Non-Human Primate Models of Orthopoxvirus Infections

Size: px
Start display at page:

Download "Non-Human Primate Models of Orthopoxvirus Infections"

Transcription

1 Vet. Sci. 2014, 1, 40-62; doi: /vetsci Review OPEN ACCESS veterinary sciences ISSN Non-Human Primate Models of Orthopoxvirus Infections Anne Schmitt, Kerstin Mätz-Rensing and Franz-Josef Kaup * Pathology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, Germany; s: aschmitt@dpz.eu (A.S.); kmaetz@dpz.eu (K.M.-R.) * Author to whom correspondence should be addressed; fkaup@gwdg.de; Tel.: ; Fax: Received: 23 April 2014; in revised form: 4 June 2014 / Accepted: 5 June 2014 / Published: 10 June 2014 Abstract: Smallpox, one of the most destructive diseases, has been successfully eradicated through a worldwide vaccination campaign. Since immunization programs have been stopped, the number of people with vaccinia virus induced immunity is declining. This leads to an increase in orthopoxvirus (OPXV) infections in humans, as well as in animals. Additionally, potential abuse of Variola virus (VARV), the causative agent of smallpox, or monkeypox virus, as agents of bioterrorism, has renewed interest in development of antiviral therapeutics and of safer vaccines. Due to its high risk potential, research with VARV is restricted to two laboratories worldwide. Therefore, numerous animal models of other OPXV infections have been developed in the last decades. Non-human primates are especially suitable due to their close relationship to humans. This article provides a review about on non-human primate models of orthopoxvirus infections. Keywords: non-human primate; smallpox; monkeypox; cowpox; animal models 1. Introduction The genus Orthopoxvirus (OPXV), as part of the Poxviridae, includes, among others, the species variola virus (VARV), monkeypox virus (MPXV), cowpox virus (CPXV), vaccinia virus (VACV), and mousepox virus. The causative agent of smallpox, VARV, was one of the most dangerous viruses known to mankind, being responsible for the death of 300 to 500 million people. Fortunately, smallpox has been successfully eradicated by a worldwide vaccination campaign under the leadership of the World Health Organization (WHO) [1]. Because of the inferior safety profile of the smallpox vaccine

2 Vet. Sci. 2014, 1 41 in immune compromised persons, pregnant women, or persons with atopic dermatitis, routine smallpox vaccinations were stopped in the 1980s following a recommendation from WHO. Only military personnel, selected healthcare, and laboratory workers still get the vaccine. Consequently, the number of people with lacking immunity, not only against smallpox, but also against other zoonotic OPXV infections is increasing [2], in humans, as well as in animals [3 7]. In the Democratic Republic of Congo there is a massive (20-fold) increase in human monkeypox incidence [8]. Additionally, it is feared that smallpox could be used as a biological weapon [9 11]. There is, thus far, no pharmaceutic treatment available and vaccines are partly unsafe, therefore, more research concerning orthopoxvirus infections is very important. Because of its high risk potential, research with VARV is limited to two BSL4 containments worldwide (Atlanta and Novosibirsk) and is, therefore, highly restricted. Suitable animal models are needed in which an orthopoxvirus causes a disease course, morbidity, and mortality, similar to human disease. Furthermore, the route of infection and transmission should be mimicked, and the infectious dose should be similar to that of humans. Unfortunately, no animal model fulfills all these criteria [12,13]. Nevertheless, these models can help to get an insight into the pathogenesis, and are a good tool to test the efficacy of antiviral compounds and of new vaccines. Furthermore, these animal models are important to fulfill the requirements of the animal efficacy rule. This rule was promulgated by the Food and Drug Administration (FDA) and demands a testing of medical countermeasures in at least two different animal models when clinical trials in humans are unethical or impossible [14]. In the last decades, considerable progress has been made in development of new animal models for OPXV infections [12,15 19]. CPXV, MPXV, VACV, VARV, ectromelia virus, rabbitpox virus, and camelpox virus have been used in animal models. Small animal models, other than non-human primates (NHP) models, have the advantage that large numbers of animals are available. Furthermore, maintenance costs are lower compared to monkeys. However, small animal models have limitations: Disease pathology, a shortened time course of disease, pharmacokinetic behavior of compounds, and tissue distribution can vary from human conditions [20]. Therefore, animals, which are closely related to humans, and whose physiological and pathological reactions are, therefore, more comparable to humans, are more suitable. NHP are the next relatives to humans, recapitulate human condition as closely as possible, and are, therefore, very appropriate to evaluate new vaccines, treatments, or pathogenesis [21]. Thus, NHP are the gold-standard for OPXV models, as their resemblance to humans allows the best predicative value for effects or side effects of new therapeutics or vaccines in humans [13]. In the following, we will review OPXV models in NHP, arranged by virus species and inoculation route (see Table 1). 2. Monkeypox MPXV is an Orthopoxvirus which causes a zoonotic disease characterized by symptoms similar to smallpox but with a lethality rate of 1% 8% [2,22]. In all probability, some monkeypox infections were misinterpreted as smallpox because of the lack of laboratory testing [23]. One clinical symptom, which allows a differentiation from smallpox, is lymphadenopathy, which could lead to the conclusion that there is a more effective immune response [24,25]. MPXV was first detected in 1957 in captive primates in Denmark [26]. Not only are several species of NHP (rhesus macaques (see Figures 1 and 2),

3 Vet. Sci. 2014, 1 42 cynomolgus macaques, and chimpanzees), but also a broad spectrum of mammals, are susceptible to the disease [15,16]. In 1960, a naturally occurring MPXV outbreak was reported in cynomolgus and rhesus macaques [27]. Human monkeypox emerged in the 1970s in Western and Central Africa and today still leads to outbreaks in the rural villages near the rainforests [8]. The natural host is still unknown, but, with the utmost probability, African squirrels and/or other rodents play an important role [15]. Only once, the virus could be found in a carcass of a Funiscirus squirrel in Democratic Republic of the Congo [28]. Probably, the virus is transmitted via eating infected bushmeat, via saliva/respiratory excretions, or direct contact with crust material. However, the exact transmission route for MPXV is unclear. [12,15,22,24]. In 2003, the disease was accidentally introduced into the U.S. due to infected wild rodents imported from Africa, which transmitted the virus to prairie dogs (Cynomys ludovicianus) and then, via the prairie dogs, to approximately 40 humans [29 31]. Remarkably, the prairie dogs were the only infection source for the humans [15]. Discontinuation of vaccination after eradication of smallpox, inadequate health infrastructure and bushmeat consumption has given rise to increasing susceptibility to MPXV infection in the African population [23,32]. Studies with NHP are useful for understanding monkeypox disease. Additionally, NHP models of MPXV are a good alternative to VARV models, because they are less dangerous for laboratory workers and researchers. Compared to other MPXV susceptible species, such as prairie dogs, NHP are more suitable due to the close relationship to humans. Furthermore, they get better accustomed to the research conditions than other susceptible species, such as prairie dogs [15]. NHP can be infected with MPXV experimentally via different techniques, which are described below. Figure 1. Monkeypox virus infected Macaca mulatta (M. mulatta) with multifocal severe papular dermatitis.

4 Vet. Sci. 2014, 1 43 Figure 2. Skin of Monkeypox virus infected M. mulatta with multiple vesicular and erosive to ulcerative skin lesions Intramuscular In the late 1960s, Wenner and colleagues developed a model in which they inoculated 10 5 plaque-forming unit (PFU) of MPXV intramuscularly in cynomolgus and rhesus macaques [33]. Animals developed a vesicular to pustular rash and became diseased with a systemic viral infection. Disadvantages of this model are skin and muscle necrosis at the inoculation site [16]. In a study conducted in 1971, six baboons (Papio cynocephalus) were challenged intramuscularly with MPXV and all became infected. Typical lesions like vesicular pustules on the extremities, face, lips, and buccal mucosa, happened after around eight days post infection. One single animal succumbed to the disease. Challenging surviving animals with MPXV after first experiment proved the acquired immunity and the possibility to protect monkey colonies in captivity by immunizing [34] Skin Scarification In a following study, Heberling and Kalter challenged baboons with MPXV via skin scarification and showed an increased resistance to MPXV with ageing [35]. Baboons aged approximately one year developed typical pox lesions, fever, and lymphadenopathy, but did not die. The younger animals (approximately three-months old) showed a similar disease course, but five of ten animals succumbed to the disease.

5 Vet. Sci. 2014, Intravenous Though the intravenous infection of MPXV causes a fulminant disease with severe lesions, which are very similar to smallpox, this model has several disadvantages: Key events like infection of the upper respiratory tract, primary viremia phase, and prodromal phases are skipped. Additionally, the route of transmission does not resemble the natural route of transmission of smallpox, which happens through close contact or inhalated aerosols. Furthermore, the infectious dose is much higher than the natural infection dose [36]. However, intravenous application of MPXV produces a course of disease that is appropriate to evaluate the efficacy and benefits of anti-opxv therapeutics and vaccines. Huggins and colleagues infected eight male cynomolgus macaques with a Zaire strain of MPXV via intravenous inoculation and proved the efficacy of the antiviral drug Tecovirimat (previously known as ST-246) dosed with 300 mg/kg/day. Tecovirimat was able to protect animals from disease and death. The infection with MPXV in the control group triggered a vesiculopustular rash accompanied by fever, elevated white blood cell count, lymphadenopathy, splenomegaly, and pulmonary edema [20]. Because of the fact that high drug doses at early times post infection were given, a follow-up study was conducted in which lower doses at later times were compared. The researchers conclude that 400 mg, once daily for 14 days after clinical diagnosis, can be an effective treatment for smallpox and monkeypox in humans [37]. To visualize viral infection, researchers inserted a gene encoding green fluorescent protein (GFP) into MPXV Zaire-79 and infected cynomolgus macaques intravenously. This way, initial lesions could be detected under fluorescent light one to two days earlier. Fluorescence was most intense in lesions of the oral cavity and weakest in skin of the palms and soles, which is protected by a thick layer of keratin [38]. Hooper and colleagues challenged rhesus macaques intravenously with MPXV after immunizing with a DNA vaccine consisting of four vaccinia virus genes. Unvaccinated control animals died on days seven, ten, and fourteen, showing hemorrhages in multiple organs, lymphadenopathy, and vesiculopustular rashes on the face and the hands. With a subunit vaccine, immunized animals did not develop severe disease and survived. This is a promising study, because a subunit vaccine does not have the feared side effects of the present smallpox vaccine [39]. In a following study, they tried to boost immune response to the gene-based vaccine using adjuvants like granulocyte macrophage-colony stimulating factor (GM-CSF) and Escherichia coli heat-labile enterotoxin. Unvaccinated control animals became severely ill, four of the five had to be euthanized, whereas all five animals vaccinated with gene-based vaccine with adjuvants survived without shedding virus, but one developed severe disease. Control animals which were vaccinated with modified Virus Ankara (MVA) shed virus, three of five became heavily ill [40]. To get more information about innate immunity in MPXV infection, Song and colleagues challenged rhesus macaques intravenously with MPXV and analyzed the changes in natural killer (NK) cell numbers, NK cell proliferation, chemokine receptor expression and cellular functions. They found that NK cell frequency and the absolute number in the blood and in the lymphoid tissues increase following MPXV infection. Interestingly, MPXV infection induces a reduced migrating capacity of NK cells and a reduced degranulation capacity. Thus, cytotoxic effects of cytokines were not reached [41].

6 Vet. Sci. 2014, 1 45 Dyall and colleagues challenged cynomolgus macaques of both sexes intravenously, as well as intrabronchially, with or PFU of MPXV and observed progression and regression of the disease course with molecular imaging like positron emission tomography (PET) and computed tomography (CT). Animals that were infected intravenously did not show any signs of lung consolidation or inflammation in molecular imaging contrary to those infected intrabronchially. In these animals, PET/CT imaging revealed areas of necrosis, mixed inflammation, oedema, and some fibrosis in the lung. For both routes, clear manifestation of lymphadenopathy and manifestation in the axillary lymph nodes could be shown [42]. Earl and colleagues challenged cynomolgus macaques intravenously with MPXV at four, six, ten, and thirty days after immunization with MVA and Dryvax. The animals were protected against disease outbreak if they were challenged at least six days after immunization. The researchers found that a single dose of MVA induces a rapid immune response suggesting that it might be a countermeasure against a potential smallpox virus outbreak. A further result was that MVA produces a more rapid immune response compared to the licensed Dryvax vaccine [43]. To examine the question whether human immunodeficiency virus type 1 (HIV-1) infected creatures are protected by smallpox vaccination, researchers infected fourteen rhesus macaques with simian immunodeficiency virus (SIV) and immunized them with different combinations of MVA, NYVAC, and Dryvax. One and six months after immunization, the animals which had CD4 + cell counts <300 mm 3 were challenged intravenously with PFU of MPXV. All challenged monkeys showed a severe disease course with typical pox lesions on skin and the lining of the oropharynx. This lack of protection could be the consequence of the inability of the SIV-infected macaques to switch vaccinia-specific immunoglobulin (Ig) from IgM to IgG [44]. A further vaccination study with Dryvax conducted by Edghill-Smith and colleagues found that vaccinia-specific B-cell responses are indispensable for protection from lethal monkeypox disease, whereas CD4 + and CD8 + T cells do not play an important role. They immunized rhesus macaques with Dryvax and challenged them intravenously with a dose of PFU of MPV [45]. Another study examined the use of subunit recombinant vaccine against MPXV in a rhesus macaque model. They immunized the monkeys with plasmid DNA alone, in combination with the equivalent recombinant proteins, or only with the proteins. Thirty-five weeks after the beginning of immunization, the animals were challenged intravenously with PFU of MPXV. Immunization only with DNA did not lead to protection against MPXV challenge; the animals had to be euthanized due to severe disease. Animals which were immunized with proteins, developed mild to severe disease but survived. Animals that were immunized with a combination of DNA and proteins had only few lesions, which healed within days and showed only mild disease symptoms [46]. The integration of human cytokine IL15 into the genome of Wyeth strain of VACV confers long-term protection to cynomolgus macaques [47]. The researchers immunized the monkeys and challenged them three years later intravenously with 10 7 PFU of MPXV. By day 27 post challenge, all skin lesions of Wyeth-IL15 immunized animals were healed, whereas all unvaccinated control animals succumbed to the disease.

7 Vet. Sci. 2014, Intratracheal/Aerosolization The transmission via aerosol is supposed to play an important role even if primary monkeypox infection is transmitted by direct cutaneous or mucosal contact [22,48]. Stittelaar and colleagues challenged cynomolgus macaques intratracheally with MPXV after vaccination with MVA and Elstree. One single animal developed a light course of disease but did not die. Unvaccinated control animals developed severe disease showing fibrinonecrotic bronchopneumonia, necrotizing dermatitis, glossitis, and splenitis with lymphoid depletion [49]. In a following study, the researchers again inoculated cynomolgus macaques intratracheally with a lethal dose of MPXV to evaluate the efficacy of post-exposure antiviral treatments and vaccination. In contrast to post-exposure vaccination with Elstree, antiviral treatment with cidofovir or with a nucleoside phosphonate analogue resulted in a reduced number of skin lesions and a reduced mortality rate. Untreated challenged control animals showed severe skin lesions, dyspnea and low blood oxygen saturation and died within 15 days after being challenged with MPXV [50]. One disadvantage of intratracheal models of MPXV infection is the huge amount of virus needed which does not resemble the natural infection. Intratracheal infection models do not take into consideration the physiological inhalation procedure, which is skipped by depositing virus directly into airways. To infect monkeys more efficiently, researchers developed new aerosolization methods: Zaucha and colleagues established an aerosolized MPXV infection in cynomolgus monkeys using a head-only esposure chamber with a collision nebulizer. They exposed monkeys to four different doses of aerosolized MPXV, trying to imitate the natural route of transmission for human VARV infection. Fever, lymphadenopathy and depression were present around day six, post exposure. The animals died nine to seventeen days post exposure suffering from fibrinonecrotic bronchopneumonia. The pathogenesis of this route of infection is comparable to smallpox infection, which also starts in the respiratory mucosa, spreads to local lymph nodes, and is also followed by viremia [51]. To further characterize the pathogenesis of MPXV, Nalca and colleagues exposed cynomolgus macaques in the same way like described by Zaucha. Blood analysis revealed that complete blood count (CBC) and clinical chemistry of MPXV infected animals deviate from normal values comparable to human monkeypox cases. Main pathological findings and cause of death were primary fibrinonecrotic bronchopneumonia, comparable to the results of Zaucha. Furthermore, they interestingly found that heavy males were more resistant [21]. Barnewall and colleagues performed a MPXV infection study with six cynomolgus macaques, also using the above described head-only aerosol exposure system. The most prominent pathological lesion was bronchopneumonia. They also found that weight and/or sex may be important for disease course. Furthermore they compared two sampling methods of MPXV aerosols and concluded that gelatin filters and impingers delivered comparable results [52]. One disadvantage of above described head-only chamber is the fact that each monkey inhales different doses of virus, which aggravates comparability [15]. To compare the protective effects of Imvamune and Acam2000 vaccines, Hatch and colleagues challenged cynomolgus macaques with a target dose of 10 5 PFU of MPXV. They used a flexible system, in which the challenge aerosol is delivered by a nebulizer over a modified veterinary anesthesia mask. Acam2000 protected the animals completely even if applicated only once, whereas Imvamune showed protection from severe disease and death only if applicated twice (prime and boost immunization) [53].

8 Vet. Sci. 2014, Microsprayer-Technique and Intrabronchial A new challenge technique tries to refine the virus delivery. Goff and colleagues inserted a microsprayer attached to a bronchoscope into the trachea of cynomolgus macques and challenged the animals via a high-pressure syringe, which facilitates precise dosage. They could lower the dose of virus compared to the intravenous challenge dose and the infection resulted in a fatal disease course. The animals showed marked lobar fibrinonecrotic pneumonia and more cutaneous lesion compared to other aerosol models. This means a better comparability to smallpox. One disadvantage of this technique is the possible mechanical damage of the respiratory tissue causing an inflammation at the inoculation site [36]. Compared to the aerosol models, intrabronchial models have the advantage that inoculation via bronchoscope allows a measurable and exact deposit of virus. Furthermore, the technique is easy to conduct and does not require special expensive equipment. Estep and colleagues proposed that monkeypox inhibitor of complement enzymes (MOPICE) is an important virulence factor in Central African strains of MPXV. To verify that, they inoculated rhesus monkeys intrabronchially with PFU of MPXV-Zaire (n = 4) and with a recombinant MPXV-Zaire (n = 4), which does not express MOPICE. Both animals groups developed similar disease symptoms: typical pox skin lesions, fever, and respiratory symptoms. Interestingly, the animals which were infected with the knockout clade, showed more severe disease courses: One animal died at day 17 post infection due to MPXV-related disease complications, two animals had very low oxygen saturation levels at 14 and 28 days post infection, respectively, and two animals showed a delayed wound healing process. The knockout group had higher peak viral loads than the wild type infected group. The results suggest that MOPICE is not an important virulence factor, but that it is important to generate a successful adaptive immune response [54]. To find out if intrabronchial exposure to MPXV produces a disease course, which is comparable to human MPXV infection, researchers infected cynomolgus macaques with MPXV by the intravenous and the intrabronchial inoculation route. Although both routes produced typical pox-like disease, they concluded that the intrabronchial model is more adequate than the intravenous model: The whole disease course is delayed and, therefore, allows a deeper insight into pathogenesis [55]. To study host-pathogen interaction in bronchoalveolar lavage fluids (BALF), Brown and colleagues infected rhesus macaques intrabronchially with PFU of MPXV and flushed lungs of infected animals with PBS. They found an increase in inflammatory and interestingly a decrease in structural and metabolic proteins after infection and conclude that inflammation is not the only contributor to disease course. Structural and metabolic proteins also seem to play in important role in pathogenesis of MPXV [56] Intranasal Saijo and colleagues showed that vaccination with Lister, as well as with LC16m8, protected cynomolgus macaques against a lethal MPXV infection. They infected the animals intranasally with MPXV strain Liberia or Zaire. Unvaccinated control animals featured loss of appetite, diarrhea, and papulovesicular skin lesions, but none of the animals died [57]. In a further study, they inoculated Congo Basin and West African strains of MPXV subcutaneously, respectively intranasally into

9 Vet. Sci. 2014, 1 48 cynomolgus monkeys. They found that the virulence of Congo Basin strain is much higher than of West African one, which could be explained by the difference in organ tropism and, thus, in the sites of virus replication. Congo Basin caused more organ dysfunction than West African and replicated more efficiently [58] Subcutaneous Subcutaneous infection seems to play in important role in MPXV infections [15] and is therefore a good model to test antiviral therapeutics. Early studies revealed that subcutaneous injection of MPXV in rhesus and cynomolgus macaques only caused locally restricted skin lesions or mild generalized disease without death [15,27,59]. Recent studies have obtained different results: In a vaccination study with Lister and LC16m8, cynomolgus macaques were challenged intranasally and subcutaneously. In non-immunized control animals, subcutaneous injection of MPXV has led to generalized, severe disease that required euthanasia. Histopathological investigations revealed alterations in the lymphoid system, respiratory, digestive and urinary tract and the skin [57]. A subsequent study compared Congo Basin and West African strains of MPXV. Three of four monkeys, which were subcutaneously infected with Congo Basin strain, showed a sharp decrease of body weight and succumbed to the disease. In the group that was subcutaneously infected with West African strain, one of three animals died [58]. Summary Monkeypox Although MPXV has only been detected in African non-human primates, Asian macaques like rhesus and cynomolgus macques, which are not natural hosts, are the most often used species for MPXV models. This may be due to the fact that these species are widely spread in animal experiments, easy available and have been well investigated [15]. Both species are susceptible to MPXV, but rhesus macaques seem to be less susceptible than cynomolgus macaques, as observed in an US outbreak in 1960 [15,60]. Concerning the appropriate inoculation route, none mimics sufficiently natural infection with VARV or MPXV. The exact transmission route for MPXV is still not clear, which makes it more difficult to evaluate transmission routes. Additionally, the inoculum dose in natural infections may be lower than those inoculated experimentally. Intravenous models of MPXV infection skip infection of respiratory tissue and incubation phase and, therefore, do not mimic the natural route of transmission. Nevertheless, they cause systemic disease with mortality rates up to 100%. This makes the intravenous model interesting for vaccine and therapeutical studies concerning smallpox [15]. Respiratory NHP challenge models of MPXV have a slowed course of disease compared to intravenous models. They often cause fibrinonecrotic bronchopneumonia, which resembles human MPXV disease course. In addition, mortality rates of 100% rates are not reached in respiratory challenge models [15,36,51,55,57], which also resembles human MPXV. Thus, respiratory models are appropriate to get further insight into pathogenesis of human MPXV. Different techniques can be used to inoculate virus into the respiratory tract. Application via bronchoscope is easy, inexpensive and allows an exact deposition of the virus. However, there is the potential risk to damage tissue and to cause non-virus related inflammation [15]. This problem does not occur if virus is aerosolized. However, there is the disadvantage that quite high doses of virus are needed and it is not guaranteed that each monkey gets exact the same amount of virus.

10 Vet. Sci. 2014, 1 49 Subcutaneous models closely mimic natural transmission of MPXV and are, therefore, a good tool to examine pathogenesis of human MPXV infections. Contrary to this, they do not mimic the transmission route for VARV, which happens via respiratory tract, and are therefore less suitable for VARV research. 3. Smallpox Development of animal models for smallpox is very difficult, because natural VARV is restricted to humans. Additionally, it is unclear to what extent resultant pathology of animals compares with that of naturally happening smallpox disease in humans [61]. Due to their close relationship to humans, WHO and the U.S. National Academy of Sciences recommended the use of NHP models for smallpox research [62]. The VARV NHP models are reserved for in vivo experiments with antiviral drugs or vaccines that have already fulfilled the criteria required by FDA. Additionally, the research community hopes to get a deeper insight into the, thus far, unexplored pathogenesis of smallpox. In 1906, Brinckerhoff and Tyzzer unsuccessfully tried to infect cynomolgus and pig-tailed macaques with VARV [61,63]. In the 1950s and 1960s, researchers still failed to develop efficient NHP models of smallpox. They challenged wild-caught monkeys with VARV via inhalation of a cloud of dried particles, but, beyond pulmonary lesions, they could detect no pathological changes in other tissues. The resulting mild disease did not resemble fulminant disease course of smallpox in humans [64]. Westwood challenged rhesus macaques via aerosol to VARV and succeeded in provoking a more pronounced clinical disease [65,66]. Ultimately, VARV studies with NHP were discontinued due to unsatisfying results. Sociopolitical changes and the fear of bioterrorism in the early 21st century reintensified VARV studies with NHP. First experiments again failed to produce lethal disease course: Cynomolgus macaques were challenged via aerosol with high doses of VARV strains. They only showed mild clinical signs without dying [67]. But a later experiment with two VARV strains (Harper and India 7124) resulted in a fulminant lethal disease course of cynomolgus macaques which were infected intravenously or intravenously in combination with aerosol exposure [68]. Disease course appeared to be dose dependent, as high doses administered intravenously (10 9 PFU) caused hemorrhagic diathesis ending in acute deaths whereas lower doses resulted in ordinary smallpox. A disadvantage regarding testing antiviral drugs is the fact that intravenous inoculation of VARV skips the incubation period which happens in natural human smallpox. Nevertheless, this model is the first that could produce a lethal VARV infection in cynomolgus macaques. It can be used as a model for hemorrhagic smallpox. To get further insight into the molecular features of smallpox infection, researchers infected cynomolgus macaques intravenously or intravenously in combination with aerosol exposure with VARV (strain Harper and India 7124) and analyzed in serial blood samples the host gene expression in PBMCs (peripheral blood mononuclear cells). The animals had a severe clinical disease course developing fever, typical pox skin lesions, visceral and mucosal hemorrhage, and showed an upregulation of inflammatory cytokines [62]. To get more knowledge about the progression of smallpox disease and the differences between the ordinary and the hemorrhagic disease course, Wahl-Jensen and colleagues challenged cynomolgus macaques intravenously with VARV doses which either caused hemorrhagic or ordinary disease. They performed temporal pathology analysis and took serial samples. In the ordinary smallpox model,

11 Vet. Sci. 2014, 1 50 lymphoid and myeloid hyperplasia was observed. Only a few VARV particles in tissue could be detected compared to the hemorrhagic model. In hemorrhagic smallpox model lymphocytolysis and hematopoietic necrosis, as well marked antigen accumulation occurred. Furthermore, hemorrhagic disease was always accompanied by secondary bacterial infections [69]. Huggins and colleagues infected eight cynomolgus monkeys intravenously with 10 8 PFU of VARV (strain Harper). Two control animals, which did not receive drugs, had to be euthanized on day twelve. Their disease course resembled human smallpox infection, especially disease endpoints like lesions and death. Three animals were treated with Tecovirimat (300 mg/kg/day) immediately after infection and three animals 24 h post infection. Both groups were protected from disease and death [20]. A study conducted by Mucker and colleagues also evaluated the efficacy of Tecovirimat. They infected 18 male cynomolgus macaques intravenously with 10 8 PFU of VARV and showed that treatment with Tecovirimat two, as well as four, days post infection protected the animals from death, effected a significant reduction in total skin lesions, reduced viremia and virus shedding in the oropharynx. All non-treated control animals succumbed to the disease. The researchers conclude that Tecovirimat is an effective drug against smallpox disease [70]. Summary Smallpox Due to fear of bioterrorism, efforts to develop smallpox NHP models have been intensified since the beginning of the 21st century leading to NHP models in which pathogenesis and antiviral drugs, especially Tecovirimat, have been investigated. Though intravenous inoculation of the virus does not represent the natural infection route, it causes a clinical course, which resembles the latter stage of human disease, and is, therefore, suitable to prove the efficacy of therapeutics. Working with smallpox virus to test the efficacy of antiviral drugs and vaccines against smallpox has the advantage that the original causative agent of the disease is used, even though NHP are not natural hosts. Because of its high zoonotic potential, research with this extremely dangerous virus is restricted to two biosafety-level four laboratories worldwide (CDC, USA and State Research Center of Virology and Biotechnology, Russia) and is, therefore, available to only a very small research community. 4. Cowpox CPXV, which belongs to the OPXV, is a noteworthy virus. It has the broadest host range of all OPXV, the largest genetic repertoire and produces an array of gene products, which manipulate the immune system [7,71]. Cowpox is an emerging hazard. During the last decades, reports about CPXV infections in humans, as well as in animal are increasing [72 76]. As smallpox immunization has been stopped, human population is now getting more vulnerable to CPXV infections. Human cowpox is a zoonotic infection, which usually causes self-limiting, painful skin lesions, particularly located on the hands, face, or trunk. In immunocompetent people, they are healing within several weeks, leaving scars. Further symptoms are fever, depression, and lymphadenopathy. Ocular cowpox infection can, rarely, happen [77 79]. However, severe complications can occur in immunocompromised persons or persons with atopic dermatitis [80 84]. Unlike smallpox, which is transmitted via the respiratory route, cowpox has to be transmitted through direct contact with skin or mucosal lesions.

12 Vet. Sci. 2014, 1 51 The name cowpox originates from infected domestic cattle, which transmitted the disease to milkers. The name is misleading [85], as transmission by cows is not the main transmission route any more. Nowadays, CPXV exists in many host species in Western Eurasia [86]. Asymptomatic carriers are wild infected rodents. A survey conducted by Kinnunen and colleagues, in which they screened wild rodents from Germany, Finland, and Siberia s Baikal region for OPV antibodies and for the presence of OPXV DNA, revealed a seroprevalence up to 33% and the presence of poxvirus antigen in three rodents [87]. Cats are infected by feeding on rodents that are carrying the virus [88]. Zoo animals and exotic animals like Llamas are also infected [4,86,89,90]. CPXV outbreaks in NHP in European zoos and sanctuaries have occurred [91,92]. Common marmosets (Callithrix jacchus) showed a fulminant disease course [91,92]. In a private husbandry in Germany, 30 of 80 New World Monkeys died within a week after onset of symptoms. They showed fever, depression, severe erosive-ulcerative lesions of the oral membranes, and lymphadenopathy. In this case, owners and animal caretakers did not become ill. Researchers from the German Primate Center and the Robert Koch Institute isolated an OPXV with close homology to CPXV and named it calpox, according to its host Callithrix jacchus. Pathologic examination showed hemorrhagic skin lesions on the face, scrotal region, soles and palms, facial oedema, and focal erosions and ulcerations of the oral mucous membranes (see Figure 3). Histopathologically, the hemorrhagic-topustular skin lesions were accompanied by vesiculation, epidermal acanthosis, and acantholysis and necrosis (see Figure 4). Eosinophilic intracytoplasmic inclusions bodies could be detected in degenerated keratinocytes. Transmission Electron Microscopy revealed particles with characteristic pox-like features. Kramski and colleagues succeeded in developing a common marmoset model for calpoxvirus infection. They infected marmosets via the intravenous and the intranasal route and produced a lethal disease course, in which the animals died within three days after onset of symptoms. The animals showed characteristic pox-like lesions in the skin and mucous membranes, subcutaneous oedema, splenic lymphoid hyperplasia, and lymphadenomegaly of different lymph nodes [93]. Histological investigations revealed vesicular dermatitis with necrosis, acanthosis, acantholysis, and syncytia formation of the basal keratinocytes [94]. Advantages of this model are firstly the low infectious dose, as even a very low dose of PFU was effective. Secondly, CPXV can be handled under a lower biohazard level than MPXV or VARV, which facilitates research with this virus. Furthermore, common marmosets have several advantages compared to commonly used NHP: Their small size allows an easy handling. They can be housed in family groups, are not endangered and are inexpensive to keep [95]. As CPXV is genetically and, antigenically, quite comparable to VACV and related to MPXV and VARV (they share 19 immunomodulatory genes), CPXV models are an alternative to above presented models for smallpox and monkeypox [82,96,97]. In addition, gaining more knowledge of CPXV pathogenesis itself is also very important due to its increasing zoonotic potential. Smith and colleagues present a CPXV model, in which they infect cynomolgus macaques intrabronchially with different dilutions of CPXV ( to ). Lymphoid hyperplasia up to oedema and histiocytosis in the lymph nodes (depending on the inoculated dose) and multifocal neutrophilic infiltrates in the liver showed similarity to histopathological changes in other OPXV infections like MPXV and VARV. Lesions in lung (like alveolar oedema, necrotizing fibrinous pleuritis, congestion, atelectasis, pneumonia) are more pronounced in comparison to human smallpox disease. Measuring of cytokines and chemokines revealed a heavy pro-inflammatory response [98].

13 Vet. Sci. 2014, 1 Figure 3. Callithrix jacchus (C. jacchus) with marked subcutaneous oedema and erythema on the neck region and single papular lesions on mucocutaneous junctions after experimental infection with calpox. Figure 4. Calpox virus infected saddle back tamarin, skin. High-grade, focal, vesicular dermatitis with intracytoplasmatic eosinophilic inclusion bodies, ballooning degeneration and hemorrhage. 52

14 Vet. Sci. 2014, 1 53 Recently, Johnson and colleagues inoculated fourteen cynomolgus macaques intravenously with different doses of CPXV ( PFU) [99]. Nine of fourteen animals developed typical pox skin lesions. Further findings were hemorrhage in lymph nodes, multifocal petechial hemorrhages in the gastrointestinal tract, on heart, lung, kidneys, urinary bladder, and brain. This indicates a hemorrhagic disease course. All monkeys revealed interstitial pneumonia, interstitial nephritis, and hepatitis, and died within 12 days. The researchers conclude that this animal model may serve as a model for hemorrhagic smallpox, which is more feasible than the VARV using model of Jahrling [68]. Song and colleagues tried to find an early biological marker for prognosis of poxvirus infection, as clinical symptoms are not always reliable. Therefore, they infected nine cynomolgus macaques of both sexes intravenously with CPXV of different doses and monitored pox-antigen presence in immune cells by intracellular staining. They found that monocytes and granulocytes are the mainly affected cell population and that the presence of poxvirus antigen in the cells is closely connected to disease course and time of death. Based on these results, they suggest that the technique of monitoring pox-antigen staining in immune cells can be applied in human poxvirus infections to predict disease course and to value the efficacy of new antiviral therapeutics and vaccines [100]. Summary Cowpox The number of diagnosed CPXV infections is increasing due to the cessation of vaccination against smallpox. Therefore, more research is needed to get a deeper insight into pathogenesis of CPXV infections and to develop antiviral drugs. NHP cowpox models can also be used as a model for hemorrhagic smallpox and have the advantage that CPXV does not need as high biosafety levels as MPXV or VARV and is therefore easier to work with. Cynomolgus macaques have been infected intravenously and intrabronchially with CPXV to study pathogenesis. Common marmosets have been infected intravenously and intranasally. The latter route of infection resembles the natural infection route of smallpox and is therefore a suitable model for the validation of therapeutics and vaccines. Compared to other NHP, common marmosets have several advantages: Their small size allows an easy handling and housing and an inexpensive keeping. Furthermore, they have a high reproduction rate. A disadvantage is that some critical reagents are not available yet for this species. 5. Conclusions The main cause of NHP studies is to develop models to test new antiviral therapeutics and vaccines and to get a deeper insight into pathogenesis of OPXV infections. To sum up, there exists no NHP model that perfectly represents human disease (see Figure 5). Each model has its advantages and disadvantages. Concerning smallpox research, cynomolgus macaques infected with MPXV are, thus far, the best model for human smallpox [70]. Models, which use VARV, have the advantage that the original causative agent for human smallpox is used but handling VARV is dangerous and can only be done in two laboratories worldwide. In the last decades, promising new animal models have been developed, but none of them is good enough to safely predict a response to new therapeutics or vaccines in humans. Thus, there is a need for more research in this area. The next years will lead to interesting new findings concerning OPXV pathogenesis and development of new compounds driven by concerns of bioterrorism and increasing zoonotic potential of OPXV.

15 Vet. Sci. 2014, 1 54 Figure 5. Comparison of disease courses in different orthopoxvirus models. Table 1. Orthopoxvirus models in non-human primates. Species Route of Infection Virus Dose Purpose of Study Reference M.f. and M.m. i.m. MPXV 10 5 PFU pathogenesis [33] P.c. i.m. MPXV Copenhagen TCID 50 pathogenesis [34] P.c. via skin scarification MPXV 10 7 TCID 50 pathogenesis [35] M.f. i.v. MPXV Zaire PFU Tecovirimat efficacy study [20] M.f. i.v. MPXV Zaire PFU Tecovirimat efficacy study [37] M.f. i.v. MPXV-GFP Zaire PFU pathogenesis [38] M.m. i.v. MPXV Zaire PFU DNA vaccine study [39] M.m. i.v. MPXV Zaire PFU MVA/gene based vaccine study [40] M.m. i.v. MPXV Zaire PFU pathogenesis [41] M.f. i.v. and i.b. MPXV Zaire PFU pathogenesis [42] M.f. i.v. MPXV Zaire PFU Dryvax/MVA vaccine study [43] M.m. i.v. MPXV Zaire PFU Vaccine study in SIV-infected macaques [44]

16 Vet. Sci. 2014, 1 55 Table 1. Cont. Species Route of Infection Virus Dose Purpose of Study Reference M.m. i.v. MPXV Zaire PFU MVA/NYVAC/ Dry-vax vaccine study [45] M.m. i.v. MPXV Zaire PFU Subunit recombinant vaccine study [46] M.f. i.v. MPXV Zaire PFU Il-15/Wyeth vaccine study [47] M.f. i.t. MPXV MSF # PFU in 5 ml MVA vaccine study [49] M.f. i.t. MPXV MSF # PFU in 5 ml Comparison post-exposure vaccination with antiviral [50] therapeutics M.f. via head-only exposure chamber MPXV Zaire PFU pathogenesis [51] M.f. via head-only exposure chamber MPXV Zaire PFU pathogenesis [21] M.f. via head-only exposure system MPXV Zaire PFU pathogenesis [52] M.f. via Henderson- apparatus Imvamune, Acam2000 and modified MPXV Zaire PFU vaccine study anesthesia mask [53] M.f. bronchoscope and liquid MicroSprayer aerosolizer MPXV Zaire PFU pathogenesis [36] M.m. i.b. MPXV Zaire and D14L KO MPXV PFU pathogenesis [54] M.f. i.v. and i.b. MPXV Zaire 79 i.v.: PFU i.b.: PFU pathogenesis [55] M.m. i.b. MPXV Zaire PFU pathogenesis [56] M.f. i.n. and subcutaneous MPXV Liberia and Zaire PFU LC16m8 vaccine study [57] M.f. i.n. and subcutaneous MPXV Liberia and Zaire PFU pathogenesis [58] M.m. via Henderson apparatus VARV Higgins? pathogenesis [64,66] M.f. aerosol VARV >10 8 PFU pathogenesis [67] M.f. aerosol and/or i.v. VARV Harper and India PFU pathogenesis [68] M.f. aerosol VARV Harper and Aerosol: PFU and/or i.v. India 7124 i.v.: 10 9 PFU pathogenesis [62] M.f. i.v. VARV Harper PFU pathogenesis [69] M.f. i.v. VARV Harper PFU ST-246 efficacy study [20] M.f. i.v. VARV Harper PFU ST-246 efficyacy study [70] C.j. i.v. and i.n. calpox i.v.: PFU i.n.: PFU pathogenesis [93,94] M.f. i.b. CPXV PFU pathogenesis [98] M.f. i.v. CPXV Brighton Red PFU pathogenesis [99] M.f. i.v. CPXV Brighton PFU pathogenesis [100] M.f.: Macaca fascicularis; M.m.: Macaca mulatta; P.c.: Papio cynocephalus; C.j.: Callithrix jacchus; i.v.: intravenous; i.n.: intranasal; i.b.: intrabronchial; i.t.: intratracheal; PFU: plaque-forming units.

17 Vet. Sci. 2014, 1 56 Acknowledgments We would like to thank Christiane Stahl-Hennig (German Primate Center) and Heinz Ellerbrok (Robert-Koch-Institute) for their collaboration. Conflicts of Interest The authors declare no conflict of interest. References 1. Fenner, F.; Henderson, D.A.; Arita, I.; Jezek, Z.; Ladnyi, I.D. Variola virus and other orthopoxviruses. In Smallpox and Its Eradication; WHO: Geneva, Switzerland, Shchelkunov, S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013, 9, doi: /journal.ppat Nitsche, A. Untersuchungen zur Diagnostik und Risikobewertung von Emerging und Re-Emerging Orthopockenviren in Deutschland. Habilitation Thesis, Robert Koch-Institute, Berlin, Germany, Cardeti, G.; Brozzi, A.; Eleni, C.; Polici, N.; D Alterio, G.; Carletti, F.; Scicluna, M.T.; Castilletti, C.; Capobianchi, M.R.; di Caro, A.; et al. Cowpox virus in llama, italy. Emerg. Infect. Dis. 2011, 17, Bonnekoh, B.; Falk, K.; Reckling, K.F.; Kenklies, S.; Nitsche, A.; Ghebremedhin, B.; Pokrywka, A.; Franke, I.; Thriene, B.; König, W.; et al. Cowpox infection transmitted from a domestic cat. J. Dtsch. Dermatol. Ges. 2008, 6, Baxby, D. Cowpox: Increased incidence or interest? Lancet 1994, 343, Dabrowski, P.W.; Radonic, A.; Kurth, A.; Nitsche, A. Genome-wide comparison of cowpox viruses reveals a new clade related to variola virus. PLoS ONE 2013, 8, doi: /journal. pone Rimoin, A.W.; Mulembakani, P.M.; Johnston, S.C.; Lloyd Smith, J.O.; Kisalu, N.K.; Kinkela, T.L.; Blumberg, S.; Thomassen, H.A.; Pike, B.L.; Fair, J.N.; et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the democratic republic of congo. Proc. Natl. Acad. Sci. USA 2010, 107, Breman, J.G.; Henderson, D.A. Poxvirus dilemmas-monkeypox, smallpox, and biologic terrorism. N. Engl. J. Med. 1998, 339, Jahrling, P.B.; Fritz, E.A.; Hensley, L.E. Countermeasures to the bioterrorist threat of smallpox. Curr. Mol. Med. 2005, 5, Anderson, P.D.; Bokor, G. Bioterrorism: Pathogens as weapons. J. Pharm. Pract. 2012, 25, Hutson, C.L.; Damon, I.K. Monkeypox virus infections in small animal models for evaluation of anti-poxvirus agents. Viruses 2010, 2, Safronetz, D.; Geisbert, T.W.; Feldmann, H. Animal models for highly pathogenic emerging viruses. Curr. Opin. Virol. 2013, 3,

18 Vet. Sci. 2014, Jordan, R.; Hruby, D. Smallpox antiviral drug development: Satisfying the animal efficacy rule. Expert Rev. Anti-Infect. Ther. 2006, 4, Parker, S.; Buller, R.M. A review of experimental and natural infections of animals with monkeypox virus between 1958 and Future Virol. 2013, 8, Chapman, J.L.; Nichols, D.K.; Martinez, M.J.; Raymond, J.W. Animal models of orthopoxvirus infection. Vet. Pathol. 2010, 47, Smee, D.F.; Sidwell, R.W. A review of compounds exhibiting anti-orthopoxvirus activity in animal models. Antivir. Res. 2003, 57, Smee, D.F. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antivir. Chem. Chemother. 2008, 19, Smee, D.F. Orthopoxvirus inhibitors that are active in animal models: An update from 2008 to Future Virol. 2013, 8, Huggins, J.; Goff, A.; Hensley, L.; Mucker, E.; Shamblin, J.; Wlazlowski, C.; Johnson, W.; Chapman, J.; Larsen, T.; Twenhafel, N.; et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug st-246. Antimicrob. Agents Chemother. 2009, 53, Nalca, A.; Livingston, V.A.; Garza, N.L.; Zumbrun, E.E.; Frick, O.M.; Chapman, J.L.; Hartings, J.M. Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus. PLoS ONE 2010, 5, doi: /journal.pone Jezek, Z.; Szczeniowski, M.; Paluku, K.M.; Mutombo, M. Human monkeypox: Clinical features of 282 patients. J. Infect. Dis. 1987, 156, Reynolds, M.G.; Carroll, D.S.; Karem, K.L. Factors affecting the likelihood of monkeypox s emergence and spread in the post-smallpox era. Curr. Opin. Virol. 2012, 2, McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis. 2014, 58, Damon, I.K. Status of human monkeypox: Clinical disease, epidemiology and research. Vaccine 2011, 29 (Suppl. 4), D54 D Von Magnus, P.; Anderson, E.; Petersen, K.; Birch-Anderson, A. A pox-like disease in cynomolgus monkeys. Acta Pathol. Microbiol. Scand. 1959, 46, Prier, J.E.; Sauer, R.M. A pox disease of monkeys. Ann. N. Y. Acad. Sci. 1960, 85, Khodakevich, L.; Jezek, Z.; Kinzanzka, K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet 1986, 1, DiGiulio, D.B.; Eckburg, P.B. Monkeypox in the western hemisphere. N. Engl. J. Med. 2004, 350, ; author reply Reed, K.D.; Melski, J.W.; Graham, M.B.; Regnery, R.L.; Sotir, M.J.; Wegner, M.V.; Kazmierczak, J.J.; Stratman, E.J.; Li, Y.; Fairley, J.A.; et al. The detection of monkeypox in humans in the western hemisphere. N. Engl. J. Med. 2004, 350, Centers for Disease, Control and Prevention. Update: Multistate outbreak of monkeypox Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, MMWR. Morb. Mortal. Wkly. Rep. 2003, 52, Parker, S.; Nuara, A.; Buller, R.M.; Schultz, D.A. Human monkeypox: An emerging zoonotic disease. Future Microbiol. 2007, 2,

Testing and Development of Orthopoxvirus Vaccines in the Era of the Animal Rule

Testing and Development of Orthopoxvirus Vaccines in the Era of the Animal Rule Testing and Development of Orthopoxvirus Vaccines in the Era of the Animal Rule MRCE Making a Vaccine Against a Bioweapon Involves the FDA Animal Rule To allow appropriate studies in animals in certain

More information

Variola. Patricia Bolívar MS., CLS, PHM

Variola. Patricia Bolívar MS., CLS, PHM Variola Patricia Bolívar MS., CLS, PHM Description and Significance Smallpox was one of the most notorious infections of mankind. It was declared eradicated by the World Health Assembly in 1979, 2 years

More information

Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections

Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections Viruses 2010, 2, 2381-2403; doi:10.3390/v2102381 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections Yuhong

More information

Originally published as:

Originally published as: Originally published as: Mätz-Rensing, K., Stahl-Hennig, C., Kramski, M., Pauli, G., Ellerbrok, H., Kaup, F.-J. The Pathology of Experimental Poxvirus Infection in Common Marmosets (Callithrix jacchus):

More information

Overview on smallpox vaccines. H. Meyer, Paul-Ehrlich-Institut

Overview on smallpox vaccines. H. Meyer, Paul-Ehrlich-Institut Overview on smallpox vaccines H. Meyer, Paul-Ehrlich-Institut 06.11.2013 1 Smallpox - features Ø Two principle clinical forms of smallpox can be differentiated, which are caused by different strains of

More information

Introduction. In the past 15 years, several technological advancements have open new perspectives and applications in the field of vaccinology.

Introduction. In the past 15 years, several technological advancements have open new perspectives and applications in the field of vaccinology. Introduction In the past 15 years, several technological advancements have open new perspectives and applications in the field of vaccinology. - Genomics: fasten antigen discovery for complex pathogens

More information

Marmoset-based infectious disease research under biocontainment conditions

Marmoset-based infectious disease research under biocontainment conditions Marmoset-based infectious disease research under biocontainment conditions Jean Patterson, PhD Texas Biomedical Research Institute October 22 nd, 2018 West Nile virus Common marmoset found to be equivalently

More information

Smallpox. Houston Academy of Medicine - Texas Medical Center Library. From the SelectedWorks of Richard N Bradley

Smallpox. Houston Academy of Medicine - Texas Medical Center Library. From the SelectedWorks of Richard N Bradley Houston Academy of Medicine - Texas Medical Center Library From the SelectedWorks of Richard N Bradley September, 2007 Smallpox Richard N Bradley, The University of Texas Health Science Center at Houston

More information

The curse of the Scholarly Selective DR EDDIE CHAN VIDS REGISTRAR ROYAL MELBOURNE HOSPITAL

The curse of the Scholarly Selective DR EDDIE CHAN VIDS REGISTRAR ROYAL MELBOURNE HOSPITAL The curse of the Scholarly Selective DR EDDIE CHAN VIDS REGISTRAR ROYAL MELBOURNE HOSPITAL INTRODUCTION 30M Medical student Working in an immunology laboratory PDI Used with patient s express permission

More information

WORLD HEALTH ORGANIZATION. Smallpox eradication: destruction of Variola virus stocks

WORLD HEALTH ORGANIZATION. Smallpox eradication: destruction of Variola virus stocks WORLD HEALTH ORGANIZATION EXECUTIVE BOARD EB111/5 111th Session 23 December 2002 Provisional agenda item 5.3 Smallpox eradication: destruction of Variola virus stocks Report by the Secretariat 1. The WHO

More information

Received 15 October 2010/Accepted 21 May 2011

Received 15 October 2010/Accepted 21 May 2011 JOURNAL OF VIROLOGY, Aug. 2011, p. 7683 7698 Vol. 85, No. 15 0022-538X/11/$12.00 doi:10.1128/jvi.02174-10 Copyright 2011, American Society for Microbiology. All Rights Reserved. Establishment of the Black-Tailed

More information

Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox

Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox JVI Accepts, published online ahead of print on 22 June 2011 J. Virol. doi:10.1128/jvi.02173-10 Copyright 2011, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

More information

Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus

Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus Aysegul Nalca 1 *, Virginia A. Livingston 1, Nicole L. Garza 1, Elizabeth E. Zumbrun 1, Ondraya M. Frick

More information

Smallpox Recognition and Vaccination

Smallpox Recognition and Vaccination Smallpox Recognition and Vaccination Daniel R. Lucey, MD, MPH Georgetown University Medical and Law Centers Senior Scholar, O Neill Law Institute for Global Health Hong Kong Centre for Health Protection

More information

SMALLPOX QUESTIONS AND ANSWERS: The Disease and the Vaccine

SMALLPOX QUESTIONS AND ANSWERS: The Disease and the Vaccine SMALLPOX QUESTIONS AND ANSWERS: The Disease and the Vaccine In General What should I know about smallpox? Smallpox is an acute, contagious, and sometimes fatal disease caused by the variola virus (an orthopoxvirus),

More information

GOVX-B11: A Clade B HIV Vaccine for the Developed World

GOVX-B11: A Clade B HIV Vaccine for the Developed World GeoVax Labs, Inc. 19 Lake Park Drive Suite 3 Atlanta, GA 3 (678) 384-72 GOVX-B11: A Clade B HIV Vaccine for the Developed World Executive summary: GOVX-B11 is a Clade B HIV vaccine targeted for use in

More information

BROADENING HOST RANGE IN A GLOBALIZING WORLD Monkeypox virus emergence and threat

BROADENING HOST RANGE IN A GLOBALIZING WORLD Monkeypox virus emergence and threat BROADENING HOST RANGE IN A GLOBALIZING WORLD Monkeypox virus emergence and threat Laudisoit Anne*, Gryseels Sophie, Mussaw Moise, Rouquette Olivier, Van Houtte Natalie, Musaba Prescott, Chantrey Julian,

More information

Viruses: Select Agents and Emerging Pathogens. Patricia Bolívar MS., CLS, PHM

Viruses: Select Agents and Emerging Pathogens. Patricia Bolívar MS., CLS, PHM Viruses: Select Agents and Emerging Pathogens Patricia Bolívar MS., CLS, PHM Objectives Review Select Agent Viruses. Key features to recognize Smallpox virus Update on emerging Viruses of possible pandemic

More information

I. Protocol for Approval to use Vaccinia Virus in Research

I. Protocol for Approval to use Vaccinia Virus in Research Vaccinia Virus SOP 2010 page 2 I. Protocol for Approval to use Vaccinia Virus in Research The Principal Investigator (PI) must submit the following to EHRS biohazreg@ehrs.upenn.edu: 1. A brief abstract

More information

Immunizations, registries and antibioterrorism. Presented by: Lisa E. Hensley. Category A Agents

Immunizations, registries and antibioterrorism. Presented by: Lisa E. Hensley. Category A Agents USAMRIID Immunizations, registries and antibioterrorism efforts Presented by: Lisa E. Hensley Category A Agents The U.S. public health system and primary healthcare providers must be prepared to address

More information

DISCLOSURES. I have no actual or potential conflicts of interest in this presentation.

DISCLOSURES. I have no actual or potential conflicts of interest in this presentation. OVERVIEW ON MEASLES Oneka B. Marriott, DO, MPH, FAAP, FACOP Assistant Professor of Pediatrics and Public Health Nova Southeastern University College of Osteopathic Medicine Presentation to FSACOFP Annual

More information

BBS 2711 Virology. Virus Vaccines

BBS 2711 Virology. Virus Vaccines BBS 2711 Virology Virus Vaccines Dr Paul Young, Department of Microbiology & Parasitology. p.young@mailbox.uq.edu.au Virus Vaccines First vaccine developed by Jenner in late 1700's against smallpox virus

More information

World Health Organization Department of Communicable Disease Surveillance and Response

World Health Organization Department of Communicable Disease Surveillance and Response Technical Advisory Group on Human Monkeypox. Report of a WHO Meeting. Geneva, Switzerland 11-12 January 1999 World Health Organization Department of Communicable Disease Surveillance and Response This

More information

Memory NK cells during mousepox infection. Min Fang, Ph.D, Professor Institute of Microbiology, Chinese Academy of Science

Memory NK cells during mousepox infection. Min Fang, Ph.D, Professor Institute of Microbiology, Chinese Academy of Science Memory NK cells during mousepox infection Min Fang, Ph.D, Professor Institute of Microbiology, Chinese Academy of Science Infectious Diseases are a Major Cause of Death Worldwide May 14 th 1796 Prevalence

More information

The non-human primate model in TB vaccine development

The non-human primate model in TB vaccine development April 10, 2015 The non-human primate model in TB vaccine development Tom Evans MD Aeras Agenda Issues Transmission studies Recent advancements Outcomes Endpoint analysis Design Going forward 2 Development

More information

PART A. True/False. Indicate in the space whether each of the following statements are true or false.

PART A. True/False. Indicate in the space whether each of the following statements are true or false. MCB 55 Plagues and Pandemics Midterm I Practice questions Read each question carefully. All the questions can be answered briefly, in the space allotted. PART A. True/False. Indicate in the space whether

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific

More information

Proliferation Threats from Biotechnology: What is Dual-Use Research?

Proliferation Threats from Biotechnology: What is Dual-Use Research? Proliferation Threats from Biotechnology: What is Dual-Use Research? In Class Discussion Break into groups of 3, come up with definition dual use and present to class Biological Dual-Use Research Biotechnology

More information

Bioterrorism: Public Health Challenges (Module 1: Bioterrorism Overview and History of Biological Warfare)

Bioterrorism: Public Health Challenges (Module 1: Bioterrorism Overview and History of Biological Warfare) Biological Terrorism and Public Health Bioterrorism: Public Health Challenges (Module 1: Bioterrorism Overview and History of Biological Warfare) re) Chemical Terrorism HAZMAT EVENT-----------------------------------PUBLIC

More information

Concern for recurrence Stable virus especially in freeze dried form High infectivity in humans Vaccine supplies are limited No specific antiviral

Concern for recurrence Stable virus especially in freeze dried form High infectivity in humans Vaccine supplies are limited No specific antiviral poxviruses Poxviruses Infect humans, birds, mammals, and insects. DsDNA brick shaped, enveloped multiply in the cytoplasm, 100x200x300 nm. lack normal capsid instead, layers of lipoprotiens and fibrils

More information

ISPUB.COM. A Practical Approach To Variola. C Gillespie INTRODUCTION DEFINING VARIOLA

ISPUB.COM. A Practical Approach To Variola. C Gillespie INTRODUCTION DEFINING VARIOLA ISPUB.COM The Internet Journal of Academic Physician Assistants Volume 4 Number 2 C Gillespie Citation C Gillespie.. The Internet Journal of Academic Physician Assistants. 2004 Volume 4 Number 2. Abstract

More information

A VACCINE FOR HIV BIOE 301 LECTURE 10 MITALI BANERJEE HAART

A VACCINE FOR HIV BIOE 301 LECTURE 10 MITALI BANERJEE HAART BIOE 301 LECTURE 10 MITALI BANERJEE A VACCINE FOR HIV HIV HAART Visit wikipedia.org and learn the mechanism of action of the five classes of antiretroviral drugs. (1) Reverse transcriptase inhibitors (RTIs)

More information

142 Biomed Environ Sci, 2014; 27(2):

142 Biomed Environ Sci, 2014; 27(2): 142 Biomed Environ Sci, 2014; 27(2): 142-146 Policy Forum Immune Control Strategies for Vaccinia Virus-related Laboratory-acquired Infections * WEI Qiang 1,#, JIANG Meng Nan 1, HAN Jun 2, and WANG Zi Jun

More information

A Novel Highly Reproducible and Lethal Nonhuman Primate Model for Orthopox Virus Infection

A Novel Highly Reproducible and Lethal Nonhuman Primate Model for Orthopox Virus Infection A Novel Highly Reproducible and Lethal Nonhuman Primate Model for Orthopox Virus Infection Marit Kramski 1, Kerstin Mätz-Rensing 2, Christiane Stahl-Hennig 2, Franz-Josef Kaup 2, Andreas Nitsche 1, Georg

More information

The Ebola Virus. By Emilio Saavedra

The Ebola Virus. By Emilio Saavedra The Ebola Virus By Emilio Saavedra Etiological Agents: Ebolavirus is the etiologic agent. [1] There are four main families of viruses that are agents of Ebola (hemorrhagic fever). [1] These four families

More information

Draft 2 Annex 1 Overview of Smallpox/Clinical Presentations/Medical Care ANNEX 1

Draft 2 Annex 1 Overview of Smallpox/Clinical Presentations/Medical Care ANNEX 1 ANNEX 1 Overview of Smallpox, Clinical Presentations, and Medical Care of Smallpox Patients A1-1 ANNEX 1 Overview of Smallpox, Clinical Presentations, and Medical Care of Smallpox Patients This annex is

More information

Acquired Immune Deficiency Syndrome (AIDS)

Acquired Immune Deficiency Syndrome (AIDS) Acquired Immune Deficiency Syndrome (AIDS) By Jennifer Osita Disease The disease I am studying is AIDS (Acquired Immune Deficiency Syndrome) which is when the immune system is too weak to fight off many

More information

Nyamdolgor.U, Usuhgerel.S, Baatarjargal.P, others, Journal of agricultural sciences 15 (02): 51-55, 2015

Nyamdolgor.U, Usuhgerel.S, Baatarjargal.P, others, Journal of agricultural sciences 15 (02): 51-55, 2015 51 HISTOPATHOLOGICAL STUDY FOR USING OF POX INACTIVATED VACCINE IN GOATS Nyamdolgor.U 1*, Usuhgerel.S 2, Baatarjargal.P 1, Altanchimeg.A 1, Odbileg.R 1 1-Institute of Veterinary Medicine, MULS, Mongolia

More information

Important Information About Vaccinia (Smallpox) Vaccine Please Read This Carefully

Important Information About Vaccinia (Smallpox) Vaccine Please Read This Carefully Important Information About Vaccinia (Smallpox) Vaccine Please Read This Carefully Introduction Vaccinia vaccine, previously known as smallpox vaccine, is highly effective in producing immunity to smallpox

More information

TG4010. Public Information

TG4010. Public Information TG4010 Public Information 11 May 2017 Public Information 11 May 2017 Page 2 /7 ABBREVIATIONS DNA Deoxyribonucleic acid GMO Genetically modified organism IL2 Interleukin-2 IM Intramuscular IT Intratumoral

More information

TOC INDEX. Bovine Respiratory Syncytial Virus. John A. Ellis. Take Home Message. Cause and Spread

TOC INDEX. Bovine Respiratory Syncytial Virus. John A. Ellis. Take Home Message. Cause and Spread TOC INDEX Bovine Respiratory Syncytial Virus John A. Ellis Take Home Message Bovine respiratory syncytial virus (BRSV) is component of the bovine respiratory disease (BRD) complex. The virus can infect

More information

TITLE: Development of a Novel Vaccine Vector for Multiple CDC Category A Pathogens

TITLE: Development of a Novel Vaccine Vector for Multiple CDC Category A Pathogens AD Award Number: W81XWH-5-1-46 TITLE: Development of a Novel Vaccine Vector for Multiple CDC Category A Pathogens PRINCIPAL INVESTIGATOR: Jay A Nelson, Ph.D. Scott W Wong, Ph.D. Michael A Jarvis, Ph.D.

More information

And Current Situation

And Current Situation African Swine Fever Research And Current Situation Luis L. Rodriguez Research Leader Foreign Animal Disease Research Unit Agricultural Research Service, Plum Island Animal Disease Center African Swine

More information

Infection Basics. Lecture 12 Biology W3310/4310 Virology Spring 2016

Infection Basics. Lecture 12 Biology W3310/4310 Virology Spring 2016 Infection Basics Lecture 12 Biology W3310/4310 Virology Spring 2016 Before I came here I was confused about this subject. Having listened to your lecture, I am still confused but at a higher level. ENRICO

More information

RHODOCOCCUS EQUI. Post-mortem Environmental Persistence Specific Control Measures Release of Animals from Isolation

RHODOCOCCUS EQUI. Post-mortem Environmental Persistence Specific Control Measures Release of Animals from Isolation RHODOCOCCUS EQUI Definition Clinical Signs Transmission Diagnostic Sampling, Testing and Handling Post-mortem Environmental Persistence Specific Control Measures Release of Animals from Isolation Biosecurity

More information

Measles (Rubeola) Biology of measles virus. April 20, 2017 Department of Public Health Sciences

Measles (Rubeola) Biology of measles virus. April 20, 2017 Department of Public Health Sciences Infectious Disease Epidemiology BMTRY 713 (A. Selassie, DrPH) Lecture 25 Measles Learning Objectives 1. Explain the disease burden of measles and why it still occurs 2. Identify the biologic characteristics

More information

Unit 5 The Human Immune Response to Infection

Unit 5 The Human Immune Response to Infection Unit 5 The Human Immune Response to Infection Unit 5-page 1 FOM Chapter 21 Resistance and the Immune System: Innate Immunity Preview: In Chapter 21, we will learn about the branch of the immune system

More information

Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox

Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox Peter B. Jahrling*, Lisa E. Hensley, Mark J. Martinez, James W. LeDuc, Kathleen H. Rubins, David

More information

Pathogens and the Immune System The War Begins. The Enemy - immune system responds to antigens ( ); for us this means a pathogen

Pathogens and the Immune System The War Begins. The Enemy - immune system responds to antigens ( ); for us this means a pathogen Pathogens and the Immune System The War Begins The Enemy immune system responds to antigens ( ); for us this means a pathogen pathogens ( ) try to colonize your body bacterial pathogens produce toxins

More information

Fundamental Principles about Bioterrorism

Fundamental Principles about Bioterrorism Fundamental Principles about Bioterrorism The following discussion provides a useful framework for putting into perspective the enormous volume of information being disseminated regarding health and Bioterrorism.

More information

Kevin L. Karem,* Mary Reynolds, Zach Braden, Gin Lou, Nikeva Bernard, Joanne Patton, and Inger K. Damon

Kevin L. Karem,* Mary Reynolds, Zach Braden, Gin Lou, Nikeva Bernard, Joanne Patton, and Inger K. Damon CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, July 2005, p. 867 872 Vol. 12, No. 7 1071-412X/05/$08.00 0 doi:10.1128/cdli.12.7.867 872.2005 Characterization of Acute-Phase Humoral Immunity to Monkeypox:

More information

FACT SHEET FOR ADDITIONAL INFORMATION CONTACT

FACT SHEET FOR ADDITIONAL INFORMATION CONTACT FACT SHEET FOR ADDITIONAL INFORMATION CONTACT Caroline Calderone Baisley, MPH, RS Michael S. Long, MS Director of Health Director of Environmental Services Tel. 203-622-7836 Tel: 203-622-7838 SMALLPOX:

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection. Masoud Mardani M.D,FIDSA

Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection. Masoud Mardani M.D,FIDSA Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection Masoud Mardani M.D,FIDSA Shahidhid Bh BeheshtiMdi Medical lui Universityit Cytomegalovirus (CMV), Epstein Barr Virus(EBV), Herpes

More information

Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus

Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus Progression of Pathogenic Events in Cynomolgus Macaques Infected with Variola Virus Victoria Wahl-Jensen 1., Jennifer A. Cann 1., Kathleen H. Rubins 2, John W. Huggins 3, Robert W. Fisher 3, Anthony J.

More information

RESEARCH WITH HIGHLY PATHOGENIC AVIAN INFLUENZA H5N1

RESEARCH WITH HIGHLY PATHOGENIC AVIAN INFLUENZA H5N1 Page 1 of 8 RESEARCH WITH HIGHLY PATHOGENIC AVIAN INFLUENZA H5N1 The University of Pittsburgh has developed guidelines to establish a system of education and safeguards to ensure compliance with both the

More information

Potential Threats from Biotechnology and Life Sciences: What is Dual-Use Research?

Potential Threats from Biotechnology and Life Sciences: What is Dual-Use Research? Potential Threats from Biotechnology and Life Sciences: What is Dual-Use Research? Adapted from presentation by Nonproliferation Education Program James Martin Center for Nonproliferation Studies Monterey

More information

EBOLA. Harford County Health Department October 22, 2014

EBOLA. Harford County Health Department October 22, 2014 EBOLA Harford County Health Department October 22, 2014 Zaire ebolvirus The 2014 Ebola outbreak concerns the most deadly of the five Ebola viruses, Zaire ebolvirus, which has killed 79 percent of the people

More information

Ebola Virus Patient Advisory

Ebola Virus Patient Advisory 22 September 2014 Ebola Virus Patient Advisory Introduction Ebola virus was first identified in Sudan and Zaire in 1976. It belongs to the family of Filoviridae. It causes Ebola Virus Disease (EVD), formerly

More information

Scientific review of variola virus research,

Scientific review of variola virus research, Scientific review of variola virus research, 1999 2010 December 2010 GLOBAL ALERT AND RESPONSE WHO/HSE/GAR/BDP/2010.3 Scientific review of variola virus research, 1999 2010 December 2010 Acknowledgements

More information

Hepatitis E in South Africa. Tongai Maponga

Hepatitis E in South Africa. Tongai Maponga Hepatitis E in South Africa Tongai Maponga 7th FIDSSA CONGRESS 2017 This is what usually comes to mind History of hepatitis E virus An ET-NANB hepatitis virus later named HEV was first suspected in 1980.

More information

Yersinia pestis. Yersinia and plague. Dr. Hala Al Daghistani

Yersinia pestis. Yersinia and plague. Dr. Hala Al Daghistani Yersinia pestis Dr. Hala Al Daghistani Yersinia species Short, pleomorphic gram-negative rods that can exhibit bipolar staining. Catalase positive, and microaerophilic or facultatively anaerobic. Animals

More information

Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans

Avian influenza Avian influenza (bird flu) and the significance of its transmission to humans 15 January 2004 Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans The disease in birds: impact and control measures Avian influenza is an infectious disease

More information

La risposta immune all infezione da virus ebola. Chiara Agrati, PhD

La risposta immune all infezione da virus ebola. Chiara Agrati, PhD La risposta immune all infezione da virus ebola Chiara Agrati, PhD Pathogenetic mechanisms This virus infection is able to: - disable the immune system, preventing an effective protective immune response

More information

Canine Liver Eneku Wilfred Bovine Pathology

Canine Liver Eneku Wilfred Bovine Pathology 2012-1-3 Canine Liver Eneku Wilfred Bovine Pathology Contributor: New Mexico Department of Agriculture Veterinary Diagnostic Services Signalment: 5 month old male Weimaraner dog (Canis familiaris) History:

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

Alphaherpesvirinae. Simplexvirus (HHV1&2/ HSV1&2) Varicellovirus (HHV3/VZV)

Alphaherpesvirinae. Simplexvirus (HHV1&2/ HSV1&2) Varicellovirus (HHV3/VZV) Alphaherpesvirinae Simplexvirus (HHV1&2/ HSV1&2) Varicellovirus (HHV3/VZV) HERPES SIMPLEX VIRUS First human herpesvirus discovered (1922) Two serotypes recognised HSV-1 & HSV-2 (1962) HSV polymorphism

More information

Understanding basic immunology. Dr Mary Nowlan

Understanding basic immunology. Dr Mary Nowlan Understanding basic immunology Dr Mary Nowlan 1 Immunology Immunology the study of how the body fights disease and infection Immunity State of being able to resist a particular infection or toxin 2 Overview

More information

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE. ICH Considerations

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE. ICH Considerations INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH Considerations General Principles to Address Virus and Vector Shedding 1.0 Introduction

More information

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination 1918 Influenza; Influenza A, H1N1 Basic agent information Section I- Infectious Agent Risk Group: - RG3 Synonym or Cross reference: - Spanish Flu - 1918 Flu - El Grippe Characteristics: - SELECT AGENT

More information

Gene Vaccine Dr. Sina Soleimani

Gene Vaccine Dr. Sina Soleimani Gene Vaccine Dr. Sina Soleimani Human Viral Vaccines Quality Control Laboratory (HVVQC) Titles 1. A short Introduction of Vaccine History 2. First Lineage of Vaccines 3. Second Lineage of Vaccines 3. New

More information

WHO Advisory Committee on Variola Virus Research

WHO Advisory Committee on Variola Virus Research WHO/HSE/PED/CED/2013.1 WHO Advisory Committee on Variola Virus Research Report of the Fourteenth Meeting Geneva, Switzerland 16 17 October 2012 WHO Advisory Committee on Variola Virus Research Report

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

The contribution of research with monkeys to progress in medical science

The contribution of research with monkeys to progress in medical science Transplantation Reduction animal testing Chronic diseases Infectious diseases The contribution of research with monkeys to progress in medical science Contents Contents Introduction.... 3 Transplantation...

More information

Chapter 14 Part One Biotechnology and Industry: Microbes at Work

Chapter 14 Part One Biotechnology and Industry: Microbes at Work Chapter 14 Part One Biotechnology and Industry: Microbes at Work Objectives: After reading Chapter 14, you should understand How biotechnology has resulted in numerous pharmaceutical products to help lessen

More information

Study Guide 23, 24 & 47

Study Guide 23, 24 & 47 Study Guide 23, 24 & 47 STUDY GUIDE SECTION 23-3 Bacteria and Humans Name Period Date 1. One bacterial disease that is transmitted by contaminated drinking water is a. Lyme disease b. gonorrhea c. tuberculosis

More information

Viral Hemorrhagic Fevers

Viral Hemorrhagic Fevers Viral Hemorrhagic Fevers (VHFs) http://www.ncrr.nih.gov/publications/ncrr_reporter/summer-fall2009/images/essential_2.jpg Definition Viral hemorrhagic fevers (VHFs) refer to a group of illnesses that are

More information

EDUCATIONAL COMMENTARY EMERGING INFECTIOUS DISEASES WITH GLOBAL IMPACT

EDUCATIONAL COMMENTARY EMERGING INFECTIOUS DISEASES WITH GLOBAL IMPACT Educational commentary is provided through our affiliation with the American Society for Clinical Pathology (ASCP). To obtain FREE CME/CMLE credits click on Earn CE Credits under Continuing Education on

More information

Smallpox Questions and Answers: The Disease and the Vaccine

Smallpox Questions and Answers: The Disease and the Vaccine Smallpox Questions and Answers: The Disease and the Vaccine IN GENERAL What should I know about smallpox? Smallpox is an acute, contagious, and sometimes fatal disease caused by the variola virus (an orthopoxvirus),

More information

Medical Bacteriology - Lecture 7. Spore- forming Gram Positive Rods. Bacillus

Medical Bacteriology - Lecture 7. Spore- forming Gram Positive Rods. Bacillus Medical Bacteriology - Lecture 7 Spore- forming Gram Positive Rods Bacillus 1 Bacillus Characteristics - Gram positive - Large rod. - Arranged in long chain - Spore forming - Aerobic or facultative anaerobic

More information

Global Catastrophic Biological Risks

Global Catastrophic Biological Risks Global Catastrophic Biological Risks Working Definition of Global Catastrophic Biological Risks (GCBRs) Events in which biological agents whether naturally emerging or reemerging, deliberately created

More information

Summary of current outbreak in Guinea, Liberia and Sierra Leone

Summary of current outbreak in Guinea, Liberia and Sierra Leone ALERT TO HEALTHCARE WORKERS: EBOLA VIRUS DISEASE OUTBREAK IN GUINEA, LIBERIA AND SIERRA LEONE, WEST AFRICA 04 April 2014 Summary of current outbreak in Guinea, Liberia and Sierra Leone In this update and

More information

Influenza: The Threat of a Pandemic

Influenza: The Threat of a Pandemic April, 2009 Definitions Epidemic: An increase in disease above what you what would normally expect. Pandemic: A worldwide epidemic 2 What is Influenza? Also called Flu, it is a contagious respiratory illness

More information

Monitoring tuberculosis progression using MRI and stereology

Monitoring tuberculosis progression using MRI and stereology Monitoring tuberculosis progression using MRI and stereology TB the problem Estimated number of new cases in 2007 2 million deaths; 9 million new cases p.a. TB kills someone every 15 secs, 9,153 cases

More information

AFIP MINIBOARD EXAMINATION MAY 2008 LAB ANIMAL PATHOLOGY

AFIP MINIBOARD EXAMINATION MAY 2008 LAB ANIMAL PATHOLOGY AFIP MINIBOARD EXAMINATION MAY 2008 LAB ANIMAL PATHOLOGY 1. Hallmark lesions of infection with polytropic strains of mouse hepatitis virus include: A. Lymphocytic syncytia in mesenteric lymph nodes B.

More information

Anthrax: An Epidemiologic Perspective. Denise Dietz Public Health Epidemiologist

Anthrax: An Epidemiologic Perspective. Denise Dietz Public Health Epidemiologist Anthrax: An Epidemiologic Perspective Denise Dietz Public Health Epidemiologist Outline Overview of anthrax Explain different types of anthrax Clinical Why a good weapon Epidemiology Bacillus anthracis

More information

Trends in vaccinology

Trends in vaccinology Trends in vaccinology Mathieu Peeters, MD Joint Conference of European Human Pharmacological Societies and Joint Conference of European Human Pharmacological Societies and 20th Anniversary of AGAH March

More information

WHO Advisory Committee on Variola Virus Research

WHO Advisory Committee on Variola Virus Research WHO/HSE/GAR/BDP/2010.5 WHO Advisory Committee on Variola Virus Research Report of the Twelfth Meeting Geneva, Switzerland 17 18 November 2010 GLOBAL ALERT AND RESPONSE WHO Advisory Committee on Variola

More information

Unit 4 Student Guided Notes

Unit 4 Student Guided Notes Structure of Viruses Discovery of the Virus Unit 4 Student Guided Notes Many human epidemics were well documented and observed in history, but. The following 3 discoveries shaped our knowledge of viruses

More information

Genus Ebolavirus is 1 of 3 members of the Filoviridae family (filovirus), along with genus Marburgvirus and genus Cuevavirus.

Genus Ebolavirus is 1 of 3 members of the Filoviridae family (filovirus), along with genus Marburgvirus and genus Cuevavirus. EBOLA VIRUS Ebola virus disease (EVD) is a severe, often fatal illness, with a case fatality rate of up to 90%. It is one of the world s most virulent diseases.the infection is transmitted by direct contact

More information

Smallpox containment updated: considerations for the 21st century

Smallpox containment updated: considerations for the 21st century International Journal of Infectious Diseases (2004) 8S2, S15 S20 http://intl.elsevierhealth.com/journals/ijid Smallpox containment updated: considerations for the 21st century David L. Heymann Representative

More information

Q Fever What men and women on the land need to know

Q Fever What men and women on the land need to know Q Fever What men and women on the land need to know Dr. Stephen Graves Director, Australian Rickettsial Reference Laboratory Director, Division of Microbiology, Pathology North (Hunter) NSW Health Pathology,

More information

making LT protection safer and easier

making LT protection safer and easier making LT protection safer and easier 1 vaccine up to 3 immunities 4 Vectormune FP-LT and. Vectormune FP-LT is a genetically engineered live fowl pox virus vaccine carrying 2 immunorelevant genes from

More information

AGENT CHARACTERISTICS Classification Morphology Entry Replication Morphogenesis and Egress Phylogenetic Relationships Pathogenesis

AGENT CHARACTERISTICS Classification Morphology Entry Replication Morphogenesis and Egress Phylogenetic Relationships Pathogenesis Smallpox and Related Orthopoxviruses Chapter 24 SMALLPOX AND RELATED ORTHOPOXVIRUSES ARTHUR J. GOFF, PhD*; SARA C. JOHNSTON, PhD ; JASON KINDRACHUK, PhD ; KENNY L. LIN, MS ; PETER B. JAHRLING, PhD ; JOHN

More information

Flaviviruses New Challenges, New Vaccines

Flaviviruses New Challenges, New Vaccines Flaviviruses New Challenges, New Vaccines Christian W. Mandl Institute of Virology Medical University of Vienna, AUSTRIA Family Flaviviridae Genus Hepacivirus Genus Pestivirus Genus Flavivirus (>70 members)

More information

The Use of Human Monoclonal Antibodies as an Immunotherapeutic Against Lassa Fever

The Use of Human Monoclonal Antibodies as an Immunotherapeutic Against Lassa Fever The Use of Human Monoclonal Antibodies as an Immunotherapeutic Against Lassa Fever By: Michaela Nickol For: Dr Safronetz Date: 29 November 2018 Lassa virus (LASV) is a single-stranded RNA virus belonging

More information

Clinical Policy Title: Zoster (shingles) vaccine

Clinical Policy Title: Zoster (shingles) vaccine Clinical Policy Title: Zoster (shingles) vaccine Clinical Policy Number: 18.02.10 Effective Date: June 1, 2018 Initial Review Date: April 10, 2018 Most Recent Review Date: May 1, 2018 Next Review Date:

More information

Making Sense Of The Ebola Virus

Making Sense Of The Ebola Virus Fodder for young minds Making Sense Of The Ebola Virus By Meera Dolasia on September 29, 2014 CCSS NAS-6 Grades: 5-8 Word Search Every few years, a new pandemic hits the globe and sends shivers down everyone's

More information