number Done by Corrected by Doctor Ashraf Khasawneh

Size: px
Start display at page:

Download "number Done by Corrected by Doctor Ashraf Khasawneh"

Transcription

1 number 3 Done by Mahdi Sharawi Corrected by Doctor Ashraf Khasawneh

2

3 *Note: Please go back to the slides to view the information that the doctor didn t mention. Prions Definition: Prions are rather ill-defined Infectious agents consisting of a single type of protein which doesn't have any nucleic acid component. *Confusion arises from the fact that the prion protein & the gene which encodes it are also found in normal 'uninfected' cells. *prions cause infections in humans and animals These infectious agents are associated with diseases like Creutzfeldt-Jakob disease in humans, Scrapie in Sheep, and bovine spongiform encephalopathy (BSE) in cattle (in animals). *Human Prion Diseases Creutzfeldt-Jakob Disease (CJD) Variant Creutzfeldt-Jakob Disease (vcjd) Gerstmann-Straussler-Scheinker Syndrome Fatal Familial Insomnia Kuru So we can say that prions are transmissible pathogens responsible for series of fatal neurodegenerative diseases, like the ones we mentioned before. *Spongiform Encephalopathy: Brain becomes sponge-like whether in humans or animals. What's the difference between a normal protein and a prion? Prions are proteins with pathological conformation; they infect other proteins and propagate conformational changes of normal (native) proteins into the abnormally structured form.

4 Infection mechanism: We have a gene that encodes this prion, which function is unknown, when a mutation occurs to the prion protein in our cells, it changes from a normal prion into the abnormal form of the prion(infectious form), and this abnormal form of the prion changes normal prions into the abnormal form upon contact. Prions are eitherprp C, which are the cell's normal form of the prions (healthy prion), or PrP SC which is the infectious form the prion (abnormal conformation). This abnormal form of prion can come from mutations occurring in the cells (endogenous source), or it can come from exogenous sources through ingestion of proteins containing abnormal conformation of prions, and as soon as it comes in contact with normal prions they infect them. How do prions get infected? 1. Sporadic (85%): Occurs through mutation in the prion protein, no underlying cause, like creutzfeldt-jakob disease 2. Familial (inherited-15%): Family related, genes favour the transformation from normal prions to abnormal prion conformation. Examples: fatal familial insomnia (FFI), Gertsmann-strausslerscheinker disease (GSS) 3. Transmissible: Exogenous source (explained earlier) Examples: Kuru diease, BSE, vcjd (CJD is sporadic) *note: sporadic and familial are (endogenous source). **Propagation of kuru disease in New Guinea natives is through ritualistic cannibalism. Recently, it has been discovered that BSE had been transmitted to humans in Europe after consumption of infected beef, producing a variant of the CJD called vcjd

5 Transmissible spongioform encephalopathy (TSE) A group of progressive conditions that affect the brain and nervous system of humans and animals and are transmitted by prions The pathology: vascular degeneration, neuronal loss, astrocytosis and amyloid plaque formation The normal prions are soluble, they can be cut by proteases. However, the scrapie form which is infected isn't water soluble, it isn't affected by proteases and it aggregate and accumulates. The clinical signs: loss of motor functions (lack of coordination, ataxia, involuntary jerking movements), personality changes, depression, insomnia, confusion, memory problems, dementia, progressive tonic paralysis, death Definitive diagnostic test: biopsy of brain tissue (histopathological examination and immunostaining for PrPSc), infection of a prion doesn't cause an inflammation. There is no cure *normal prion protein is an alpha helix but the abnormal form is a beta sheet. (look to the figure) There's a comparison table between normal and infectious prions, you should read it from the slides

6 *from slide there are summary to the most important topics please look to them Viral Replication Multiplicity of infection (MOI): ratio of infectious agents (e.g. phage or virus) to infection targets MOI = Infectious Agents Infection Targets Eclipse phase: period during which the input virus becomes uncoated, this is because the virus goes into the cell as a nucleocapsid complex; 10-12h Synthetic phase: time during which new virus particles are assembled (protein synthesis and genome synthesis); 4-6h Latent period: no extracellular virus can be detected, because all the viruses are now inside the cell, they can't be detected outside. Burst size: amount of infectious virus produced, per infected cell; 10-10,000 (the cap is 10,000 because that's the maximum cell ability to produce viruses because of the cell limitations: the ribosomes capacity and so) *Numbers aren t accurate (concerning amount of time) Viral Replication Cycle: - Virus replication can be divided into eight arbitrary stages. - Regardless of their hosts, all viruses must undergo each of these stages in some form to complete their replication cycle.

7 - Not all the steps described here are detectable as distinct stages for all viruses. Note: The doctor says that these stages do not have to occur as individual steps, any set amount of steps may occur at the same time in the cycle (Step 4, 5 and 6 occurring at the same time for instance) Viral life Cycle: 1- Attachment: Spikes and glycoproteins attach to the receptors on the target cells. This causes the envelope to get closer to the cell membrane, causing repulsion which leads to small pore formation, and then this pore becomes a large pore, allowing the virus to get into the cell. 2- Penetration (Entry). 3- Uncoating (disassembly): The capsid disintegrates and we get a free floating nucleic material in the cytoplasm. 4- Synthetic Phase: This phase is divided into Genome replication, which is the replication of the genetic material of the virus, and Protein synthesis, which includes the formation of the viral proteins. 5- Assembly: After the genetic and protein components of the virus have been synthesized, the virus assembles itself into a virus, the spike/glycoproteins are found on the outer surface of the cell membrane to envelope the virus when it migrates out of the cell through budding. 6- Maturation: Might occur inside the cell (before release) or outside the cell(after release), before maturation occurs, the virus is not yet

8 complete or infectious, this process might take minutes up to hours to be completed. 7- Release. *This was an overview of the viral life cycle; it is further explained ahead and in the slides. 1- Attachment: Virus attachment consists of specific binding of a virus-attachment protein (or 'antireceptor') to a cellular receptor molecule. Target receptor molecules on cell surfaces may be proteins (usually glycoproteins), or the carbohydrate residues present on glycoproteins or glycolipids. Some complex viruses (e.g. poxviruses, herpes viruses) use more than one receptor and have alternative routes of uptake into cells. 2- Adsorption: In this step, the route taken by a virus differs depending on the virus whether it's enveloped or a naked virus. A- Enveloped Viruses: It has glycoproteins/spikes which are going to attach to the receptor on the target cells, now this glycoprotein can be composed of a single protein, or a complex composed of multiple units, for instance HIV virus has a complex glycoprotein which is composed of two protein units, Called GP160, which is composed of a transmembrane unit called GP41 and GP120 on top of it, GP120 is the part which attaches to the target cell's receptor, for HIV the receptor is CDR4 on T- Cells. However, HIV requires a co-receptor, single receptor attachment is not sufficient to initiate infection, so when HIV GP120 attaches to the CDR4 Receptor it disintegrates and allows the GP41 to attach to the cellular membrane, to bind to the co-receptor which CCR5 or CXCR4. Do all viruses have a unique receptor or can they share the same receptor?

9 The general rule is that each virus has a separate receptor. However, in some cases some viruses can share a certain receptor. B- Naked viruses: They also have Surface proteins which interact with cellular membrane receptors to initiate infection. - Host range: the collection of hosts that an organism can utilize as a partner(humans, animals, plants) - Cellular (tissue) tropism: the cells and tissues of a host which support growth of a particular virus ( Cell which have the needed receptors to be infected by this virus such as influenza virus which can only infect the upper respiratory cells, but cannot infect the liver for instance). **Slide 12 shows each virus and its receptors, the doctor said we should know that for instance the sialic acid receptor is shared by 3 viruses. *Each virus has approximately 15 glycoproteins/spikes/surface proteins around its surface, we need binding for 3-5 of these proteins to the cellular receptor to initiate proper infection and to overcome the repulsion forces and allow proper entry of the virus into the host cell. 3- Penetration: Penetration of the target cell normally occurs a very short time after attachment of the virus to its receptor in the cell membrane. Unlike attachment, cell penetration is generally an energy-dependent process, i.e. the cell must be metabolically active for this to occur. Three main mechanisms are involved, which differ from naked to enveloped viruses: A. Translocation: The doctor says it doesn t occur with viruses and it's mainly for nutrients. B. Endocytosis: Naked viruses' method of entry, but can also occur in enveloped viruses for entry, it's considered as receptor-mediated endocytosis.

10 How do those viruses escape the endocytic vesicle? They changed the vesicle's ph causing conformational changes to the protein allowing the virus to escape the vesicle or they inject their genetic material outwards leaving the capsid inside but this occurs rarely or even in some cases the virus could release lytic enzymes that destroy the vesicle and escape. C. Fusion: Enveloped viruses' method of entry. Doesn't occur in naked viruses. 4- Uncoating: Uncoating is a general term for the events which occur after penetration. Uncoating is one of the stages of virus replication that has been least studied and is relatively poorly understood. The product of uncoating depends on the structure of the virus nucleocapsid. The structure and chemistry of the nucleocapsid determines the subsequent steps in replication. "The Greatest enemy of knowledge is not ignorance; it is the illusion of knowledge." Stephen Hawking

One of the classifications was if the virus is enveloped or naked.

One of the classifications was if the virus is enveloped or naked. Last time we gave an introduction about viruses, we talked about; definition of viruses, characters of viruses, structures of viruses and classification of viruses. One of the classifications was if the

More information

Biol212 Biochemistry of Disease Neurological Disorders: Prions

Biol212 Biochemistry of Disease Neurological Disorders: Prions Biol212 Biochemistry of Disease Neurological Disorders: Prions Prions Transmissible spongiform encephalopathies (TSEs) are diseases of the central nervous system caused by unconventional infectious agents,

More information

The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents. Acellular Agents

The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents. Acellular Agents viruses protein and nucleic acid viroids RNA virusoids RNA prions proteins The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents Acellular Agents Viruses major cause of

More information

Glossary of relevant medical and scientific terms

Glossary of relevant medical and scientific terms Glossary of relevant medical and scientific terms Alzheimer's disease The most common dementing illness of the elderly in the UK. The neuropathology of Alzheimer's disease is significantly different from

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2. Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes The Viruses Viruses Viruses may be defined as acellular organisms whose genomes consist of nucleic acid, obligately replicate inside host cells using host metabolic machinery and ribosomes to form a pool

More information

Viral structure م.م رنا مشعل

Viral structure م.م رنا مشعل Viral structure م.م رنا مشعل Viruses must reproduce (replicate) within cells, because they cannot generate energy or synthesize proteins. Because they can reproduce only within cells, viruses are obligate

More information

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics Chapter 19 - Viruses Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV II. Prions The Good the Bad and the Ugly Viruses fit into the bad category

More information

Review Article ISSN : PRIONS-FRIENDS OR ENEMIES

Review Article ISSN : PRIONS-FRIENDS OR ENEMIES www.ijapbr.com International journal of Applied Pharmaceutical and Biological Research, 2016;1(4):67-71 Review Article ISSN : 2456-0189 ABSRACT: PRIONS-FRIENDS OR ENEMIES BLESSY JACOB*, LATA KHANI BISHT,

More information

Introduction to viruses. BIO 370 Ramos

Introduction to viruses. BIO 370 Ramos Introduction to viruses BIO 370 Ramos 1 2 General Structure of Viruses Size range most

More information

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes.

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes. VIRUSES Many diseases of plants and animals are caused by bacteria or viruses that invade the body. Bacteria and viruses are NOT similar kinds of micro-organisms. Bacteria are classified as living organisms,

More information

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range Lecture 5 (Ch6) - Viruses Topics Characteristics Structure/Classification Multiplication Cultivation and replication Non-viral infectious agents Treatment 1 Virus Characteristics obligate intracellular

More information

similar version to the prion protein. Host proteins are correctly folded and prion proteins are

similar version to the prion protein. Host proteins are correctly folded and prion proteins are Background: Prions are infectious agents containing only protein (no nucleic acid). The host cell has a similar version to the prion protein. Host proteins are correctly folded and prion proteins are misfolded.

More information

History of Virology. Russian Bacteriologist Dimitri Iwanowski TMD tobacco mosaic disease TMV isolated and purified

History of Virology. Russian Bacteriologist Dimitri Iwanowski TMD tobacco mosaic disease TMV isolated and purified Viruses & Prions Viruses Virus miniscule, acellular, infectious agent having one or several pieces of either DNA or RNA No cytoplasmic membrane, cytosol, organelles Cannot carry out any metabolic pathway

More information

Chapter 13B: Animal Viruses

Chapter 13B: Animal Viruses Chapter 13B: Animal Viruses 1. Overview of Animal Viruses 2. DNA Viruses 3. RNA Viruses 4. Prions 1. Overview of Animal Viruses Life Cycle of Animal Viruses The basic life cycle stages of animal viruses

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES Introduction Viruses are noncellular genetic elements that use a living cell for their replication and have an extracellular state. Viruses

More information

Chronic Wasting Disease (CWD)

Chronic Wasting Disease (CWD) Blood Safety The American Red Cross (ARC) is denying blood donations from individuals who have spent six months or more in Europe since 1980, as well as that of any blood relative of a CJD victim. Sporadic

More information

Prion diseases or transmissible spongiform encephalopathies (TSEs)

Prion diseases or transmissible spongiform encephalopathies (TSEs) Prion diseases or transmissible spongiform encephalopathies (TSEs) rare progressive neurodegenerative disorders that affect both humans and animals. They are distinguished by long incubation periods, characteristic

More information

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Last time we talked about the few steps in viral replication cycle and the un-coating stage: Zeina Al-Momani Last time we talked about the few steps in viral replication cycle and the un-coating stage: Un-coating: is a general term for the events which occur after penetration, we talked about

More information

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus.

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus. Viruses General Characteristics of Viruses 1. Depending on view may be regarded as exceptionally complex aggregates of nonliving chemicals or as exceptionally simple living microbes. 2. Contain a single

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

numbe r Done by Corrected by Doctor

numbe r Done by Corrected by Doctor numbe r 5 Done by Mustafa Khader Corrected by Mahdi Sharawi Doctor Ashraf Khasawneh Viral Replication Mechanisms: (Protein Synthesis) 1. Monocistronic Method: All human cells practice the monocistronic

More information

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4 Eukaryotes organisms that contain a membrane bound nucleus and organelles. Prokaryotes organisms that lack a nucleus or other membrane-bound organelles. Viruses small, non-cellular (lacking a cell), infectious

More information

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003 Chapter 13 Viruses, Viroids, and Prions Biology 1009 Microbiology Johnson-Summer 2003 Viruses Virology-study of viruses Characteristics: acellular obligate intracellular parasites no ribosomes or means

More information

PRIONIC DISEASES. fatal outcome in both human beings and animals. Etiology can be sporadic, genetic or acquired

PRIONIC DISEASES. fatal outcome in both human beings and animals. Etiology can be sporadic, genetic or acquired PRIONIC DISEASES fatal outcome in both human beings and animals. Etiology can be sporadic, genetic or acquired animal-human and human-human transmission very rare infective agent: PrP C protein conformational

More information

Herpesvirus Infections of the Central Nervous System

Herpesvirus Infections of the Central Nervous System CNS Infections V Page 1 of 8 Herpesvirus Infections of the Central Nervous System HSV encephalitis Herpes B Virus infections Varicella-Zoster Virus infections Congenital CMV infection HSV Encephalitis

More information

Size nm m m

Size nm m m 1 Viral size and organization Size 20-250nm 0.000000002m-0.000000025m Virion structure Capsid Core Acellular obligate intracellular parasites Lack organelles, metabolic activities, and reproduction Replicated

More information

Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology An Introduction

More information

Viruses. Non-cellular organisms. Premedical - Biology

Viruses. Non-cellular organisms. Premedical - Biology Viruses Non-cellular organisms Premedical - Biology Size the smallest 20 nm and more Non-cellular: viruses are infectious particles plant, animal, bacterial = bacteriophages virion = nucleic acid + protein

More information

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

Dr. Ahmed K. Ali Attachment and entry of viruses into cells Lec. 6 Dr. Ahmed K. Ali Attachment and entry of viruses into cells The aim of a virus is to replicate itself, and in order to achieve this aim it needs to enter a host cell, make copies of itself and

More information

VIRUS VIROID PRION. Ms.Tanyaratana Dumkua Biology Department, Mahidolwittayanusorn School

VIRUS VIROID PRION. Ms.Tanyaratana Dumkua Biology Department, Mahidolwittayanusorn School VIRUS VIROID PRION Ms.Tanyaratana Dumkua Biology Department, Mahidolwittayanusorn School What is virus? Living? Need food? Reproduction? Cell? Cytoplasm? Cell membrane? Metabolism? Size? Component? Adenovirus

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses.

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses. Student Name Characteristics of Viruses--Part I Level High School - Science Date _ Prompt: This passage is called Characteristics of Viruses. It is about viruses. Similarities and Differences Between Viruses

More information

Chapter 13. Viruses, Viroides and Prions

Chapter 13. Viruses, Viroides and Prions Chapter 13 Viruses, Viroides and Prions 1 A GLIMPSE OF HISTORY Tobacco mosaic disease (1890s) D. M. Iwanowsky, Martinus Beijerinck determined caused by filterable virus too small to be seen with light

More information

Quick facts about mad cow disease

Quick facts about mad cow disease Quick facts about mad cow disease Mad cow disease is the common name for a condition known technically as bovine spongiform encephalopathy, or BSE. Here are some quick facts about BSE, and its human offshoot,

More information

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. Viruses Part I Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. History Through the 1800s, many scientists discovered that something

More information

Viruses. Objectives At the end of this sub section students should be able to:

Viruses. Objectives At the end of this sub section students should be able to: Name: 3.5 Responses to Stimuli Objectives At the end of this sub section students should be able to: 3.5.4 Viruses 1. Explain the problem of defining what a virus is - living or non-living? 2. show you

More information

PAPILLOMAVIRIDAE (Latin, papilla; nipple oma; tumor)

PAPILLOMAVIRIDAE (Latin, papilla; nipple oma; tumor) PAPILLOMAVIRIDAE (Latin, papilla; nipple oma; tumor) Classification The family papillomaviridae consists of following genus; Genus Papillomavirus Members Bovine papillomavirus Ovine papillomavirus Canine

More information

VIROIDS, PRIONS. Infectious Stage When virus infects a cell, nucleic acid must be uncoated and gain access to metabolic machinery of cell.

VIROIDS, PRIONS. Infectious Stage When virus infects a cell, nucleic acid must be uncoated and gain access to metabolic machinery of cell. VIROIDS, PRIONS A virus is a small infectious agent that can replicate only inside the living cells of organisms. Most viruses are too small to be seen directly with a light microscope. Viruses infect

More information

Prions: The Protein of Your Nightmares

Prions: The Protein of Your Nightmares Verge 8 Passley Hargrove Prions: The Protein of Your Nightmares Dr. Stanley B. Prusiner was awarded the Nobel Prize in Physiology or Medicine in 1997 for his discovery of prions. Prions, which stand for

More information

CREUTZFELDT-JAKOB DISEASE (CJD), CLASSIC

CREUTZFELDT-JAKOB DISEASE (CJD), CLASSIC CREUTZFELDT-JAKOB DISEASE (CJD), CLASSIC SPADIC CREUTZFELDT-JAKOB DISEASE (SCJD) Case definition CONFIRMED CASE Neuropathologically and/or immunocytochemically and/or biochemically confirmed, through observation

More information

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS Introductory Virology Ibrahim Jamfaru School of Medicine UHAS Lecture outline Definition of viruses and general characteristics Structure of virus (virion) Chemical composition of viruses Virus morphology

More information

7.013 Spring 2005 Problem Set 7

7.013 Spring 2005 Problem Set 7 MI Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor yler Jacks, Dr. Claudette Gardel 7.013 Spring 2005 Problem Set 7 FRIDAY May 6th, 2005 Question

More information

Ch. 19 Viruses & Bacteria: What Is a Virus?

Ch. 19 Viruses & Bacteria: What Is a Virus? Ch. 19 Viruses & Bacteria: What Is a Virus? A virus is an invective agent consisting of a nucleic acid in a protein coat, able to multiply only within the living cells of a host. A bacteriophage ( bacteria

More information

Characterizing and Classifying Viruses, Viroids, and Prions

Characterizing and Classifying Viruses, Viroids, and Prions Characterizing and Classifying Viruses, Viroids, and Prions CHAPTER SUMMARY Viruses, viroids, and prions are acellular (noncellular) disease-causing agents that lack cell structure and cannot metabolize,

More information

Characterizing and Classifying Viruses, Viroids, and Prions

Characterizing and Classifying Viruses, Viroids, and Prions PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Modified by Ossi Turunen, Aalto University C H A P T E R 13 Characterizing and Classifying Viruses, Viroids,

More information

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1 Eukaryotes- organisms that contain a membrane bound nucleus and organelles Prokaryotes- organisms that lack a nucleus or other membrane-bound organelles Viruses-small acellular (lacking a cell) infectious

More information

Characterizing and Classifying Viruses, Viroids, and Prions

Characterizing and Classifying Viruses, Viroids, and Prions PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 13 Characterizing and Classifying Viruses, Viroids, and Prions SLOs What are the Characteristics

More information

Chapter 19: The Genetics of Viruses and Bacteria

Chapter 19: The Genetics of Viruses and Bacteria Chapter 19: The Genetics of Viruses and Bacteria What is Microbiology? Microbiology is the science that studies microorganisms = living things that are too small to be seen with the naked eye Microorganisms

More information

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-forms Commonly referred to by organism they infect

More information

LEVEL 3 CERTIFICATE / DIPLOMA 4463U10-1A. MEDICAL SCIENCE UNIT 1: Human Health and Disease

LEVEL 3 CERTIFICATE / DIPLOMA 4463U10-1A. MEDICAL SCIENCE UNIT 1: Human Health and Disease LEVEL 3 CERTIFICATE / DIPLOMA 4463U10-1A S18-4463U10-1A MEDICAL SCIENCE UNIT 1: Human Health and Disease Summer 2018 Pre-Release Article for use in the following examination on 21 May 2018 Level 3 Diploma

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Viruses, Viroids, and Prions

Viruses, Viroids, and Prions PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 13 Viruses, Viroids, and Prions General Characteristics of Viruses Obligatory intracellular parasites

More information

London, 24 April 2001 EMEA/CPMP/BWP/819/01

London, 24 April 2001 EMEA/CPMP/BWP/819/01 The European Agency for the Evaluation of Medicinal Products Evaluation of Medicines for Human Use London, 24 April 2001 EMEA/CPMP/BWP/819/01 QUESTIONS AND ANSWERS ON BOVINE SPONGIFORM ENCEPHALOPATHIES

More information

CJD (Creutzfeldt-Jakob disease)

CJD (Creutzfeldt-Jakob disease) CJD - lyodura and the risk of exposure during healthcare - frequently asked questions We would like to reassure all our patients that tight regulations govern all infection control processes at Addenbrooke's,

More information

MITOCW S05-L35

MITOCW S05-L35 MITOCW 7.013-S05-L35 So we're going to talk about prions today and prion diseases which is a fascinating subject and one, again, of potential medical significance. We'll see how it plays out in time, but

More information

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan 5 Rama Abbady Odai Bani-Monia Diala Abu-Hassan Lipid Rafts Lipid rafts are aggregates (accumulations) of sphingolipids. They re semisolid clusters (10-200 nm) of cholesterol and sphingolipids (sphingomyelin

More information

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-formsf Commonly referred to by organism they infect

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

Dr. Gary Mumaugh. Viruses

Dr. Gary Mumaugh. Viruses Dr. Gary Mumaugh Viruses Viruses in History In 1898, Friedrich Loeffler and Paul Frosch found evidence that the cause of foot-and-mouth disease in livestock was an infectious particle smaller than any

More information

Unusual infectious agents

Unusual infectious agents Unusual infectious agents Lecture 23 Biology W3310/4310 Virology Spring 2016 So come up to the lab and see what s on the slab - DR. FRANK-N-FURTER The Rocky Horror Picture Show A fundamental question What

More information

Virology. What is a virus? How do viruses differ from cellular microorganisms?

Virology. What is a virus? How do viruses differ from cellular microorganisms? Virology What is a virus? How do viruses differ from cellular microorganisms? 1. Acellular o consist of a particle consisting of a nucleic acid surrounded by a protein coat. o In extracellular form a virus

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B

BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B BIOL 1010 Introduction to Biology: The Evolution and Diversity of Life. Spring 2011 Sections A & B Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 What about viruses? Truth is nobody

More information

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size Hepatitis Viral diseases Polio Chapter 18. Measles Viral Genetics Influenza: 1918 epidemic 30-40 million deaths world-wide Chicken pox Smallpox Eradicated in 1976 vaccinations ceased in 1980 at risk population?

More information

Creutzfeldt-Jakob Disease Fact Sheet

Creutzfeldt-Jakob Disease Fact Sheet What is Creutzfeldt-Jakob Disease? Cretuzfeldt-Jakob disease (CJD) is a rare, degenerative, invariably fatal brain disorder. It affects about one person in every one million people worldwide and about

More information

Unusual infectious agents

Unusual infectious agents Unusual infectious agents Lecture 24 Biology 3310/4310 Virology Spring 2017 So come up to the lab and see what s on the slab - DR. FRANK-N-FURTER The Rocky Horror Picture Show A fundamental question What

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat AP Biology Reading Guide Name Chapter 19: Viruses Overview Experimental work with viruses has provided important evidence that genes are made of nucleic acids. Viruses were also important in working out

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

YEAST MODEL FOR STUDYING HERITABLE MAMMALIAN PRION DISEASES

YEAST MODEL FOR STUDYING HERITABLE MAMMALIAN PRION DISEASES YEAST MODEL FOR STUDYIG HERITABLE MAMMALIA PRIO DISEASES Yury O. Chernoff School of Biology, Institute for Bioengineering and Bioscience, Center for anobiology of the Macromolecular Assembly Disorders

More information

How could the small size of viruses have helped researchers detect viruses before the invention of the electron microscope? 13-1

How could the small size of viruses have helped researchers detect viruses before the invention of the electron microscope? 13-1 3 4 5 6 7 8 9 0 3 4 5 6 Chapter 3 Viruses, Viroids, and Prions General Characteristics of Viruses General Characteristics of Viruses Obligatory intracellular parasites Contain DNA or RNA Contain a protein

More information

VIRUSES. 1. Describe the structure of a virus by completing the following chart.

VIRUSES. 1. Describe the structure of a virus by completing the following chart. AP BIOLOGY MOLECULAR GENETICS ACTIVITY #3 NAME DATE HOUR VIRUSES 1. Describe the structure of a virus by completing the following chart. Viral Part Description of Part 2. Some viruses have an envelope

More information

Chapter 12: Acellular Agents: Viruses, Viroids and Prions

Chapter 12: Acellular Agents: Viruses, Viroids and Prions Chapter 12: Acellular Agents: Viruses, Viroids and Prions Viruses Viruses are acellular infectious agents that are much smaller than bacteria and are usually measured in nanometers (Figure 12.1). They

More information

Microbiology Chapter 7 Viruses

Microbiology Chapter 7 Viruses Microbiology Chapter 7 Viruses 7:1 Viral Structure and Classification VIRUS: a biological particle composed of genetic material (DNA or RNA) encased in a protein coat CAPSID: protein coat surrounding a

More information

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department General Virology I Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department ١ General Virology I Lecture Outline Introduction istory Definition

More information

Chapter 08 Lecture Outline

Chapter 08 Lecture Outline Chapter 08 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright 2016 McGraw-Hill Education. Permission required for reproduction

More information

Creutzfelt-Jakob Disease (CJD)

Creutzfelt-Jakob Disease (CJD) Creutzfelt-Jakob Disease (CJD) Introduction Creutzfeldt-Jakob disease (CJD) is an illness of the nervous system that causes damage to the brain. (The disease is named after 2 German scientists). CJD is

More information

Bacteriophage Reproduction

Bacteriophage Reproduction Bacteriophage Reproduction Lytic and Lysogenic Cycles The following information is taken from: http://student.ccbcmd.edu/courses/bio141/lecguide/unit3/index.html#charvir Bacteriophage Structure More complex

More information

History electron microscopes

History electron microscopes Viruses History Through the 1800s, many scientists discovered that something smaller than bacteria could cause disease and they called it virion (Latin word- poison) In the 1930s, after the invention of

More information

Creutzfeldt-Jakob Disease

Creutzfeldt-Jakob Disease Creutzfeldt-Jakob Disease Other Dementias Introduction Alzheimer s disease is one type of a large group of disorders known as dementias. It is an irreversible disease of the brain in which the progressive

More information

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES I. CHARACTERISTICS OF VIRUSES A. General Characteristics 1. Obligate intracellular parasites that multiply in living host cells 2. Contain a single

More information

Registry of Creutzfeldt-Jakob disease and related disorders (19 years of activity: )

Registry of Creutzfeldt-Jakob disease and related disorders (19 years of activity: ) !!! "#$%&' ( )* +* ' &, --%". / & 0123&445467&6844& Registry of Creutzfeldt-Jakob disease and related disorders (19 years of activity: 1993-2011) Voluntary Notification: 1993-2000 Mandatory Notification:

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

The prokaryotic domains

The prokaryotic domains Diversity of Bacteria, Archaea, and Viruses Chapter 19 The prokaryotic domains Bacteria Three types of structure Spherical, rod-shaped, and spiral Archaea Many are extremophilic Prefer to live in very

More information

Warts are a skin virus!

Warts are a skin virus! Viruses Warts are a skin virus! Herpes mouth virus: Other Viral Diseases Measles Polio Smallpox Influenza Hepatitis B Virus Viruses & Cancer Human Papilloma Virus HPV Tree Man - HPV Is a Virus a Living

More information

Antiviral Drugs Lecture 5

Antiviral Drugs Lecture 5 Antiviral Drugs Lecture 5 Antimicrobial Chemotherapy (MLAB 366) 1 Dr. Mohamed A. El-Sakhawy 2 Introduction Viruses are microscopic organisms that can infect all living cells. They are parasitic and multiply

More information

Biol115 The Thread of Life"

Biol115 The Thread of Life Biol115 The Thread of Life" Lecture 9" Gene expression and the Central Dogma"... once (sequential) information has passed into protein it cannot get out again. " ~Francis Crick, 1958! Principles of Biology

More information

CREUTZFELDT-JAKOB DISEASE (CJD)

CREUTZFELDT-JAKOB DISEASE (CJD) Cause/Epidemiology CREUTZFELDT-JAKOB DISEASE (CJD) The agent causing CJD and other human transmissible spongiform encephalopathy (TSE) has not yet been definitively identified. It was originally thought

More information

Immuno-Real Time-PCR as a sensitive diagnostic tool: case of prion proteins.

Immuno-Real Time-PCR as a sensitive diagnostic tool: case of prion proteins. Immuno-Real Time-PCR as a sensitive diagnostic tool: case of prion proteins. Virginie Ruelle and Benaissa ElMoualij. Center of Research on Prion Protein, University of Liège, Liège, Belgium Freising-Weihenstephan

More information

Biology 350: Microbial Diversity

Biology 350: Microbial Diversity Biology 350: Microbial Diversity Strange Invaders: Viruses, viroids, and prions. Lecture #27 7 November 2007-1- Notice handouts and announcements for today: Outline and study questions A 1999 paper discussing

More information

Wednesday, October 19, 16. Viruses

Wednesday, October 19, 16. Viruses Viruses Image of an animal cell More realistic size of a virus compared to an animal cell Cells can fulfill all characteristics of life Viruses on their own can be considered lifeless chemicals, unless?

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

A virus consists of a nucleic acid surrounded by a protein coat. [2]

A virus consists of a nucleic acid surrounded by a protein coat. [2] GUIDED READING - Ch. 19 - VIRUSES NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

HIV INFECTION: An Overview

HIV INFECTION: An Overview HIV INFECTION: An Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ

More information

Virus Entry. Steps in virus entry. Penetration through cellular membranes. Intracellular transport John Wiley & Sons, Inc. All rights reserved.

Virus Entry. Steps in virus entry. Penetration through cellular membranes. Intracellular transport John Wiley & Sons, Inc. All rights reserved. Virus Entry Steps in virus entry Penetration through cellular membranes Intracellular transport Steps in virus entry How do virions get into cells? Viruses of bacteria, archaea, algae and plants use different

More information

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Reoviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Naked icosahedral capsid (T=13), diameter 60-85 nm Capsid consists of two or three concentric protein

More information