V). LEGEND MAX β Amyloid x 40 LEGEND MAX β Amyloid x 40 ELISA Kit Components and Protocol Kit Components Capture Antibody Coated Plate 1 stripwell plate 1 40 Standard (2) 20μg vial 5X Wash Buffer 125mL Standard

More information

Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex

Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8363 8368, July 1998 Neurobiology Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral

More information

Minute TM Plasma Membrane Protein Isolation and Cell Fractionation Kit User Manual (v5)

Minute TM Plasma Membrane Protein Isolation and Cell Fractionation Kit User Manual (v5) Minute TM Plasma Membrane Protein Isolation and Cell Fractionation Kit Catalog number: SM-005 Description Minute TM plasma membrane (PM) protein isolation kit is a novel and patented native PM protein

More information

Chapter 2 Transport Systems

Chapter 2 Transport Systems Chapter 2 Transport Systems The plasma membrane is a selectively permeable barrier between the cell and the extracellular environment. It permeability properties ensure that essential molecules such as

More information

Mechanisms of Anionic Detergent-Induced Hemolysis

Mechanisms of Anionic Detergent-Induced Hemolysis Gen Physiol Biophys (1998), 17, 265 270 265 Mechanisms of Anionic Detergent-Induced Hemolysis E CHERNITSKY AND O SENKOVICH Institute of Photobiology, National Academy of Sciences of Belarus, Minsk, Belarus

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus Colocynthis Muhammad Bashir Khan, 1,3 Hidayatullah khan, 2 Muhammad

More information

Western Immunoblotting Preparation of Samples:

Western Immunoblotting Preparation of Samples: Western Immunoblotting Preparation of Samples: Total Protein Extraction from Culture Cells: Take off the medium Wash culture with 1 x PBS 1 ml hot Cell-lysis Solution into T75 flask Scrap out the cells

More information

<Supplemental information>

<Supplemental information> The Structural Basis of Endosomal Anchoring of KIF16B Kinesin Nichole R. Blatner, Michael I. Wilson, Cai Lei, Wanjin Hong, Diana Murray, Roger L. Williams, and Wonhwa Cho Protein

More information

FOCUS SubCell. For the Enrichment of Subcellular Fractions. (Cat. # ) think proteins! think G-Biosciences

FOCUS SubCell. For the Enrichment of Subcellular Fractions. (Cat. # ) think proteins! think G-Biosciences 169PR 01 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name FOCUS SubCell For the Enrichment of Subcellular Fractions (Cat. # 786 260) think

More information

ab ATP Synthase Enzyme Activity Microplate Assay Kit

ab ATP Synthase Enzyme Activity Microplate Assay Kit ab109714 ATP Synthase Enzyme Activity Microplate Assay Kit Instructions for Use For the quantitative measurement of ATP Synthase activity in samples from Human, Rat and Cow This product is for research

More information

PhosFree TM Phosphate Assay Biochem Kit

PhosFree TM Phosphate Assay Biochem Kit PhosFree TM Phosphate Assay Biochem Kit (Cat. # BK050) ORDERING INFORMATION To order by phone: (303) - 322-2254 To order by Fax: (303) - 322-2257 To order by e-mail: cservice@cytoskeleton.com Technical

More information

NOS Activity Assay Kit

NOS Activity Assay Kit NOS Activity Assay Kit Catalog Number KA1345 50 assays Version: 04 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Principle of the Assay... 3 General Information... 4

More information

Effect of phospholipase-d on rat kidney mitochondria*

Effect of phospholipase-d on rat kidney mitochondria* J. Biosci., Vol. 1, Number 1, March 1979, pp. 75 82. Printed in India. Effect of phospholipase-d on rat kidney mitochondria* S. N. A. ZAIDI, A. C. SHIPSTONE and N. K. GARG Division of Biochemistry, Central

More information

ACETYLCHOLINE IN A SYMPATHETIC GANGLION

ACETYLCHOLINE IN A SYMPATHETIC GANGLION Br. J. Pharmac. (1975), 55, 189-197 STUDIES UPON THE MECHANISM BY WHICH ACETYLCHOLINE RELEASES SURPLUS ACETYLCHOLINE IN A SYMPATHETIC GANGLION B. COLLIER & H.S. KATZ Department of Pharmacology and Therapeutics,

More information

10 mm KCl in a Ti-15 zonal rotor at 35,000 rpm for 16 hr at

10 mm KCl in a Ti-15 zonal rotor at 35,000 rpm for 16 hr at Proc. Nat. Acad. SCi. USA Vol. 68, No. 11, pp. 2752-2756, November 1971 Translation of Exogenous Messenger RNA for Hemoglobin on Reticulocyte and Liver Ribosomes (initiation factors/9s RNA/liver factors/reticulocyte

More information

Appendix. Experimental Procedures. Isolation of Rat Brain Synaptosomes. Extraction of Cholesterol from the Synaptosomes

Appendix. Experimental Procedures. Isolation of Rat Brain Synaptosomes. Extraction of Cholesterol from the Synaptosomes Appendix Experimental Procedures Isolation of Rat Brain Synaptosomes Wistar rats (males, 100 120 g body weight) were maintained in accordance with the European Guidelines and International Laws and Policies.

More information

Iodide transport in isolated cells of mouse submaxillary gland

Iodide transport in isolated cells of mouse submaxillary gland J. Biosci., Vol. 10, Number 3, September 1986, pp. 303 309. Printed in India. Iodide transport in isolated cells of mouse submaxillary gland R. K. BANERJEE*, A. K. BOSE, T. K. CHAKRABORTY, P. K. DE and

More information

INHIBITION OF POLYPHOSPHOINOSITIDE PHOSPHODIESTERASE BY AMINOGLYCOSIDE ANTIBIOTICS*

INHIBITION OF POLYPHOSPHOINOSITIDE PHOSPHODIESTERASE BY AMINOGLYCOSIDE ANTIBIOTICS* Neurochemical Research, Vol. 10, No. 8, 1985, pp. 1019-1024 INHIBITION OF POLYPHOSPHOINOSITIDE PHOSPHODIESTERASE BY AMINOGLYCOSIDE ANTIBIOTICS* Lvcxo A. A. VAN ROOIJEN 1 AND BERNARD W. AGRANOFF 2 Neuroscience

More information

Plasma Membrane Protein Extraction Kit

Plasma Membrane Protein Extraction Kit ab65400 Plasma Membrane Protein Extraction Kit Instructions for Use For the rapid and sensitive extraction and purification of Plasma Membrane proteins from cultured cells and tissue samples. This product

More information

Trident Membrane Protein Extraction Kit

Trident Membrane Protein Extraction Kit Cat. No. Size Shelf life GTX16373 5/ 20 tests 12 months at the appropriate storage temperatures (see below) Contents Component Storage Amount for 5 tests Amount for 20 tests Buffer A -20 o C 2.5 ml 10

More information

tution with total solubilized protein from essentially intact In this paper, we discuss the reconstitution of excitable

tution with total solubilized protein from essentially intact In this paper, we discuss the reconstitution of excitable Proc. Nati. Acad. Sci. USA Vol. 77, No. 4, pp. 1796-1800, April 1980 Biochemistry Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and

More information

atively poor response of adenylate cyclase in Leydig cell

atively poor response of adenylate cyclase in Leydig cell Proc. Nati. Acad. Sci. USA Vol. 77, No. 10, pp. 5837-5841, October 1980 Biochemistry Hormone-induced guanyl nucleotide binding and activation of adenylate cyclase in the Leydig cell (hormone action/testicular

More information

SensoLyte 520 HDAC Activity Assay Kit *Fluorimetric*

SensoLyte 520 HDAC Activity Assay Kit *Fluorimetric* SensoLyte 520 HDAC Activity Assay Kit *Fluorimetric* Catalog # 72084 Kit Size 100 Assays (96-well plate) Optimized Performance: This kit is optimized to detect HDAC activity. Enhanced Value: It provides

More information

Acids, in Brain Tissue (rat/rabbit/neurotransmitters/sucrose density gradients) ALAN R. WOFSEY, MICHAEL J.

Acids, in Brain Tissue (rat/rabbit/neurotransmitters/sucrose density gradients) ALAN R. WOFSEY, MICHAEL J. Proc. Nat. Acad. Sci. USA Vol. 68, No. 6, pp. 112-116, June 1971 A Unique Synaptosomal Fraction, Which Accumulates Glutamic and Aspartic Acids, in Brain Tissue (rat/rabbit/neurotransmitters/sucrose density

More information

Nuclear Extraction Kit

Nuclear Extraction Kit Nuclear Extraction Kit Catalog Number KA1346 50 assays Version: 07 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Principle of the Assay... 3 General Information... 4

More information

ab Membrane Fractionation Kit Instructions for Use For the rapid and simple separation of membrane, cytosolic and nuclear cellular fractions.

ab Membrane Fractionation Kit Instructions for Use For the rapid and simple separation of membrane, cytosolic and nuclear cellular fractions. ab139409 Membrane Fractionation Kit Instructions for Use For the rapid and simple separation of membrane, cytosolic and nuclear cellular fractions. This product is for research use only and is not intended

More information

Biochemical Techniques 06 Salt Fractionation of Proteins. Biochemistry

Biochemical Techniques 06 Salt Fractionation of Proteins. Biochemistry . 1 Description of Module Subject Name Paper Name 12 Module Name/Title 2 1. Objectives Understanding the concept of protein fractionation Understanding protein fractionation with salt 2. Concept Map 3.

More information

TECHNICAL BULLETIN. MDR1, human recombinant, expressed in Sf9 cells, membrane preparation, for ATPase. Product Number M9194 Storage Temperature 70 C

TECHNICAL BULLETIN. MDR1, human recombinant, expressed in Sf9 cells, membrane preparation, for ATPase. Product Number M9194 Storage Temperature 70 C MDR1, human recombinant, expressed in Sf9 cells, membrane preparation, for ATPase Product Number M9194 Storage Temperature 70 C TECHNICAL BULLETIN Product Description Multi-drug resistance (MDR) is a major

More information

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples:

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples: Dr. Sanjeeva Srivastava IIT Bombay Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples: Sample preparation for serum proteome analysis Sample

More information

SUMMARY MATERIALS AND METHODS INTRODUCTION

SUMMARY MATERIALS AND METHODS INTRODUCTION Med. J. Malaysia VoI. 38 No. 2 June 1983 OESTROGEN RECEPTOR STATUS OF BREAST TUMOUR BIOPSIES IN MALAYSIAN PATIENTS SHAHARUDDIN AZIZ SUMMARY This communication describes the quantitative and qualitative

More information

STUDIES ON CHOLINESTERASE*

STUDIES ON CHOLINESTERASE* STUDIES ON CHOLINESTERASE* III. PURIFICATION OF THE ENZYME FROM ELECTRIC TISSUE BY FRACTIONAL AMMONIUM SULFATE PRECIPITATION BY MORTIMER A. ROTHENBERG AND DAVID NACHMANSOHN (From the Departments of Neurology

More information

DELFIA Tb-N1 DTA Chelate & Terbium Standard

DELFIA Tb-N1 DTA Chelate & Terbium Standard AD0029P-1 (en) 1 DELFIA Tb-N1 DTA Chelate & AD0012 Terbium Standard For Research Use Only INTRODUCTION DELFIA Tb-N1 DTA Chelate is optimized for the terbium labeling of proteins and peptides for use in

More information

Problem-solving Test: The Mechanism of Protein Synthesis

Problem-solving Test: The Mechanism of Protein Synthesis Q 2009 by The International Union of Biochemistry and Molecular Biology BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION Vol. 37, No. 1, pp. 58 62, 2009 Problem-based Learning Problem-solving Test: The Mechanism

More information

Isolation of Cytochrome C from Beef Heart BCHM 3100K-02

Isolation of Cytochrome C from Beef Heart BCHM 3100K-02 Isolation of Cytochrome C from Beef Heart BCHM 3100K-02 John T. Johnson April 15, 2013 Dates Performed: Partner: Instructor: 01-Mar-2013 08-Mar-2013 22-Mar-2013 29-Mar-2013 05-Apr-2013 Anthony Ferrante

More information

CORESTA Recommended Method No. 84

CORESTA Recommended Method No. 84 Cooperation Centre for Scientific Research Relative to Tobacco E-Vapour Sub-Group CORESTA Recommended Method No. 84 DETERMINATION OF GLYCERIN, PROPYLENE GLYCOL, WATER, AND NICOTINE IN THE AEROSOL OF E-CIGARETTES

More information

INCREASE IN ACCUMULATION OF L-DOPA (3,4-DIHYDROXY PHENYLALANINE) IN BRAIN SLICES BY ALCOHOL

INCREASE IN ACCUMULATION OF L-DOPA (3,4-DIHYDROXY PHENYLALANINE) IN BRAIN SLICES BY ALCOHOL INCREASE IN ACCUMULATION OF L-DOPA (3,4-DIHYDROXY PHENYLALANINE) IN BRAIN SLICES BY ALCOHOL KENICHI KANIIKE* AND HIROSHI YOSHIDA Department of Pharmacology, Faculty of Medicine, Osaka University, Osaka

More information

For the quantitative measurement of ATP Synthase Specific activity in samples from Human, Rat and Cow

For the quantitative measurement of ATP Synthase Specific activity in samples from Human, Rat and Cow ab109716 ATP Synthase Specific Activity Microplate Assay Kit Instructions for Use For the quantitative measurement of ATP Synthase Specific activity in samples from Human, Rat and Cow This product is for

More information

MRP2 TR ATPase Assay Protocol CAT. NO. SBAT03

MRP2 TR ATPase Assay Protocol CAT. NO. SBAT03 MRP2 TR ATPase CAT. NO. SBAT03 Page 1 of 18 Determination of the interaction of drugs with the human MRP2 (ABCC2) transporter using the ATPase Assay For the following membrane products: SB-MRP2-Sf9-ATPase

More information

SensoLyte Rh110 Cathepsin K Assay Kit *Fluorimetric* Revision#1.2 Last Updated: May 2017 Catalog # Kit Size

SensoLyte Rh110 Cathepsin K Assay Kit *Fluorimetric* Revision#1.2 Last Updated: May 2017 Catalog # Kit Size SensoLyte Rh110 Cathepsin K Assay Kit *Fluorimetric* Revision#1.2 Last Updated: May 2017 Catalog # 72152 Kit Size 100 Assays (96-well plate) Optimized Performance: This kit detects Cathepsin K activity.

More information

Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

Total Histone H3 Acetylation Detection Fast Kit (Colorimetric) Total Histone H3 Acetylation Detection Fast Kit (Colorimetric) Catalog Number KA1538 48 assays Version: 02 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use...

More information

PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS

PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS TMM,5-2011 PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS Ice-cold means cooled in ice water. In order to prevent proteolysis, make sure to perform all steps on ice. Pre-cool glass homogenizers, buffers

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Methylerythritol Cyclodiphosphate (MEcPP) in Deoxyxylulose Phosphate Pathway: Synthesis from an Epoxide and Mechanisms Youli Xiao, a Rodney L. Nyland II, b Caren L. Freel Meyers

More information

Strychnine Binding Associated with Glycine Receptors of the Central

Strychnine Binding Associated with Glycine Receptors of the Central Proc. Nat. Acad. Sci. USA Vol. 70, No. 10, pp. 2832-2836, October 1973 Strychnine Binding Associated with Glycine Receptors of the Central Nervous System ANNE B. YOUNG AND SOLOMON H. SNYDER* Departments

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis

Biology 2180 Laboratory #3. Enzyme Kinetics and Quantitative Analysis Biology 2180 Laboratory #3 Name Introduction Enzyme Kinetics and Quantitative Analysis Catalysts are agents that speed up chemical processes and the catalysts produced by living cells are called enzymes.

More information

On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts

On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts Bengt Borgstriim Department of Physiological Chemistry, University of Lupd, Lund, Sweden Abbmriations:

More information

Acetyl CoA Carboxylase: The Purified Transcarboxylase Component

Acetyl CoA Carboxylase: The Purified Transcarboxylase Component Proc. Nat. Acad. Sci. USA Vol. 68, No. 6, pp. 12591263, June 1971 Acetyl CoA Carboxylase: The Purified Transcarboxylase Component (acyl CoA binding/carboxylation/exchange reactions/biotin) ALFRED W. ALBERTS,

More information

Interaction of lanthanum chloride with human erythrocyte membrane in relation to acetylcholinesterase activity

Interaction of lanthanum chloride with human erythrocyte membrane in relation to acetylcholinesterase activity J. Biosci., Vol. 13, Number 2, June 1988, pp. 123 128. Printed in India. Interaction of lanthanum chloride with human erythrocyte membrane in relation to acetylcholinesterase activity SUNIL MUKHOPADHYAY,

More information

Chromatin IP (Isw2) Fix soln: 11% formaldehyde, 0.1 M NaCl, 1 mm EDTA, 50 mm Hepes-KOH ph 7.6. Freshly prepared. Do not store in glass bottles.

Chromatin IP (Isw2) Fix soln: 11% formaldehyde, 0.1 M NaCl, 1 mm EDTA, 50 mm Hepes-KOH ph 7.6. Freshly prepared. Do not store in glass bottles. Chromatin IP (Isw2) 7/01 Toshi last update: 06/15 Reagents Fix soln: 11% formaldehyde, 0.1 M NaCl, 1 mm EDTA, 50 mm Hepes-KOH ph 7.6. Freshly prepared. Do not store in glass bottles. 2.5 M glycine. TBS:

More information

EPIGENTEK. EpiQuik Global Acetyl Histone H3K27 Quantification Kit (Colorimetric) Base Catalog # P-4059 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

EPIGENTEK. EpiQuik Global Acetyl Histone H3K27 Quantification Kit (Colorimetric) Base Catalog # P-4059 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE EpiQuik Global Acetyl Histone H3K27 Quantification Kit (Colorimetric) Base Catalog # P-4059 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE The EpiQuik Global Acetyl Histone H3K27 Quantification Kit (Colorimetric)

More information

ab Complex II Enzyme Activity Microplate Assay Kit

ab Complex II Enzyme Activity Microplate Assay Kit ab109908 Complex II Enzyme Activity Microplate Assay Kit Instructions for Use For the quantitative measurement of Complex II activity in samples from Human, Rat, Mouse and Cow This product is for research

More information

Ubiquitin-aldehyde: A general inhibitor of ubiquitinrecycling

Ubiquitin-aldehyde: A general inhibitor of ubiquitinrecycling Proc. Nati. Acad. Sci. USA Vol. 84, pp. 1829-1833, April 1987 Biochemistry Ubiquitin-aldehyde: A general inhibitor of ubiquitinrecycling processes (protein breakdown/isopeptidase/c-terminal hydrolase)

More information

Lipid Peroxidation Assay

Lipid Peroxidation Assay Package Insert Lipid Peroxidation Assay 96 Wells For Research Use Only v. 1.0 Eagle Biosciences, Inc. 82 Broad Street, Suite 383, Boston, MA 02110 Phone: 866-419-2019 Fax: 617-419-1110 INTRODUCTION Lipid

More information

The Third Department of Internal Medicine, University of Tokyo Faculty of Medicine, Hongo, Tokyo 113

The Third Department of Internal Medicine, University of Tokyo Faculty of Medicine, Hongo, Tokyo 113 Endocrinol. Japon. 1974, 21 (2), 115 ` 119 A Radioimmunoassay for Serum Dehydroepiandrosterone HISAHIKO SEKIHARA, TOHRU YAMAJI, NAKAAKI OHSAWA AND HIROSHI IBAYASHI * The Third Department of Internal Medicine,

More information

Mitochondrial DNA Isolation Kit

Mitochondrial DNA Isolation Kit Mitochondrial DNA Isolation Kit Catalog Number KA0895 50 assays Version: 01 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

(Adams 8c Purves 1958), or LATS-protector (LATS-P) (Adams 8c Kennedy. 1967). The failure of the McKenzie (1958) mouse bioassay to detect LATS in

(Adams 8c Purves 1958), or LATS-protector (LATS-P) (Adams 8c Kennedy. 1967). The failure of the McKenzie (1958) mouse bioassay to detect LATS in Department of Endocrinology, Royal Prince Alfred Hospital, and Department of Medicine, University of Sydney, Sydney, Australia THE THYROTROPHIN RECEPTOR IN HUMAN THYROID PLASMA MEMBRANES: EFFECT OF SERUM

More information

User s Manual and Instructions

User s Manual and Instructions User s Manual and Instructions Mitochondria Activity Assay (Cytochrome C Oxidase Activity Assay) Kit Catalog Number: KC310100 Introduction Mitochondria are the eukaryotic subcellular organelles that contain

More information

Midi Plant Genomic DNA Purification Kit

Midi Plant Genomic DNA Purification Kit Midi Plant Genomic DNA Purification Kit Cat #:DP022MD/ DP022MD-50 Size:10/50 reactions Store at RT For research use only 1 Description: The Midi Plant Genomic DNA Purification Kit provides a rapid, simple

More information

DELFIA Eu-DTPA ITC Chelate & Europium Standard

DELFIA Eu-DTPA ITC Chelate & Europium Standard AD0026P-3 (en) 1 DELFIA Eu-DTPA ITC Chelate & AD0021 Europium Standard For Research Use Only INTRODUCTION DELFIA Eu-DTPA ITC Chelate is optimized for the europium labelling of proteins and peptides for

More information

SensoLyte 520 Cathepsin K Assay Kit *Fluorimetric*

SensoLyte 520 Cathepsin K Assay Kit *Fluorimetric* SensoLyte 520 Cathepsin K Assay Kit *Fluorimetric* Catalog # 72171 Kit Size 100 Assays (96-well plate) Optimized Performance: This kit is optimized to detect Cathepsin K activity. Enhanced Value: Ample

More information

Synopsis. Received March 2, adrenaline. Mosinger and Kujalova (1964) reported that adrenaline-induced lipolysis

Synopsis. Received March 2, adrenaline. Mosinger and Kujalova (1964) reported that adrenaline-induced lipolysis Studies on Reduction of Lipolysis in Adipose Tissue on Freezing and Thawing YASUSHI SAITO1, NoBUO MATSUOKA1, AKIRA KUMAGAI1, HIROMICHI OKUDA2, AND SETSURO FUJII3 Chiba University, Chiba 280, Japan, 2Department

More information

AMPK Assay. Require: Sigma (1L, $18.30) A4206 Aluminum foil

AMPK Assay. Require: Sigma (1L, $18.30) A4206 Aluminum foil AMPK Assay Require: Acetone Sigma (1L, $18.30) A4206 Aluminum foil Ammonium sulfate Fisher BP212R-1 AMP Sigma A1752 ATP Sigma A6144 (alt. use A7699) Beta-mercaptoethanol Sigma M6250 (alt. use M7154) Bio-Rad

More information

Tivadar Orban, Beata Jastrzebska, Sayan Gupta, Benlian Wang, Masaru Miyagi, Mark R. Chance, and Krzysztof Palczewski

Tivadar Orban, Beata Jastrzebska, Sayan Gupta, Benlian Wang, Masaru Miyagi, Mark R. Chance, and Krzysztof Palczewski Structure, Volume Supplemental Information Conformational Dynamics of Activation for the Pentameric Complex of Dimeric G Protein-Coupled Receptor and Heterotrimeric G Protein Tivadar Orban, Beata Jastrzebska,

More information

LANCE Eu-W1024 ITC Chelate & Europium Standard AD0013 Development grade

LANCE Eu-W1024 ITC Chelate & Europium Standard AD0013 Development grade AD0017P-4 (en) 1 LANCE Eu-W1024 ITC Chelate & Europium Standard AD0013 Development grade INTRODUCTION Fluorescent isothiocyanato-activated (ITC-activated) Eu-W1024 chelate is optimized for labelling proteins

More information

FEBS 1138 January Paul R. Buckland and Bernard Rees Smith

FEBS 1138 January Paul R. Buckland and Bernard Rees Smith Volume 166, number 1 FEBS 1138 January 1984 A structural comparison receptors by of guinea pig thyroid and fat TSH photoaffinity labelling Paul R. Buckland and Bernard Rees Smith Endocrine Immunology Unit,

More information

ratmdr1b PE ATPase Kit Assay Protocol jav CAT. NO. SBPE06

ratmdr1b PE ATPase Kit Assay Protocol jav CAT. NO. SBPE06 ratmdr1b PE ATPase Kit Assay Protocol jav CAT. NO. SBPE06 Page 1 of 20 Determination of the interaction of drugs with the human ratmdr1b transporter using the PREDEASY TM ATPase Kit For the following membrane

More information

Serrata) Alkaline Phosphatase

Serrata) Alkaline Phosphatase Vol. 41, No. 5, April 1997 BIOCHEMISTRY and MOLECULAR BIOLOGY INTERNATIONAL Pages 951-959 An Essential Tryptophan Residue of Green Crab (Syclla Serrata) Alkaline Phosphatase Wen-Zhu Zheng 1, Qing-Xi Chen

More information

DELFIA Tb-DTPA ITC Chelate & Terbium Standard

DELFIA Tb-DTPA ITC Chelate & Terbium Standard AD0035P-2 (en) 1 DELFIA Tb-DTPA ITC Chelate & AD0029 Terbium Standard For Research Use Only INTRODUCTION DELFIA Tb-DTPA ITC Chelate is optimized for the terbium labelling of proteins and peptides for use

More information

FURTHER OBSERVATION ON THE LACK OF ACTIVE UPTAKE SYSTEM FOR SUBSTANCE P IN THE CENTRAL NERVOUS SYSTEM

FURTHER OBSERVATION ON THE LACK OF ACTIVE UPTAKE SYSTEM FOR SUBSTANCE P IN THE CENTRAL NERVOUS SYSTEM FURTHER OBSERVATION ON THE LACK OF ACTIVE UPTAKE SYSTEM FOR SUBSTANCE P IN THE CENTRAL NERVOUS SYSTEM Tomio SEGAWA, Yoshihiro NAKATA, Haruaki YAJIMA* and Kouki KITAGAWA* Department of Pharmacology, Institute

More information

Caspase-3 Assay Cat. No. 8228, 100 tests. Introduction

Caspase-3 Assay Cat. No. 8228, 100 tests. Introduction Introduction Caspase-3 Assay Cat. No. 8228, 100 tests Caspase-3 is a member of caspases that plays a key role in mediating apoptosis, or programmed cell death. Upon activation, it cleaves a variety of

More information

ab Lipid Peroxidation (MDA) Assay kit (Colorimetric/ Fluorometric)

ab Lipid Peroxidation (MDA) Assay kit (Colorimetric/ Fluorometric) Version 10b Last updated 19 December 2018 ab118970 Lipid Peroxidation (MDA) Assay kit (Colorimetric/ Fluorometric) For the measurement of Lipid Peroxidation in plasma, cell culture and tissue extracts.

More information

Data File. Sephadex ion exchange media. Ion exchange chromatography. Introduction. Sephadex ion exchangers General description

Data File. Sephadex ion exchange media. Ion exchange chromatography. Introduction. Sephadex ion exchangers General description A m e r s h a m B i o s c i e n c e s Sephadex ion exchange media Data File Ion exchange chromatography Based on well documented and well proven Sephadex base matrix Simple and economical to use Very high

More information

THE RESPONSE OF THE NEURONAL MEMBRANE TO ACETALDEHYDE TREATMENT

THE RESPONSE OF THE NEURONAL MEMBRANE TO ACETALDEHYDE TREATMENT CELLULAR & MOLECULAR BIOLOGY LETTERS Volume 6, (2001) pp 265 Ł 269 Received 13 May 2001 Accepted 28 May 2001 Short Communication THE RESPONSE OF THE NEURONAL MEMBRANE TO ACETALDEHYDE TREATMENT ANTON LIOPO

More information

TECHNICAL BULLETIN. Sialic Acid Quantitation Kit. Catalog Number SIALICQ Storage Temperature 2 8 C

TECHNICAL BULLETIN. Sialic Acid Quantitation Kit. Catalog Number SIALICQ Storage Temperature 2 8 C Sialic Acid Quantitation Kit Catalog Number SIALICQ Storage Temperature 2 8 C TECHNICAL BULLETIN Product Description The Sialic Acid Quantitation Kit provides a rapid and accurate determination of total

More information

Total Phosphatidic Acid Assay Kit

Total Phosphatidic Acid Assay Kit Product Manual Total Phosphatidic Acid Assay Kit Catalog Number MET- 5019 100 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Phosphatidic Acid (PA) is a critical precursor

More information

Caution: For Laboratory Use. A product for research purposes only. Eu-W1024 ITC Chelate & Europium Standard. Product Number: AD0013

Caution: For Laboratory Use. A product for research purposes only. Eu-W1024 ITC Chelate & Europium Standard. Product Number: AD0013 TECHNICAL DATA SHEET Lance Caution: For Laboratory Use. A product for research purposes only. Eu-W1024 ITC Chelate & Europium Standard Product Number: AD0013 INTRODUCTION: Fluorescent isothiocyanato-activated

More information

Some Currently Neglected Aspects of Cholinergic Function

Some Currently Neglected Aspects of Cholinergic Function DOI 10.1007/s12031-009-9247-y Some Currently Neglected Aspects of Cholinergic Function Victor P. Whittaker Received: 6 July 2009 /Accepted: 20 July 2009 # The Author(s) 2009. This article is published

More information

ratmdr1b NMQ Ves Tr Assay Protocol CAT. NO. SBVT11

ratmdr1b NMQ Ves Tr Assay Protocol CAT. NO. SBVT11 ratmdr1b NMQ Ves Tr CAT. NO. SBVT11 Page 1 of 10 Determination of the interaction of drugs with the rat Mdr1b transporter using the 3H-NMQ vesicular transport assay (for 96 well filterplates) For the following

More information

ASSAY OF SPHINGOMYELINASE ACTIVITY

ASSAY OF SPHINGOMYELINASE ACTIVITY ASSAY OF SPHINGOMYELINASE ACTIVITY Protocol for Protein Extraction Stock Solution 1. Leupeptin/hydrochloride (FW 463.0,

More information