Composition & Architecture of plant viruses. P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.)

Size: px
Start display at page:

Download "Composition & Architecture of plant viruses. P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.)"

Transcription

1 Composition & Architecture of plant viruses P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.)

2 Plant Viruses Classification, Morphology, Genome, and Structure

3 Importance Detailed knowledge of virus structure is important to understand different aspects of virology e.g. how virus survive, infect, spread, replicate and how they are related with one other. Knowledge of virus architecture has increased greatly with the invention of EM, optical defraction, X-ray crystallography procedures; Molecular techniques Chemical information about viruses

4 Morphology of Viruses About ½ of all known plant viruses are elongate (flexuous threads or rigid rods). About ½ of all known plant viruses are spherical (isometric or polyhedral). A few viruses are cylindrical bacillus-like rods.

5 Chemical composition of plant viruses Protein( Capsid) Capsomere Nucleic acids RNA +ve strand RNA -ve strand RNA ssrna dsrna DNA ssdna dsdna

6 Viral Composition Proteins 60-95% of the virion Repeating subunits, identical for each virus type but varies from virus to virus and even from strain to strain TMV subunits amino acids with a mass of 17,600 Daltons (17.6 kda, kd or K) TYMV 20,600 Dalton protein Nucleic acid is 5-40% of the virion Spherical viruses: 20-40% Helical viruses: 5-6%

7 Viral Composition Nucleic acid (5-40%) represents the genetic material, indispensable for replication Nucleic acid alone is sufficient for virus replication Fraenkel-Conrat, Schramm Protein (60-95%) protects virus genome from degradation facilitates movement through the host and transmission from one host to another

8 A/a composition of capsid proteins of some viruses 1. Alanine CMV: 17; PVY: 16 TMV: 14; PVX: Arginine CMV: 24; PVY: 11 TMV: 11; PVX: Asparatic acid CMV: 30; PVY: 22 TMV: 18; PVX: Glutamine CMV: 20; PVY: 23 TMV: 16; PVX: Leucine CMV: 26; PVY: 10 TMV: 12; PVX: Glutamic acid 12. Lysine CMV: 18; PVY: 13 TMV: 2; PVX: Glycine CMV: 16; PVY: 13 TMV: 6 ; PVX: Asparagines 9. histidine CMV: 4; PVY: 4 TMV: - ; PVX: 4 5. Cystein CMV: 0; PVY: 1 TMV: 1; PVX: Isoleucine CMV: 16; PVY: 12 TMV: 9 ; PVX: Methionine CMV: 8; PVY: 8 TMV: 0 ; PVX: Phenylalanine CMV: 7 ; PVY: 5 TMV: 8; PVX: Proline CMV: 18; PVY: 11 TMV: 8 ; PVX: Serine CMV: 32; PVY: 10 TMV: 16; PVX: Tryptophane CMV: 1 ; PVY: 2 TMV: 3; PVX: Tyrosine CMV: 11; PVY: 6 TMV: 4; PVX: Threonine CMV: 17; PVY: 13 TMV: 16; PVX: Valine CMV: 22; PVY: 13 TMV: 14; PVX: 27 Total CMV: 287 PVY: 203 TMV: 158 PVX: 463

9 %age of protein & n/a in some viruses %age of protein & n/a in some viruses Virus n/a (%) Protein (%) TMV 5 95 PVX 6 94 PVY 5 95 CpMV CMV TRSV 40 60

10 Viral Ultrastructure Terminology for virus components Capsid is the protein shell that encloses the nucleic acid Capsomers are the morphological units seen on the surface of particles and represent clusters of structure units Capsid and enclosed nucleic acid is called the nucleocapsid The virion is the complete infectious virus particle Caspar, D. L. D. and Klug, A. (1963) "Structure and Assembly of Regular Virus Particles." In Viruses, Nucleic Acids, and Cancer, 17th Annual Symposium on Fundamental Cancer Research, University of Texas, Williams and Wilkins, Baltimore, pp

11 Watson and Crick In 1956 proposed: Amount of the virus nucleic acid was insufficient to code for more than a few proteins of limited size Therefore the protein shell must be of identical subunits Subunits had to be arranged to provide each with an identical environment, i.e., symmetrical packing

12 Virus Architecture Detailed knowledge of virus structure is important to understand different aspects of virology Knowledge of virus architecture has increased greatly with the innovation like EM, optical defraction, X-Ray crystallography procedures, mol. techniques and chemical nature of the virus.

13 Various feature of viruses can be estimated by studying: Chemical & biochemical studies Size of particles Hydrodynamics Laser scattering has been used to determine the radii of spherical viruses E.M. X-ray crystallography it gives accurate estimates of radius of icosahedral viruses but condition is that the virus should be able to form stable crystals.

14 Electron microscopy In 1924 L. de BROGLIE discovered the wave-character of electron rays thus giving the prerequisite for the construction of the electron microscope. Invented by M. KNOLL and E. RUSKA (Technische Universität Berlin, 1932). One of the first biological objects observed was the tobacco mosaic virus (TMV). The first picture of a cell was published in 1945 by K. R. PORTER, A. CLAUDE and E. F. FULLAM (Rockefeller Institute, New York). The Transmission Electron Microscope (TEM) The Scanning electron microscope (SEM)

15 The Transmission Electron Microscope (TEM)

16 The Transmission Electron Microscope (TEM) A 1973 Siemens electron microscope, EM developed by E. Ruska 1933

17 Fine structures determination E.M. Metal shadow preparations: using heavy metals, it enhances the contrast of particles Freeze drying: useful about surface details particularly with lipid protein bilayer mambranes (Large viruses) Negative staining: the use of electron dense stains is more important than heavy metals shadowing for morphological details. Such stains may be +ve or ve

18 Positive stains React chemically with and are bound to virus surface e.g. various Osmium, lead and uranyl compounds and phosphotungustic acid (PTA) are used under appropriate conditions. However, the chemical reaction may alter or disintegrate the virus so ve stains are more important Negative stains: Fine structures determination They do not react with the virus but penetrate available spaces on the surfaces or with in virus particle e.g. Uranylacetate or Potassium phosphotungstate (KPT) are used near ph 5.0

19 Fine structures determination Thin sections Cryo EM X-ray crystallography analysis Neutron small angle scattering: neutron scattering by virus solution is a method by which low resolution information can be obtained about structure of virus. E.g. important for radii of isometric particles Mass spectrography Serological method's Gel diffusion ELISA ISEM

20 Methods for studying stabilizing bonds The primary structure of viral CP & n/a depends upon covalent bonds. Three kinds of interactions are involved in viruses : Protein : protein Protein : RNA RNA : RNA These help the CP and n/a to be held together precisely In addition, small molecules e.g. divalent metal ions (CA2+ in particular) have marked effects on the stability of some viruses. These interactions determine how much the virus is stable How it might be assembled during virus synthesis How viral n/a is released following infection of cell

21 Methods for studying stabilizing bonds The stabilizing interactions are hydrophobic bonds, H= bonds, salt linkage etc. these interactions cab be studied by: X-ray crystallography Stability to chemicals and physical agents: e.g. Phenol, urea, temperature and detergents etc. Chemical modification of CP: a/a changes Removal of ions: in viruses whose structure are stabilized by Ca2+ ions can be affected by their removal e.g. in isometric particles, CA2+ ions removal by EDTA causes swelling of the particles. So this phenomenon can give information about the kind of bond important fro virus stability.

22 Methods for studying stabilizing bonds Circular dichroism: Spectra can be used to obtain estimates of the extent of a- helix and B- structure in a viral protein subunit. n/a tests

23 Architecture of rod shaped viruses Crick & Watson (1956) put forwarded a hypothesis regarding structures of small viruses (TYMV & TMV) that: Viral RNA enclosed in CP Naked RNA is infectious Basic requirement is protein shell to protect n/a etc. In rod shaped viruses, the protein subunits are arranged in a helical manner regardless of protein subunit number into a helical array.

24 X-ray crystallography X-ray crystallography is a method of determining the arrangement of atoms within a crystal, in which a beam of X-rays strikes a crystal and diffracts into many specific directions. From the angles and intensities of these diffracted beams, a crystallographer can produce a threedimensional picture of the density of electrons within the crystal. From this electron density we can determined: the mean positions of the atoms in the crystal, as well as their chemical bonds, their disorder and various other information.

25 X-ray sources The brightest and most useful X-ray sources are synchrotrons A protein crystal seen under amicroscope. Crystals used in X-ray crystallography may be smaller than a millimeter across. Workflow for solving the structure of a molecule by X- ray crystallography.

26 Diffractometer A Diffractometer is a measuring instrument for analyzing the structure of a material from the scattering pattern produced when a beam of radiation or particles (as X rays or neutrons) interacts with it. Principle Because it is relatively easy to use electrons or neutrons having wavelengths smalle r than a nanometer, electrons and neutrons may be used to study crystal structure in a manner very similar to X-ray diffraction. Electrons do not penetrate as deeply into matter as X-rays, hence electron diffraction reveals structure near the surface; neutrons do penetrate easily and have an advantage that they possess an intrinsic magnetic moment that causes them to interact differently with atoms having different alignments of their magnetic moments. An X-ray diffraction pattern of a crystallized enzyme. The pattern o spots (called reflections) can be used to determine the structure of the enzyme.

27 TMV TMV particles are: Rigid helical rods 300 nm long X 18 nm dia 95% protein & ~5% n/a (RNA) ssrna Extremely stable structure Retain infectivity at room temp. for ~50 years Naked RNA is highly unstable like others.

28 Detailed worked by using X-ray defraction gave details of arrangement of protein subunits and RNA in rod. The particles comprises ~2130 subunits that are closely packed in a helical array. The pitch of helix is 2.3 (fig.) and the RNA chain is compactly coiled in a helix following that of the protein subunits There are 49 nt. & 161/3 protein subunits per turn The PO4 of the RNA are at about 4nm from the rod axis. The helix of TMV is right handed (Finch, 1972)

29 TMV architecture Negatively stained particles revealed that : One end of the rod can be seen as concave The other end is convex 3 end of the RNA is at the convex end & 5 at concave end (Wilson wt al. 1976; Butler et al., 1977) A central canal with a radius of ~2nm becomes filled with stain in vely stained preparations Short Rods: of variable length & <300nm, causes problem of end to end aggregation etc.

30 SYMPTOMS OF TMV

31 Rod shaped particles Helix (rod) e.g., TMV TMV rod is 18 nanometers (nm) X 300 nm

32 PARTICLE STRUCTURE TMV rod is 18 nanometers (nm) X 300 nm Tobacco mosaic virus is typical, well-studied example Each particle contains only a single molecule of RNA (6395 nt) and 2130 copies of the coat protein subunit (158 aa; 17.3 kda) 3 nt/subunit subunits/turn 49 subunits/3 turns TMV protein subunits + nucleic acid will self-assemble in vitro in an energy-independent fashion Self-assembly also occurs in the absence of RNA

33 Tobacco mosaic virus

34 Properties of coat proteins CP consists of 158 amino acid with a mol. Wt of ~17-18 KDa. Fibre defraction have determined the structure to 2.0oA resolution (Namba et al., 1989) The protein has high proportion of secondary structures with 50%of the residues form four a- helices and 10% of residues in B-turns. The four closely parallel and antiparallel a- helices (residues 20-32, 38-48, & ) make up the core of the subunits. And the distal end of the four helices are connected transversely by a narrow and twisted strip of b-sheet.

35 Properties of coat proteins The central part of the subunit distal to the b- sheet is a cluster aromatic residues (Phe12, Trp17, Phe62, Tyr70, Tyr139, Phe144) forming a hydrophobic patch. The N- & C- termini of the protein are to the outside of the particle The polypeptide chain is in a flexible or disordered state below a radius in t particle of about 4nm so that no structure is revealed in this region.

36 Properties of coat proteins One of the reassembly product of TMV protein subunit is a double disk containing two rings of 17 protein subunits and in this region the details of the inter subunit contacts can be determined (by X-ray crystallography) (Klug et al.; Bloomer et al., 1978). The subunits of the upper ring in the disk are flat and in the lower ring are tilted down ward toward the centre of the disk with three regions of contact between the subunits.

37 Plant viruses are diverse, but not as diverse as animal viruses probably because of size constraints imposed by requirement to move cell-to-cell through plasmodesmata of host plants

38 Viral Morphological Groups Cubic (icosahedral) Helical Horne, R. W. & Wildy, P. (1961). Symmetry in virus architecture. Virology 15,

39 Icosahedral arrangement is typical in virus structure An icosahedron has 20 triangular (equilateral) faces (facets), 12 vertices, and a 5:3:2 axes of rotational symmetry

40 Isometric viruses Icosahedron (sphere) e.g., BMV

41 Tobacco necrosis virus, 26 nm in diameter

42 BROME MOSAIC VIRUS Type member of the Bromovirus genus, family Bromoviridae Virions are nonenveloped icosohedrals (T=3), 26 nm in diameter, contain 22% nucleic acid and 78% protein RNA1 RNA2 RNA3 RNA4 BMV genome is composed of three positive sense RNAs separately encapsidated RNA1 (3.2 kb), RNA2 (2.9 kb), RNA3 (2.1 kb), RNA4 (0.9 kb)

43 Francki, Milne & Hatta Atlas of Plant Viruses, vol. I. Three-dimensional image of Turnip yellow mosaic virus (TYMV) reconstructed from EM

44 Tobacco mosaic virus First virus crystallized (1946 Stanley was awarded the Nobel prize) First demonstration of infectious RNA (1950s) First virus to be shown to consist of RNA and protein First virus characterized by X-ray crystallography to show a helical structure First virus genome to be completely sequenced

45 Tobacco mosaic virus (TMV), 300 nm Potato virus Y (PVY), 740 nm

46 Cocoa swollen shoot virus, Badnavirus Maize streak virus, Geminiviridae

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Protein Structure February 7, 2016 Introduction to Protein Structure A protein is a linear chain of organic molecular building blocks called amino acids. Introduction to Protein Structure Amine

More information

Introduction to proteins and protein structure

Introduction to proteins and protein structure Introduction to proteins and protein structure The questions and answers below constitute an introduction to the fundamental principles of protein structure. They are all available at [link]. What are

More information

NOMENCLATURE & CLASSIFICATION OF PLANT VIRUSES. P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.)

NOMENCLATURE & CLASSIFICATION OF PLANT VIRUSES. P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.) NOMENCLATURE & CLASSIFICATION OF PLANT VIRUSES P.N. Sharma Department of Plant Pathology, CSK HPKV, Palampur (H.P.) What is the purpose of classification? To make structural arrangement comprehension for

More information

Proteins and symmetry

Proteins and symmetry Proteins and symmetry Viruses (symmetry) Viruses come in many shapes, sizes and compositions All carry genomic nucleic acid (RNA or DNA) Structurally and genetically the simplest are the spherical viruses

More information

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES Introduction Viruses are noncellular genetic elements that use a living cell for their replication and have an extracellular state. Viruses

More information

Structure of viruses

Structure of viruses Structure of viruses Lecture 4 Biology 3310/4310 Virology Spring 2018 In order to create something that functions properly - a container, a chair, a house - its essence has to be explored, for it should

More information

Structure of viruses

Structure of viruses Structure of viruses Lecture 4 Biology 3310/4310 Virology Spring 2017 In order to create something that functions properly - a container, a chair, a house - its essence has to be explored, for it should

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage,

More information

Virus Structure. Characteristics of capsids. Virus envelopes. Virion assembly John Wiley & Sons, Inc. All rights reserved.

Virus Structure. Characteristics of capsids. Virus envelopes. Virion assembly John Wiley & Sons, Inc. All rights reserved. Virus Structure Characteristics of capsids Virus envelopes Virion assembly Capsids package viral genomes and transmit them to a new host cell Capsid rigid, symmetrical container composed of viral protein

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi Review I: Protein Structure Rajan Munshi BBSI @ Pitt 2005 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2005 Amino Acids Building blocks of proteins 20 amino acids

More information

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY VIRUS - HISTORY In 1886, the Dutch Chemist Adolf Mayer showed TMD In 1892, the Russian Bactriologist Dimtri Iwanowski isolate

More information

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department General Virology I Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department ١ General Virology I Lecture Outline Introduction istory Definition

More information

Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES

Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES Viruses are small obligate intracellular parasites, which by definition contain either

More information

Methionine (Met or M)

Methionine (Met or M) Fig. 5-17 Nonpolar Fig. 5-17a Nonpolar Glycine (Gly or G) Alanine (Ala or A) Valine (Val or V) Leucine (Leu or L) Isoleucine (Ile or I) Methionine (Met or M) Phenylalanine (Phe or F) Polar Trypotphan (Trp

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions. Chapter 9: Proteins Molecular Biology replication general transfer: occurs normally in cells transcription special transfer: occurs only in the laboratory in specific conditions translation unknown transfer:

More information

Ultrastructure of Mycoplasmatales Virus laidlawii x

Ultrastructure of Mycoplasmatales Virus laidlawii x J. gen. Virol. (1972), I6, 215-22I Printed in Great Britain 2I 5 Ultrastructure of Mycoplasmatales Virus laidlawii x By JUDY BRUCE, R. N. GOURLAY, AND D. J. GARWES R. HULL* Agricultural Research Council,

More information

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products) Page 8/6: The cell Where to start: Proteins (control a cell) (start/end products) Page 11/10: Structural hierarchy Proteins Phenotype of organism 3 Dimensional structure Function by interaction THE PROTEIN

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Structural biology of viruses

Structural biology of viruses Structural biology of viruses Biophysical Chemistry 1, Fall 2010 Coat proteins DNA/RNA packaging Reading assignment: Chap. 15 Virus particles self-assemble from coat monomers Virus Structure and Function

More information

Biomolecules: amino acids

Biomolecules: amino acids Biomolecules: amino acids Amino acids Amino acids are the building blocks of proteins They are also part of hormones, neurotransmitters and metabolic intermediates There are 20 different amino acids in

More information

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes The Viruses Viruses Viruses may be defined as acellular organisms whose genomes consist of nucleic acid, obligately replicate inside host cells using host metabolic machinery and ribosomes to form a pool

More information

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11 So where were we? We know that DNA is responsible for heredity Chromosomes are long pieces of DNA DNA turned out to be the transforming principle We know that DNA is shaped like a long double helix, with

More information

Section 1 Proteins and Proteomics

Section 1 Proteins and Proteomics Section 1 Proteins and Proteomics Learning Objectives At the end of this assignment, you should be able to: 1. Draw the chemical structure of an amino acid and small peptide. 2. Describe the difference

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids.

Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids. Today we begin our discussion of the structure and properties of proteins. Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids. Conjugated proteins contain

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

Viruses. CLS 212: Medical Microbiology Miss Zeina Alkudmani

Viruses. CLS 212: Medical Microbiology Miss Zeina Alkudmani Viruses CLS 212: Medical Microbiology Miss Zeina Alkudmani History Through the 1800s, many scientists discovered that something smaller than bacteria could cause disease and they called it virion (Latin

More information

Viral structure م.م رنا مشعل

Viral structure م.م رنا مشعل Viral structure م.م رنا مشعل Viruses must reproduce (replicate) within cells, because they cannot generate energy or synthesize proteins. Because they can reproduce only within cells, viruses are obligate

More information

Introduction to Protein Structure Collection

Introduction to Protein Structure Collection Introduction to Protein Structure Collection Teaching Points This collection is designed to introduce students to the concepts of protein structure and biochemistry. Different activities guide students

More information

Macromolecules of Life -3 Amino Acids & Proteins

Macromolecules of Life -3 Amino Acids & Proteins Macromolecules of Life -3 Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ Amino Acids Proteins

More information

Lipids: diverse group of hydrophobic molecules

Lipids: diverse group of hydrophobic molecules Lipids: diverse group of hydrophobic molecules Lipids only macromolecules that do not form polymers li3le or no affinity for water hydrophobic consist mostly of hydrocarbons nonpolar covalent bonds fats

More information

Chapter 5: Structure and Function of Macromolecules AP Biology 2011

Chapter 5: Structure and Function of Macromolecules AP Biology 2011 Chapter 5: Structure and Function of Macromolecules AP Biology 2011 1 Macromolecules Fig. 5.1 Carbohydrates Lipids Proteins Nucleic Acids Polymer - large molecule consisting of many similar building blocks

More information

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range Lecture 5 (Ch6) - Viruses Topics Characteristics Structure/Classification Multiplication Cultivation and replication Non-viral infectious agents Treatment 1 Virus Characteristics obligate intracellular

More information

Activities for the α-helix / β-sheet Construction Kit

Activities for the α-helix / β-sheet Construction Kit Activities for the α-helix / β-sheet Construction Kit The primary sequence of a protein, composed of amino acids, determines the organization of the sequence into the secondary structure. There are two

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture 1 Amino Acids I Hello, welcome to the course Biochemistry 1 conducted by me Dr. S Dasgupta,

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but far from the only one!!!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids

More information

PROTEINS. Building blocks, structure and function. Aim: You will have a clear picture of protein construction and their general properties

PROTEINS. Building blocks, structure and function. Aim: You will have a clear picture of protein construction and their general properties PROTEINS Building blocks, structure and function Aim: You will have a clear picture of protein construction and their general properties Reading materials: Compendium in Biochemistry, page 13-49. Microbiology,

More information

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS Introductory Virology Ibrahim Jamfaru School of Medicine UHAS Lecture outline Definition of viruses and general characteristics Structure of virus (virion) Chemical composition of viruses Virus morphology

More information

a) The statement is true for X = 400, but false for X = 300; b) The statement is true for X = 300, but false for X = 200;

a) The statement is true for X = 400, but false for X = 300; b) The statement is true for X = 300, but false for X = 200; 1. Consider the following statement. To produce one molecule of each possible kind of polypeptide chain, X amino acids in length, would require more atoms than exist in the universe. Given the size of

More information

Lecture 3: 8/24. CHAPTER 3 Amino Acids

Lecture 3: 8/24. CHAPTER 3 Amino Acids Lecture 3: 8/24 CHAPTER 3 Amino Acids 1 Chapter 3 Outline 2 Amino Acid Are Biomolecules and their Atoms Can Be Visualized by Two Different Ways 1) Fischer projections: Two dimensional representation of

More information

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000). Lecture 2: Principles of Protein Structure: Amino Acids Why study proteins? Proteins underpin every aspect of biological activity and therefore are targets for drug design and medicinal therapy, and in

More information

AP Bio. Protiens Chapter 5 1

AP Bio. Protiens Chapter 5 1 Concept.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 0% of the dry mass of most cells Protein functions include structural support, storage, transport,

More information

1. Describe the relationship of dietary protein and the health of major body systems.

1. Describe the relationship of dietary protein and the health of major body systems. Food Explorations Lab I: The Building Blocks STUDENT LAB INVESTIGATIONS Name: Lab Overview In this investigation, you will be constructing animal and plant proteins using beads to represent the amino acids.

More information

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI General Characteristics, Structure and Taxonomy of Viruses Viruses A virus is non-cellular organisms made up of genetic material and protein that can invade living cells. They are considered both a living

More information

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology What is a virus? Viruses may be defined as acellular organisms whose genomes consist of nucleic acid (DNA or RNA), and which obligatory

More information

Different levels of protein structure

Different levels of protein structure Dr. Sanjeeva Srivastava Proteins and its function Amino acids: building blocks Different levels of protein structure Primary, Secondary, Tertiary, Quaternary 2 Proteomics ourse PTEL 1 Derived from Greek

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

Basic Properties of Viruses and Virus Cell Interaction

Basic Properties of Viruses and Virus Cell Interaction WBV5 6/27/03 10:28 PM Page 49 Basic Properties of Viruses and Virus Cell Interaction II PART VIRUS STRUCTURE AND CLASSIFICATION CLASSIFICATION SCHEMES THE BEGINNING AND END OF THE VIRUS REPLICATION CYCLE

More information

Gentilucci, Amino Acids, Peptides, and Proteins. Peptides and proteins are polymers of amino acids linked together by amide bonds CH 3

Gentilucci, Amino Acids, Peptides, and Proteins. Peptides and proteins are polymers of amino acids linked together by amide bonds CH 3 Amino Acids Peptides and proteins are polymers of amino acids linked together by amide bonds Aliphatic Side-Chain Amino Acids - - H CH glycine alanine 3 proline valine CH CH 3 - leucine - isoleucine CH

More information

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY 1. How many protons is(are) lost when the amino acid Asparagine is titrated from its fully protonated state to a fully deprotonated state? A. 0 B. 1 * C. 2 D. 3 E. none Correct Answer: C (this question

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

Structure of proteins

Structure of proteins Structure of proteins Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Structure of proteins The 20 a.a commonly found

More information

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins Chemical Nature of the Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. There are 20 a- amino acids that are relevant to the make-up of mammalian proteins (see below). Several

More information

1.4. Lipids - Advanced

1.4. Lipids - Advanced 1.4. Lipids - Advanced www.ck12.org In humans, triglycerides are a mechanism for storing unused calories, and their high concentration in blood correlates with the consumption of excess starches and other

More information

Similarities in the genomic sequence and coat protein structure of plant virsuses

Similarities in the genomic sequence and coat protein structure of plant virsuses Proc. Int. Sytnp. Biomol. Struct. Interactions, Suppl. J. Biosci., Vol. 8, Nos 3 & 4, August 1985, pp. 815 821. Printed in India. Similarities in the genomic sequence and coat protein structure of plant

More information

Biology. Lectures winter term st year of Pharmacy study

Biology. Lectures winter term st year of Pharmacy study Biology Lectures winter term 2008 1 st year of Pharmacy study 3 rd Lecture Chemical composition of living matter chemical basis of life. Atoms, molecules, organic compounds carbohydrates, lipids, proteins,

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2. Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points. MBB 407/511 Molecular Biology and Biochemistry First Examination - October 1, 2002 Name Social Security Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is

More information

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups Amino Acids Side chains (R groups) vary in: size shape charge hydrogen-bonding capacity hydrophobic character chemical reactivity C α Nonpolar, aliphatic R groups Glycine (Gly, G) Alanine (Ala, A) Valine

More information

BCHS 3304/ Exam I. September 26,

BCHS 3304/ Exam I. September 26, Name: 5.5.# BCHS 3304/ Exam I September 26, 2002............... Instructions: 1. There are 13 pages to this exam. Count pages prior to beginning exam. You may use the back pages of the exam as scratch

More information

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4 Eukaryotes organisms that contain a membrane bound nucleus and organelles. Prokaryotes organisms that lack a nucleus or other membrane-bound organelles. Viruses small, non-cellular (lacking a cell), infectious

More information

Review II: The Molecules of Life

Review II: The Molecules of Life Review II: The Molecules of Life Judy Wieber BBSI @ Pitt 2007 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2007 Outline Introduction Proteins Carbohydrates Lipids

More information

Reactions and amino acids structure & properties

Reactions and amino acids structure & properties Lecture 2: Reactions and amino acids structure & properties Dr. Sameh Sarray Hlaoui Common Functional Groups Common Biochemical Reactions AH + B A + BH Oxidation-Reduction A-H + B-OH + energy ª A-B + H

More information

Amino acids. (Foundation Block) Dr. Essa Sabi

Amino acids. (Foundation Block) Dr. Essa Sabi Amino acids (Foundation Block) Dr. Essa Sabi Learning outcomes What are the amino acids? General structure. Classification of amino acids. Optical properties. Amino acid configuration. Non-standard amino

More information

Proteins and their structure

Proteins and their structure Proteins and their structure Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds,

More information

Controlled biomimetic crystallization of ZIF-8 particles by amino acids

Controlled biomimetic crystallization of ZIF-8 particles by amino acids Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Supporting information for Controlled biomimetic crystallization of ZIF-8 particles by amino

More information

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 9. AMINO ACIDS, PEPTIDES AND

More information

Cells N5 Homework book

Cells N5 Homework book 1 Cells N5 Homework book 2 Homework 1 3 4 5 Homework2 Cell Ultrastructure and Membrane 1. Name and give the function of the numbered organelles in the cell below: A E B D C 2. Name 3 structures you might

More information

Introduction to viruses. BIO 370 Ramos

Introduction to viruses. BIO 370 Ramos Introduction to viruses BIO 370 Ramos 1 2 General Structure of Viruses Size range most

More information

Dr. Gary Mumaugh. Viruses

Dr. Gary Mumaugh. Viruses Dr. Gary Mumaugh Viruses Viruses in History In 1898, Friedrich Loeffler and Paul Frosch found evidence that the cause of foot-and-mouth disease in livestock was an infectious particle smaller than any

More information

Raghad Abu Jebbeh. Amani Nofal. Mamoon Ahram

Raghad Abu Jebbeh. Amani Nofal. Mamoon Ahram ... 14 Raghad Abu Jebbeh Amani Nofal Mamoon Ahram This sheet includes part of lec.13 + lec.14. Amino acid peptide protein Terminology: 1- Residue: a subunit that is a part of a large molecule. 2- Dipeptide:

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Plasma Membrane= the skin of a cell, it protects and nourishes the cell while communicating with other cells at the same time. Lipid means fat and they are hydrophobic

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

Bio Factsheet. Proteins and Proteomics. Number 340

Bio Factsheet. Proteins and Proteomics.   Number 340 Number 340 Proteins and Proteomics Every living thing on the planet is composed of cells, and cells in turn are made of many types of molecules, including the biological molecules carbohydrates, lipids,

More information

Macromolecules Structure and Function

Macromolecules Structure and Function Macromolecules Structure and Function Within cells, small organic molecules (monomers) are joined together to form larger molecules (polymers). Macromolecules are large molecules composed of thousands

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Biochemistry Lec #1 Dr. Nafith AbuTarboush- (30.6.2014) Amino Acids 1 Campbell and Farrell s Biochemistry, Chapter 3 (pp.66-76) Introduction: Biochemistry is two courses; one is

More information

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids Amino acids 1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids 5-To understand amino acids synthesis Amino

More information

Polyomaviridae. Spring

Polyomaviridae. Spring Polyomaviridae Spring 2002 331 Antibody Prevalence for BK & JC Viruses Spring 2002 332 Polyoma Viruses General characteristics Papovaviridae: PA - papilloma; PO - polyoma; VA - vacuolating agent a. 45nm

More information

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids Biological Macromolecules Much larger than other par4cles found in cells Made up of smaller subunits Found in all cells Great diversity of func4ons Four Classes of Biological Macromolecules Lipids Polysaccharides

More information

Proteins consist of joined amino acids They are joined by a Also called an Amide Bond

Proteins consist of joined amino acids They are joined by a Also called an Amide Bond Lecture Two: Peptide Bond & Protein Structure [Chapter 2 Berg, Tymoczko & Stryer] (Figures in Red are for the 7th Edition) (Figures in Blue are for the 8th Edition) Proteins consist of joined amino acids

More information

CHAPTER 29 HW: AMINO ACIDS + PROTEINS

CHAPTER 29 HW: AMINO ACIDS + PROTEINS CAPTER 29 W: AMI ACIDS + PRTEIS For all problems, consult the table of 20 Amino Acids provided in lecture if an amino acid structure is needed; these will be given on exams. Use natural amino acids (L)

More information

Protein Structure and Function

Protein Structure and Function Protein Structure and Function Protein Structure Classification of Proteins Based on Components Simple proteins - Proteins containing only polypeptides Conjugated proteins - Proteins containing nonpolypeptide

More information

Introduction to Proteomics Dr. Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology - Bombay

Introduction to Proteomics Dr. Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology - Bombay Introduction to Proteomics Dr. Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology - Bombay Lecture 01 Introduction to Amino Acids Welcome to the proteomic course.

More information

Chapter 3: Amino Acids and Peptides

Chapter 3: Amino Acids and Peptides Chapter 3: Amino Acids and Peptides BINF 6101/8101, Spring 2018 Outline 1. Overall amino acid structure 2. Amino acid stereochemistry 3. Amino acid sidechain structure & classification 4. Non-standard

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS Onderstepoort]. vet. Res. 40 (2), 53-58 (1973) ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS G. LECATSAS, B. J. ERASMUS and H. J. ELS, Veterinary Research Institute, Onderstepoort ABSTRACT

More information

AMINO ACIDS, POLYPEPTIDES AND PROTEINS

AMINO ACIDS, POLYPEPTIDES AND PROTEINS MINO CIDS, POLYPEPTIDES ND POTEINS mino cids and Coding If it were not for transfer N molecules, protein synthesis would not be possible and there would be no coding of amino acids for polypeptide synthesis.

More information

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2. Lipids Some lipid structures Organic compounds Amphipathic Polar head group (hydrophilic) Non-polar tails (hydrophobic) Lots of uses Energy storage Membranes Hormones Vitamins HO O C H 2 C CH 2 H 2 C CH

More information

The protein stoichiometry of viral capsids via tiling theory

The protein stoichiometry of viral capsids via tiling theory The protein stoichiometry of viral capsids via tiling theory REIDUN TWAROCK Centre for Mathematical Science City University Northampton Square, London EC1V 0HB UNITED KINGDOM Abstract: - A vital part of

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

Midterm 1 Last, First

Midterm 1 Last, First Midterm 1 BIS 105 Prof. T. Murphy April 23, 2014 There should be 6 pages in this exam. Exam instructions (1) Please write your name on the top of every page of the exam (2) Show all work for full credit

More information

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Reoviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Naked icosahedral capsid (T=13), diameter 60-85 nm Capsid consists of two or three concentric protein

More information

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print)

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print) Moorpark College Chemistry 11 Fall 2013 Instructor: Professor Gopal Examination # 5: Section Five May 7, 2013 Name: (print) Directions: Make sure your examination contains TEN total pages (including this

More information

COO - l. H 3 N C a H l R 1

COO - l. H 3 N C a H l R 1 COO - l + H 3 N C a H l R 1 Amino acids There are 20 standard amino acids. All proteins are built from the same amino acids. The most important criteria for classification is affinity to water: hydrophilic

More information