CMB621: Cytoskeleton. Also known as How the cell plays with LEGOs to ensure order, not chaos, is temporally and spatially achieved

Size: px
Start display at page:

Download "CMB621: Cytoskeleton. Also known as How the cell plays with LEGOs to ensure order, not chaos, is temporally and spatially achieved"

Transcription

1 CMB621: Cytoskeleton Also known as How the cell plays with LEGOs to ensure order, not chaos, is temporally and spatially achieved

2 Lecture(s) Overview Lecture 1: What is the cytoskeleton? Membrane interaction and general biological functions of cytoskeleton Lecture 1: Cytoskeletal protein biochemistry and polymer formation Actin, Tubulin and Intermediate filaments Lecture 1: Regulation of polymerization Lecture 2: Actin and Contraction Lecture 2: Motility and Cell Symmetry

3 Lecture Goals What is the cytoskeleton role in cells? What are the proteins that make up the cytoskeleton system? How are these proteins regulated to act in the cell? Think about how your own area of interest may be involved with the cytoskeleton Make the next step from Student to PI

4 Cytoskeleton Function Cells have many factors that need to be controlled The cell is not static during this time! Resist deformation Transport Cargo Change shape during movement or division Three major functions within the cell Organize content Connect the cell to its environment Generate forces for movement

5 Why is this Important? All cells are not created equal Cells utilize proteins, specifically the cytoskeleton, to create morphological structures What does this do to the membrane? Create of unique domains within the cell

6 Cell Migration Homeostasis shape Chemical induction Alters receptor organization Morphological changes

7 Cell Migration

8 What do we define as the Cytoskeleton? Three protein structures are what classically define the cytoskeleton Actin Filaments = microfilaments; play a role in membrane dynamics and muscle contraction

9 What do we define as the Cytoskeleton? Three protein structures are what classically define the cytoskeleton Actin Filaments = microfilaments; play a role in membrane dynamics and muscle contraction Microtubules; vesicular trafficking, cell movement, and mitotic spindle

10 What do we define as the Cytoskeleton? Three protein structures are what classically define the cytoskeleton Actin Filaments = microfilaments; play a role in membrane dynamics and muscle contraction Microtubules; vesicular trafficking, cell movement, and mitotic spindle Intermediate filaments; maintenance of cell shape and tension

11

12 Actin Protein Compact, 42 kda ATPase Abundant in cells High affinity Mg/Ca binding site and an ATP binding site Minimal conformational differences G-actin/F-actin have different ATPase rates Hydrophobic plus end mediates protein-protein contact Hydrophobic cleft

13 Actin Filaments

14

15 Cell Polarity

16 Cell Function Normal cell movement

17 Cell Function Normal cell movement Cell division: Actin polymerization Mitotic spindle

18 Cell Function Normal cell movement Cell division: Actin polymerization Mitotic spindle Cell division: Microtubules separate chromosomes Actin/myosin driven split

19 Cell Function Normal cell movement Cell division: Actin polymerization Mitotic spindle Cell division: Microtubules separate chromosomes Actin/myosin driven split Normal cell movement

20 Morphology When considering the cytoskeleton one should always think dynamic Cytoskeleton is required for stable morphology; yet the structures undergo subunit exchange

21 F-Actin formation (-) End (+) End Growth on the (+) end with ATP-Actin is ~ 10x faster than the (-) end

22 F-Actin formation (-) End (+) End Growth on the (+) end with ATP-Actin is ~ 10x faster than the (-) end Dissociation rate is about the same at both ends, however, this all depends on the concentration of actin monomers

23 F-Actin formation The actin pool is made up of monomers, soluble oligomers, and F-actin Equilibrium concentration is defined as the critical concentration (C c ); measure of actin polymerization

24 F-Actin formation! " = $ %&& $ %' = ( ) The actin pool is made up of monomers, soluble oligomers, and F-actin Equilibrium concentration is defined as the critical concentration (C c ); measure of actin polymerization When above the C C actin will form F-actin, however, at below all F- actin will dissemble

25 Polymerization of actin is unfavorable and slow; only becoming rapid after a nucleation site is created. Follows Mechalis-Menton kinetics and is driven by concentration and time Polymerization can be accelerated by the interaction of nucleation factors or by seeding a solution of monomers with nucleated actin.

26 Treadmilling

27 Why could this be essential?

28 Rapid Dynamic Changes

29 Localization of Nucleation Factors

30 Dendritic Nucleation Model

31 MF involvement in Cells Actin forms MF which are highly involved in cells How?

32 MF involvement in Cells Actin forms MF which are highly involved in cells How? Actin forms two types: bundles and weblike Formation depends on ABP

33 MF Structures Actin forms two types: bundles and weblike Formation depends on ABP Bundle proteins crosslink actin Gel proteins hold actin filaments at a large angle

34 Actin Binding Proteins Nucleation Actin polymerization is mediated by ABPs Initiate polymerization of new MFs Sequestering Bind to ATP/ADP-G-actin to keep them in a holding pattern Severing Sever F-actin, which result in shorter fragments, as well as generating new fragments for nucleation Crosslinkers Create networks, bundle or meshwork can dictate cytoplasmic environment Anchors Anchor MF to other parts

35

36 Actin Nucleation Factors Actin-related proteins (Arps) Arp complex cap (-) end for nucleation and binds to F-actin at an angle nucleate branch network near PM...generating lamellipodia

37 Actin Nucleation Factors Formins Single polypeptide chain with multiple domains Dimeric protein that can bind 2 actin monomers Initiates unbranched polymerization at the (+) end Recruited to the PM after activation by Rho GTPase

38 Actin Nucleation Factors Formins Single polypeptide chain with multiple domains Dimeric protein that can bind 2 actin monomers Initiates unbranched polymerization at the (+) end Recruited to the PM after activation by Rho GTPase Seems to have other actin related properties

39 Sequestering Proteins Thymosin Regulates F assembly at (+) end by sequestering G-actin-ATP Abundant; preventing interaction of G- to F- actin; binding dependent on ph, Ca or PIP2 Profilin G-actin nucleotide exchange factor; Actin- ADP exchanged to ATP; supplying G-actin- ATP Promotes rapid F-actin assembly by directing bound G-actin to the (+) end

40

41

42

43 Microtubules Formed by the protein tubulin (α, β, and ϒ) Typically forms a non-covalent heterodimer of α- and β-tubulin Each tubulin has a single GTP binding site GTP bound at the α/β interface is does not turn over

44 Microtubules

45 Dynamic Instability At this concentration it is possible to have T form growth (+ end) and D form shrink (- end) Growth could change if the T converts to a D even with a constant concentration of G-actin Recover of the filament may occur at some point Both MF and MT display dynamic instability

46 Microtubule Assembly

47 MTOC and Centrosomes Microtubules nucleate from a specific location called the microtubule-organizing center (MTOC) (-) End (+) End ϒ-tubulin serves to nucleate at the MTOC in a ring formation Cells have a defined MTOC called the centrosome Cytoplasmic microtubules emanate from this point Centrosome matrix that houses the centrioles and is composed of ϒ-TuRC

48 MTOC and Centrosomes Microtubules nucleate from a specific location called the microtubule-organizing center (MTOC) (-) End (+) End ϒ-tubulin serves to nucleate at the MTOC in a ring formation Cells have a defined MTOC called the centrosome Cytoplasmic microtubules emanate from this point Centrosome matrix that houses the centrioles and is composed of ϒ-TuRC

49 MTOC: Centrioles Cylindrical structures arraigned at right angles Become basal bodies of cilia and flagella in motile cells Composed of nine sets of triplet microtubule units that organize the centrosome matrix

50

51 Association is regulated by phosphorylation Microtubule associated proteins (MAPs) MAPs stabilize microtubule bundles and mediate MT interactions Prominent in neurons; stabilize MT form the core of the axons and dendrites Have one domain bound to the MT and another projecting outwards MAP2 keep MT widely spaced; tau holds MT closely packed

52 MT capture and catastrophe factors (-) is stabilized by the centrosome, (+) end explore and probe the entire cell space Plus-end tracking proteins (+TIPs) accumulate at the active ends Modulate the growth and shrinkage of MT ends as well as positioning

53 MT capture and catastrophe factors

54 Neurodegenerative tauopathies Small, 352 to 441 amino acid, protein abundantly expressed in neurons Binds and stabilizes MT and promotes MT polymerization 79 potential phosphorylation sites; 30 of which have been shown to be functional Hyperphosphorylation leads to filamentous neuronal tau inclusions

55 Neurofibrillary Tangles

56 Intermediate Filaments Elongated polypeptides with central α-helical domain that form coiled-coli with other monomers. Parallel dimers associate to form a staggered tetramer Unusual family of cytoskeleton proteins: Large diversity in individual proteins (~ 60 genes) Non-polar; unable to bind nucleotides; regulated by phosphorylation Function to provide mechanical strength and providing protein-membrane anchoring sites

57 Intermediate Filaments Elongated polypeptides with central α-helical domain that form coiledcoli with other monomers. Parallel dimers associate to form a staggered tetramer Unusual family of cytoskeleton proteins: Large diversity in individual proteins (~ 60 genes) Non-polar; unable to bind nucleotides; regulated by phosphorylation Function to provide mechanical strength and providing proteinmembrane anchoring sites

58 Types of Intermediate Filaments

59 Most diverse IF family: 20 found in human epithelial cells Keratins Made up of an equal mixture of type I (acidic) and type II (neutral/basic) Disulfide bonds allow for formation of tough coverings for animals Epithelial cells produce multiple types of kertains to form a complex network

60 Cell Junctions

61 Epidermolysis Bullosa Simplex (EBS) Mutations in IF are associated with weaken cells Mutation in Keratins, typically K5 and K12, found in basal keratinocytes Severity depends on the location of mutation

62 IF: Neurofilaments

63 Regulation of the Cytoskeleton Each protein component is highly dynamic in cells Length, stability, number, geometry, etc Control is granted via protein-protein contact How can a cell regulated this interaction? Direct covalent modifications; accessory proteins!

Molecular Cell Biology - Problem Drill 20: Cytoskeleton and Cellular Mobility

Molecular Cell Biology - Problem Drill 20: Cytoskeleton and Cellular Mobility Molecular Cell Biology - Problem Drill 20: Cytoskeleton and Cellular Mobility Question No. 1 of 10 1. Which of the following statements about cytoskeletal filaments is correct? Question #1 (A) The Cytoskeleton

More information

Actin structure. Actin a highly conserved gene. Molecular Cell Biology

Actin structure. Actin a highly conserved gene. Molecular Cell Biology Harvey Lodish Arnold Berk Paul Matsudaira Chris A. Kaiser Monty Krieger Matthew P. Scott Lawrence Zipursky James Darnell Molecular Cell Biology Fifth Edition Chapter 19: Cytoskeleton I: Microfilaments

More information

MCB Topic 19 Regulation of Actin Assembly- Prof. David Rivier

MCB Topic 19 Regulation of Actin Assembly- Prof. David Rivier MCB 252 -Topic 19 Regulation of Actin Assembly- Prof. David Rivier MCB 252 Spring 2017 MCB 252 Cell Biology Topic 19 Regulation of Actin Assembly Reading: Lodish 17.2-17.3, 17.7 MCB 252 Actin Cytoskeleton

More information

Microtubule Forces Kevin Slep

Microtubule Forces Kevin Slep Microtubule Forces Kevin Slep Microtubules are a Dynamic Scaffold Microtubules in red, XMA215 family MT polymerase protein in green Some Microtubule Functions Cell Structure Polarized Motor Track (kinesins

More information

The cytoskeleton and cell movement. (Actin microfilaments)

The cytoskeleton and cell movement. (Actin microfilaments) The cytoskeleton and cell movement (Actin microfilaments) What is the cytoskeleton? A dynamic network of protein filaments extending throughout the cytoplasm Three types: microfilaments (actin), microtubules

More information

Cell Cycle, Mitosis, and Microtubules. LS1A Final Exam Review Friday 1/12/07. Processes occurring during cell cycle

Cell Cycle, Mitosis, and Microtubules. LS1A Final Exam Review Friday 1/12/07. Processes occurring during cell cycle Cell Cycle, Mitosis, and Microtubules LS1A Final Exam Review Friday 1/12/07 Processes occurring during cell cycle Replicate chromosomes Segregate chromosomes Cell divides Cell grows Cell Growth 1 The standard

More information

Mitosis vs. microtubule

Mitosis vs. microtubule Mitosis vs. microtubule Anaphase-promoting complex/cyclosome (APC/C) Duplicated centrosomes align and begin separating in prophase Relation of centrosome duplication to the cell cycle. Parent centrioles

More information

cell movement and neuronal migration

cell movement and neuronal migration cell movement and neuronal migration Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 Cell migration Cell migration in 3 steps; protrusion,

More information

The Motile Machinery and Cytoskeleton of the Cell

The Motile Machinery and Cytoskeleton of the Cell The Motile Machinery and Cytoskeleton of the Cell Professor Alfred Cuschieri Department of Anatomy, University of Malta Objectives By the end of this session the student should be able to: Distinguish

More information

Cytoskeleton and cell communication

Cytoskeleton and cell communication Cytoskeleton and cell communication Actin monomer has subdomains 1-4. A simplified cartoon is at right. ATP binds, along with Mg ++, within a deep cleft between subdomains 2 & 4. G-actin (globular actin),

More information

Subcellular biochemistry

Subcellular biochemistry Department of Medical Biochemistry Semmelweis University Subcellular biochemistry February-March 2017 Subcellular biochemistry (biochemical aspects of cell biology) Miklós Csala Semmelweis University Dept.

More information

PCB 3023 Exam 4 - Form A First and Last Name

PCB 3023 Exam 4 - Form A First and Last Name PCB 3023 Exam 4 - Form A First and Last Name Student ID # (U Number) A Before beginning this exam, please complete the following instructions: 1) Write your name and U number on the first page of this

More information

Figure 5.7 Eukaryotic Cells (Part 1)

Figure 5.7 Eukaryotic Cells (Part 1) Cytoskeleton Figure 5.7 Eukaryotic Cells (Part 1) Figure 5.7 Eukaryotic Cells (Part 4) 5.3 Eukaryotic Cells Contain Organelles Cytoskeleton: Supports and maintains cell shape Holds organelles in position

More information

Centrosome & Centrioles,It s Structure,Function!!

Centrosome & Centrioles,It s Structure,Function!! Centrosome & Centrioles,It s Structure,Function!! CENTROSOME In cell biology, the centrosome (Latin centrum center and Greek soma body ) is an organelle that serves as the main microtubule organizing center

More information

Fig Intermediate Filaments

Fig Intermediate Filaments Fig 16-20 Intermediate Filaments Overview: Intermediate filaments are easily bent and stretched but highly resistant to breaking. They provide mechanical strength to cells. Unlike actin filaments and microtubules,

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 18 Cell Organization and Movement II: Microtubules and Intermediate Filaments Copyright 2013

More information

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

CELL II. SUPPLEMENTARY MATERIAL CYTOSKELETON

CELL II. SUPPLEMENTARY MATERIAL CYTOSKELETON CELL II. SUPPLEMENTARY MATERIAL Basic requirements: Chapter 4 The working units of life (page: 68-94), parts dealing with cytoskeleton and the extracellular matrix Chapter 9 Chromosome, the cell cycle

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001

BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001 BIOL 4374/BCHS 4313 Cell Biology Exam #2 March 22, 2001 SS# Name This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses. Good luck! 1. (2) In the

More information

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION BIOLOGY 103 Spring 2001 MIDTERM NAME KEY LAB SECTION ID# (last four digits of SS#) STUDENT PLEASE READ. Do not put yourself at a disadvantage by revealing the content of this exam to your classmates. Your

More information

Neuronal plasma membrane

Neuronal plasma membrane ORGANELLES ORGANELLES Neuronal plasma membrane The neuronal plasma membrane contains several local domains with unique properties Presynaptic terminal Endoplasmic Reticulum In neurons the Nissl bodies

More information

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number

More information

Neuronal plasma membrane

Neuronal plasma membrane ORGANELLES ORGANELLES Neuronal plasma membrane The neuronal plasma membrane contains several local domains with unique properties Presynaptic terminal Endoplasmic Reticulum In neurons the Nissl bodies

More information

Organelles of the Cell & How They Work Together. Packet #7

Organelles of the Cell & How They Work Together. Packet #7 Organelles of the Cell & How They Work Together Packet #7 Introduction Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging from 1 1000 cubic

More information

Lecture 13 - Intermediate filaments

Lecture 13 - Intermediate filaments 02.12.10 Lecture 13 - Intermediate filaments Intermediate filaments Present in nearly all animals, but absent from plants and fungi Rope-like network of filaments in the cell Principle function is maintenance

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! Chapter 3 Part 2! Pages 65 89 (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! The Cell Theory! Living organisms are composed of one or more cells.!

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

Name: Per/row: Cell Structure and Function Practice: Use Ch 4 in Mader Biology

Name: Per/row: Cell Structure and Function Practice: Use Ch 4 in Mader Biology Cell Structure and Function Practice: Use Ch 4 in Mader Biology Name: Per/row: 1. Write the name of the cell part in the box next to its description/function. Cell membrane Centrioles Chloroplast Chromatin

More information

Renáta Schipp Gergely Berta Department of Medical Biology

Renáta Schipp Gergely Berta Department of Medical Biology The cell III. Renáta Schipp Gergely Berta Department of Medical Biology Size and Biology Biology is a visually rich subject many of the biological events and structures are smaller than the unaided human

More information

Organelles of the Cell & How They Work Together. Packet #5

Organelles of the Cell & How They Work Together. Packet #5 Organelles of the Cell & How They Work Together Packet #5 Developed by Mr. Barrow 2018 1 Introduction Organization of cells is basically similar in all cells. Additionally, most cells are tiny Ranging

More information

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name:

Molecular Cell Biology 5068 In Class Exam 1 September 29, Please print your name: Molecular Cell Biology 5068 In Class Exam 1 September 29, 2015 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your

More information

BIO 5099: Molecular Biology for Computer Scientists (et al)

BIO 5099: Molecular Biology for Computer Scientists (et al) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life Slide 1 Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan

More information

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is continuous v Small cell size is becoming more necessary as

More information

The Cytoplasm Li Shulei Department of Histology & Embryology

The Cytoplasm Li Shulei Department of Histology & Embryology The Cytoplasm Li Shulei lishulei@tom.com Department of Histology & Embryology Cell components Cytoplasm Plasma membrane Organelles Cytoplasmic deposits Cytoskeleton Cytosol ( Matrix ) Nucleus Plasma membrane

More information

Top 10 Contributions on Biomedical Sciences: 2nd Edition. St Vincent s Hospital, The University of Melbourne, Australia 2

Top 10 Contributions on Biomedical Sciences: 2nd Edition. St Vincent s Hospital, The University of Melbourne, Australia 2 Chapter 06 Cancer Progression: The Impact of Cytoskeletal Molecules Sam L Francis 1 and Juliana Antonipillai 2 * 1 St Vincent s Hospital, The University of Melbourne, Australia 2 School of Health and Biomedical

More information

BIOCHEMISTRY OF SKIN AND CONNECTIVE TISSUES

BIOCHEMISTRY OF SKIN AND CONNECTIVE TISSUES BIOCHEMISTRY OF SKIN AND CONNECTIVE TISSUES Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI 1 2 SKIN Epidermis - horny layer (keratin-filled dead cells) - granular layer - spinous

More information

The further from the nucleus, the higher the electron s energy Valence shell electrons participate in biological reactions

The further from the nucleus, the higher the electron s energy Valence shell electrons participate in biological reactions Chemistry of Life Revision: The further from the nucleus, the higher the electron s energy Valence shell electrons participate in biological reactions Atoms exchange electrons with other elements to form

More information

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued

Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Cell structure of Eukaryotic cells Lecture 6 9/17 Dr. Hirsh Organization of Cells, continued Lots of double-membraned organelles Existence of an Endo-membrane system separation of areas of cell, transport

More information

Organelles in EUKARYOTIC CELLS. Pages 4 5: cell membrane, cytoplasm/cytosol, cytoskeleton, nucleus, chromatin/chromosomes, and centrioles

Organelles in EUKARYOTIC CELLS. Pages 4 5: cell membrane, cytoplasm/cytosol, cytoskeleton, nucleus, chromatin/chromosomes, and centrioles Organelles in EUKARYOTIC CELLS Pages 4 5: cell membrane, cytoplasm/cytosol, cytoskeleton, nucleus, chromatin/chromosomes, and centrioles Use the info on the following slides to complete pages 4 5 in your

More information

Chapter 2 Cell. Zhou Li Prof. Dept. of Histology and Embryology

Chapter 2 Cell. Zhou Li Prof. Dept. of Histology and Embryology Chapter 2 Cell Zhou Li Prof. Dept. of Histology and Embryology The inner life of the cell Ⅰ. Plasma membrane (Plasmalemma) 1.1 The structure Unit membrane: inner layer 3-layered structure outer layer mediat

More information

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc.

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc. Ch. 3 CELLS AND TISSUES Generalized Cell All cells: Human cells have three basic parts: Plasma membrane flexible outer boundary Cytoplasm intracellular fluid containing organelles Nucleus control center

More information

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have: BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Lecture 36: Review of membrane function

Lecture 36: Review of membrane function Chem*3560 Lecture 36: Review of membrane function Membrane: Lipid bilayer with embedded or associated proteins. Bilayers: 40-70% neutral phospholipid 10-20% negative phospholipid 10-30% cholesterol 10-30%

More information

A TOUR OF THE CELL 10/1/2012

A TOUR OF THE CELL 10/1/2012 A TOUR OF THE CELL Chapter 6 KEY CONCEPTS: Eukaryotic cells have internal membranes that compartmentalize their functions The eukaryotic cell s genetic instructions are housed in the nucleus and carried

More information

The Jobs of Cells. Food & water storage. Vacuoles & vesicles. Vacuoles in plants 10/5/2015. plant cells

The Jobs of Cells. Food & water storage. Vacuoles & vesicles. Vacuoles in plants 10/5/2015. plant cells Cells have 3 main jobs make energy need energy for all activities need to clean up waste produced while making energy make proteins proteins do all the work in a cell, so we need lots of them make more

More information

BIOMECHANICS 2 Origins and consequences of forces in biological systems

BIOMECHANICS 2 Origins and consequences of forces in biological systems BIOMECHANICS 2 Origins and consequences of forces in biological systems MOLECULAR MECHANISMS OF BIOLOGICAL MOVEMENT AT THE MOLECULAR LEVEL MOTOR PROTEINS DR. BEÁTA BUGYI - BIOPHYSICS UP MEDICAL SCHOOL

More information

Ch5: Macromolecules. Proteins

Ch5: Macromolecules. Proteins Ch5: Macromolecules Proteins Essential Knowledge 4.A.1 The subcomponents of biological molecules and their sequence determine the properties of that molecule A. Structure and function of polymers are derived

More information

Eukaryotic cell. Premedical IV Biology

Eukaryotic cell. Premedical IV Biology Eukaryotic cell Premedical IV Biology The size range of organisms Light microscopes visible light is passed through the specimen and glass lenses the resolution is limited by the wavelength of the visible

More information

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus Receives (on the cis-side) many of the transport vesicles produced in the rough ER Consists of flattened membranous sacs called cisternae

More information

Anatomy Chapter 2 - Cells

Anatomy Chapter 2 - Cells Cells Cells are the basic living structural, functional unit of the body Cytology is the branch of science that studies cells The human body has 100 trillion cells 200 different cell types with a variety

More information

5/12/2015. Cell Size. Relative Rate of Reaction

5/12/2015. Cell Size. Relative Rate of Reaction Cell Makeup Chapter 4 The Cell: The Fundamental Unit of Life We previously talked about the cell membrane The cytoplasm is everything inside the membrane, except the nucleus Includes Cytosol = liquid portion

More information

Sheet #5 Dr. Mamoun Ahram 8/7/2014

Sheet #5 Dr. Mamoun Ahram 8/7/2014 P a g e 1 Protein Structure Quick revision - Levels of protein structure: primary, secondary, tertiary & quaternary. - Primary structure is the sequence of amino acids residues. It determines the other

More information

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

ORGANELLES OF THE ENDOMEMBRANE SYSTEM Membranes compartmentalize the interior of the cell and facilitate a variety of metabolic activities. Chloroplasts and a rigid cell wall are what distinguish a plant cell from an animal cell. A typical

More information

Cell Motility. Junfeng Ji ( 纪俊峰 ), PhD

Cell Motility.   Junfeng Ji ( 纪俊峰 ), PhD Cell Motility Junfeng Ji ( 纪俊峰 ), PhD Professor Laboratory of Somatic Reprogramming and Stem Cell Aging Center for Stem Cell and Tissue Engineering School of Medicine Zhejiang University Email: jijunfeng@zju.edu.cnedu

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

Chapter 4: Cell Structure and Function

Chapter 4: Cell Structure and Function Chapter 4: Cell Structure and Function A. Early observations revealed an unseen world: 1. Galileo saw the facets of an insect's eyes. Animacules and Cells Fill'd with Juices 2. Robert Hooke saw small compartments

More information

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides Nucleic acids Nucleic acids are information-rich polymers of nucleotides DNA and RNA Serve as the blueprints for proteins and thus control the life of a cell RNA and DNA are made up of very similar nucleotides.

More information

ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MUSCLE CONTRACTION

ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MUSCLE CONTRACTION I. Basic model of muscle contraction A. Overall ANSC (FSTC) 607 Physiology and Biochemistry of Muscle as a Food MUSCLE CONTRACTION 1. Calcium is released from sarcoplasmic reticulum. 2. Myosin globular

More information

CELL BIOLOGY - CLUTCH CH CELL JUNCTIONS AND TISSUES.

CELL BIOLOGY - CLUTCH CH CELL JUNCTIONS AND TISSUES. !! www.clutchprep.com CONCEPT: CELL-CELL ADHESION Cells must be able to bind and interact with nearby cells in order to have functional and strong tissues Cells can in two main ways - Homophilic interactions

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

Cell Biology. a review! Cell Theory & Cell Structures

Cell Biology. a review! Cell Theory & Cell Structures Cell Biology Cell Theory & a review! Cell Structures Cell Theory refers to the idea that cells are the basic unit of structure and function of all living things. Cells are either prokaryotic or eukaryotic

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

Intercellular indirect communication

Intercellular indirect communication Intercellular indirect communication transmission of chemical signals: sending cell signal transmitting tissue hormone medium receiving cell hormone intercellular fluid blood neurocrine neurotransmitter

More information

Proteins and their structure

Proteins and their structure Proteins and their structure Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds,

More information

Life Science 1A Final Exam. January 19, 2006

Life Science 1A Final Exam. January 19, 2006 ame: TF: Section Time Life Science 1A Final Exam January 19, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use non-erasable

More information

Eukaryotic Cell Structures

Eukaryotic Cell Structures Comparing the Cell to a Factory Eukaryotic Cell Structures Structures within a eukaryotic cell that perform important cellular functions are known as organelles. Cell biologists divide the eukaryotic cell

More information

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann A Tour of the Cell Chapter 4 Outline History of the science behind cells Cell theory & its importance Why are cells small? Microscopes Cell structure and function Prokaryotic cells Eukaryotic cells Early

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

Don t Freak Out. Test on cell organelle on Friday!

Don t Freak Out. Test on cell organelle on Friday! Cell Structure 1 Don t Freak Out Test on cell organelle on Friday! This test should be a buffer test and help raise your overall test score. All information will come from this week! 2 Cells Provide Compartments

More information

The Binding Mode of by Electron Crystallography

The Binding Mode of by Electron Crystallography The Binding Mode of Epothilone A on α,β-tubulin by Electron Crystallography James H. Nettles, Huilin Li, Ben Cornett, Joseph M. Krahn, James P. Snyder, Kenneth H. Downing Science, Volume 305, August 6,

More information

Chapter 3: Cells 3-1

Chapter 3: Cells 3-1 Chapter 3: Cells 3-1 Introduction: A. Human body consists of 75 trillion cells B. About 260 types of cells that vary in shape & size yet have much in common B. Differences in cell shape make different

More information

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER II PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Structure of cell: Human body develops from a single cell zygote which results from fusion of the ovum andd the spermatozoan.

More information

3. Endomembrane System: It s all integrated!

3. Endomembrane System: It s all integrated! 3. Endomembrane System: It s all integrated! 4. Vacuoles ii. Large Central Vacuole (Plants)! Fills up most of plant cell! Membrane bound (tonoplast)! Helps cell s water balance! Dump site for hazardous

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

Skeletal Muscle : Structure

Skeletal Muscle : Structure 1 Skeletal Muscle : Structure Dr.Viral I. Champaneri, MD Assistant Professor Department of Physiology 2 Learning objectives 1. Gross anatomy of the skeletal muscle 2. Myofilaments & their molecular structure

More information

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART A Cells and Tissues Carry out all chemical activities needed to sustain life

More information

Lecture #15. Energy of transformation of one molecule is ~ktln(p e /S e ) ktln(p e /10S e ) = =ktln10=2.3kt

Lecture #15. Energy of transformation of one molecule is ~ktln(p e /S e ) ktln(p e /10S e ) = =ktln10=2.3kt Lecture #14 Problems 1. If the K d for the actin subunit-subunit interactions along a strand is 0.1 mm and the K d for subunits at the ends of two-stranded filaments is 0.03 mm, then what is the K d for

More information

Organic Molecules: Proteins

Organic Molecules: Proteins Organic Molecules: Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Chapter 7: A Tour of the Cell Cytology Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Prokaryotic cells Nucleoid No organelles with membranes Ribosomes

More information

A Tour of the Cell. Chapter 7

A Tour of the Cell. Chapter 7 A Tour of the Cell Chapter 7 Cytology: Study of Cells Light Microscopes uses light & a set of lenses Magnification ratio of object s image size to its real size Resolution measures the clarity of the image

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION Signal Transduction - Part 2 Key Concepts - Receptor tyrosine kinases control cell metabolism and proliferation Growth factor signaling through Ras Mutated cell signaling genes in cancer cells are called

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following are synthesized along various sites of the endoplasmic reticulum

More information

Globular proteins Proteins globular fibrous

Globular proteins Proteins globular fibrous Globular proteins Globular proteins Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form in a biologically functional way. Globular

More information

basic unit structure and function

basic unit structure and function Chapter 3 Cells Introduction The cell is the basic unit of structure and function in living things. Cells vary in their shape, size, and arrangements, but all cells have similar components with a particular

More information

Lecture 5- A Tour of the Cell

Lecture 5- A Tour of the Cell Lecture 5- A Tour of the Cell 1 In this lecture Prokaryotes vs. eukaryotes The organelles of the eukaryotic cell The cytoskeleton Extracellular components 2 What are cells? Cells are the fundamental unit

More information

Sample Questions BSC1010C Chapters 5-7

Sample Questions BSC1010C Chapters 5-7 Sample Questions BSC1010C Chapters 5-7 1. Which type of lipid is most important in biological membranes? a. oils b. fats c. wax d. phospholipids e. triglycerides 2. Which type of interaction stabilizes

More information

Cell Category? Prokaryote

Cell Category? Prokaryote CELLS Cell Category? Prokaryote Prokaryote Eukaryote Cell Category? Cell Type? Cell Category? Cell Type? Endosymbiosis eukaryotic cells were formed from simpler prokaryotes Endo within Symbiosis together

More information

The recruitment of leukocytes and plasma proteins from the blood to sites of infection and tissue injury is called inflammation

The recruitment of leukocytes and plasma proteins from the blood to sites of infection and tissue injury is called inflammation The migration of a particular type of leukocyte into a restricted type of tissue, or a tissue with an ongoing infection or injury, is often called leukocyte homing, and the general process of leukocyte

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division The Cell Cycle: Cell Growth, Cell Division 2007-2008 2007-2008 Getting from there to here Going from egg to baby. the original

More information

Review from Biology A

Review from Biology A Chapter 4 Review from Biology A The Cell Theory All organisms are made of cells Cells come from pre-existing cells The cell is the simplest collection of matter that can live Scientists whose work you

More information