Glioblastoma is the most common primary malignant brain tumor in adults and is a

Size: px
Start display at page:

Download "Glioblastoma is the most common primary malignant brain tumor in adults and is a"

Transcription

1 NEUROLOGICAL REVIEW Recent Advances in Therapy for Glioblastoma Jennifer Clarke, MD, MPH; Nicholas Butowski, MD; Susan Chang, MD Glioblastoma is the most common primary malignant brain tumor in adults and is a challenging disease to treat. The current standard of care includes maximal safe surgical resection, followed by a combination of radiation and chemotherapy with temozolomide. Despite that, recurrence is quite common, and so we continue to search for more effective treatments both for initial therapy and at the time of recurrence. This article will review recent advances in therapy for glioblastoma, including surgery, radiotherapy, cytotoxic chemotherapies, molecularly targeted agents, and immunotherapy; the role of antiangiogenic agents in the treatment of glioblastoma is discussed in a separate article in this issue of the Archives. Arch Neurol. 2010;67(3): Approximately primary brain tumors are diagnosed in the United States each year, 36% of which are gliomas. 1 Of these, half are glioblastoma (GBM), or World Health Organization grade IV astrocytoma. Glioblastoma is the most aggressive form of glioma and, despite recent advances, continues to have a grim prognosis. The current standard of care for GBM begins with maximal safe surgical resection. After surgery, the combination of radiotherapy (RT) with temozolomide followed by adjuvant temozolomide therapy was shown to be significantly, although modestly, better than RT alone in a phase 3 clinical trial coordinated by the European Organization for Research and Treatment of Cancer and the National Cancer Institute of Canada. 2 Median overall survival in the chemoradiotherapy arm was 14.6 months compared with 12 months in the RT arm. Perhaps more importantly, however, the percentage of patients alive at 2 years increased from approximately 10% to approximately 26%. A post hoc analysis of tumor tissue in a subset of patients in the phase 3 trial demonstrated that patients whose tumors have methylation of the promoter region of the methylguanine methyltransferase (MGMT) gene (GenBank 4255) survived longer than Author Affiliations: Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco. those whose tumors were not methylated and on average derived greater benefit from the addition of temozolomide to RT. 3 However, temozolomide provided modest benefit in the nonmethylated group, with borderline statistical significance. There is currently no proven alternative treatment for patients with nonmethylated tumors, so the combination of RT and temozolomide remains the treatment of choice for all patients with GBM at this time. However, the median progression-free survival after RT with temozolomide and adjuvant temozolomide therapy is only 7 months, and a subset of patients tumors show inexorable growth despite combined chemoradiotherapy. Therefore, we continue to search for more effective treatments to treat this difficult disease. This article will review recent advances in the treatment of GBM. ADVANCES IN SURGICAL TREATMENT Prospective surgical trials are very difficult to design and implement and, as such, few have been attempted. One recent multicenter phase 3 study from Germany evaluated the utility of 5-aminolevulinic acid (a fluorescent label) to assist surgeons in achieving a radiographic gross total resection of the contrast-enhancing portion of GBM. 4 Only patients with ring-enhancing 279

2 tumors that were believed to be potentially fully resectable were eligible to participate. All patients underwent maximal resection of tumor; they were randomized to the use of standard white light or fluorescence for intraoperative guidance. Use of 5-aminolevulinic acid allowed for a significantly higher rate of complete resection of enhancing disease on postoperative magnetic resonance imaging performed within 72 hours of surgery; gross total resection was achieved in 65% of patients in the treatment arm compared with 35% in the conventional surgery arm. Further analysis of the data from this trial has demonstrated that patients who underwent gross total resection, regardless of the treatment arm, had superior survival to those who received subtotal resection. 5 Although prospective data specifically addressing the issue of surgical extent of resection have never been collected, it is fairly well accepted at this point that cytoreduction via maximal safe resection improves survival. It also appears that use of 5-aminolevulinic acid intraoperatively may help to maximize resection. ADVANCES IN RT The standard of care for RT for GBM is focal, fractionated external beam RT (EBRT), but new techniques and technologies continue to be evaluated. Although no prospective, randomized studies have compared the 2 techniques, intensity-modulated RT (IMRT) is becoming widely used and appears to be fairly comparable to more traditional 3-dimensional EBRT. 6 A number of dose-intensification techniques, such as brachytherapy, hyperfractionation, and the combination of EBRT with stereotactic radiation boosts, have been investigated, but none has been clearly shown to be superior to standard EBRT. ADVANCES IN MEDICAL THERAPY Treatment of GBM can be divided into 2 major situations: initial treatment and treatment at disease recurrence. New agents or treatment delivery techniques are typically tested first in the recurrent disease setting, where there are few approved treatment alternatives. Promising agents may then be combined with EBRT and temozolomide in the initial treatment setting because this is the established standard of care. Alkylating Agents Many GBMs have or develop resistance to alkylating chemotherapeutic agents such as temozolomide. One common mechanism of resistance is mediated by the enzyme encoded by the MGMT gene, O 6 -alkylguanine-dna alkyltransferase. Methylation of the promoter region of the gene silences it, leading to greater sensitivity to temozolomide. One promising strategy for overcoming resistance is simply administering more frequent temozolomide doses in what are referred to as dose-dense or dose-intense schedules. 7 The Radiation Therapy Oncology Group has recently completed a phase 3 study randomizing patients between the standard 5-day regimen of temozolomide and a dose-intense 21-day monthly regimen of temozolomide after chemoradiotherapy; results are pending. Another strategy is direct enzyme inhibition using O 6 -benzylguanine, which has been studied in combination with temozolomide. 8 A second mechanism of resistance is mediated by the poly(adenosine diphosphate ribose) polymerase (PARP) system; a number of PARP inhibitors have been developed and are being tested in early-phase clinical trials in combination with RT and temozolomide therapy. Molecularly Targeted Agents As we learn more about the biology of GBM and its aberrant signaling pathways, the neuro-oncology community has begun to investigate the role of molecularly targeted agents inhibiting these pathways (Figure). Most of the targeted agents are small-molecule tyrosine kinase inhibitors 9 or monoclonal antibodies. The signaling pathways targeted include tumor growth factor pathways, angiogenesis pathways, and the intracellular signaling pathways that lie downstream of both. The angiogenesis pathways and their associated antiangiogenic agents are covered separately in this issue of the Archives. 10 A wide variety of targeted agents are being studied in the preclinical setting and in clinical trials. The overall experience at this point has been that monotherapy at recurrence with highly targeted tyrosine kinase inhibitors of all types has shown limited efficacy. It remains an open question for many of these agents whether molecular selection of tumors with particular mutations in the pertinent pathway may optimize efficacy; results of this type of strategy thus far have been mixed. Overall survival in multiple recent single-arm studies combining targeted agents with EBRT and temozolomide for firstline treatment has been modestly superior relative to historical controls. Because results with highly targeted agents have been somewhat disappointing, there has been a move toward combined inhibition of multiple targets, shutting down proximal and distal targets within the same pathway or shutting down targets in separate, parallel pathways. This can be accomplished via a combination of multiple agents or via single agents that inhibit multiple kinases. The potential for greater efficacy by inhibiting multiple pathways is counterbalanced by the corresponding increase in the risk of toxic effects from systemic inhibition of these same pathways. Epidermal Growth Factor. Epidermal growth factor (EGF) and its receptor, EGFR, have been implicated in the growth of a number of tumors, including GBM. Binding of the EGF ligand to the extracellular portion of the EGFR activates the intracellular tyrosine kinase domain, triggering a variety of signaling cascades. Abnormally increased EGFR signaling activity is frequent in GBMs; it can be the result of overexpression due to polysomy or amplification or the result of mutation (eg, the EGFRvIII mutant, seen in roughly 40% of GBMs, has a constitutively active tyrosine kinase domain owing to a deletion in the extracellular binding domain). Antibodies to EGFR such as cetuximab are currently under evaluation in early-phase clinical trials. The small-molecule EGFR inhibitor erlotinib hydrochloride has been more extensively evaluated as a single agent in recurrent dis- 280

3 AMG102 (HGF) Growth factor Cetuximab Receptor complex RAS GTP RAS GDP Grb2 P P PI3K PIP 2 PTEN PIP3 Cell membrane RAF Tipifarnib Erlotinib hydrochloride (EGFR) Imatinib mesylate (PDGFR) PDK1 Perifosine MEK AKT MAPK Temsirolimus TSC1,2 mtor Neoplastic growth processes Figure. Selected growth factor pathways demonstrating targets for new molecular agents, with examples of agents currently under study. EGFR indicates epidermal growth factor receptor; GDP, guanosine diphosphate; Grb2, growth factor receptor-bound 2; GTP, guanosine triphosphate; HGF, hepatocyte growth factor; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; mtor, mammalian target of rapamycin; P, phosphate group; PDGFR, platelet-derived growth factor receptor; PDK, phosphatidylinositol-dependent kinase; PI3K, phosphoinositide-3 kinase; PIP 2, phosphatidylinositol 4,5-bisphosphate, PIP 3, phosphatidylinositol 3,4,5-triphosphate; PTEN, phosphate and tensin homologue; and TSC, tuberous sclerosis complex. ease and in combination with RT and temozolomide for initial treatment. Results have been disappointing in recurrent disease 11 and mixed in initial treatment, with one study suggesting mildly improved survival 12 but a second study failing to show improvement. 13 Additional studies to evaluate EGFR inhibitors in combination with other agents are ongoing, as are prospective studies to evaluate subpopulations that may be more likely to derive benefit from this class of agents. Two retrospective studies have found a correlation between activity of the protein kinase B/AKT pathway and erlotinib response in tumors with overexpression of EGFR, although this has not been confirmed prospectively. 14,15 Platelet-Derived Growth Factor. Platelet-derived growth factor (PDGF) and its receptor (PDGFR) are also commonly overactive in GBM, and, like activation of EGFR, activation of PDGFR triggers multiple intracellular signaling cascades. Imatinib mesylate is the best-known PDGFR inhibitor, although it also inhibits BCR-ABL and c-kit. Phase 2 studies have evaluated imatinib in recurrent GBM as a single agent 16 and in combination with hydroxyurea, 17 but again, as with EGFR inhibitors, the results have been disappointing overall. Hepatocyte Growth Factor/Scatter Factor. Hepatocyte growth factor (also known as scatter factor) binds to the c-met receptor, activating intracellular signaling cascades similar to those triggered by EGFR and PDGFR; c-met signaling is thought to be associated with invasion. In addition to stimulating c-met, hepatocyte growth factor activates the EGF and vascular endothelial growth factor pathways. Multiple c-met inhibitors are currently under evaluation; one, AMG102, is a human monoclonal antibody against hepatocyte growth factor that is currently in phase 2 study. Several small-molecule inhibitors are also currently under investigation. Phosphoinositide-3 Kinase/AKT/Mammalian Target of Rapamycin Pathway. One of the intracellular secondmessenger systems activated by EGFR, PDGFR, and the c-met receptor is the phosphoinositide-3 kinase pathway, which leads to activation of AKT, also called protein kinase B, and then several targets further downstream, including the mammalian target of rapamycin. The major negative regulator of this pathway is the phosphate and tensin homologue (PTEN); there is frequently mutation of the PTEN gene (GenBank 5728) or loss of heterozygosity of the chromosome on which the PTEN gene resides in GBM, likely contributing to the overactivity of this pathway. Temsirolimus and everolimus are both inhibitors of the mammalian target of rapamycin, the best-studied of the targets in the phosphoinositide-3 kinase pathway. Temsirolimus as monotherapy was well tolerated but showed little efficacy in recurrent GBM 18 ; combination studies with multiple other agents are ongoing. Perifosine is a direct AKT inhibitor and is also under evaluation in recurrent malignant glioma. RAS/RAF/Mitogen-Activated Protein Kinase Kinase/ Mitogen-Activated Protein Kinase Pathway. Another second-messenger system activated by EGFR and PDGFR begins with the RAS protein, which initiates a number of signaling cascades, including that of mitogen-activated protein kinase, which has been implicated in cell proliferation. Farnesyl transferase inhibitors inhibit the enzyme that activates RAS; the most extensively studied in GBM is tipifarnib (R115777), which was well tolerated with modest activity as a single agent 19 and is currently being studied in combination with several other agents. 281

4 Epigenetic Alterations. The importance of epigenetic alterations in tumors is being increasingly appreciated. For example, histone deacetylases, enzymes that play a role in the chromatin structure that organizes DNA and regulates gene transcription, are known to have a role in multiple cancers, including GBM. Vorinostat, a histone deacetylase inhibitor, has shown modest benefit as a single agent in GBM 20 and is currently being tested in combination regimens. Methods for Local Drug Delivery One of the major challenges of chemotherapy for GBM is the achievement of adequate drug concentration within the tumor itself. The blood-brain barrier, although often impaired in areas of bulky tumor, still acts as a barrier against many drugs, particularly in the periphery of the tumor, which is often highly infiltrative. Therefore, a variety of alternative delivery methods have been evaluated. One such method is the placement of drug-containing wafers. Carmustine (bischloroethylnitrosourea) is a nitrosourea compound, and carmustine-impregnated wafers (Gliadel wafers; MGI Pharma, Bloomington, Minnesota) have been placed into the surgical cavity after tumor resection, with modest efficacy. 21 The combination of carmustine-impregnated wafer placement with EBRT and temozolomide has not been formally studied, although it appears well tolerated. 22 Convection-enhanced delivery is another strategy for local drug delivery. The technique involves the placement of several catheters into a surgical cavity immediately after resection; antineoplastic agents are then delivered through the catheters using convection, which improves distribution within the surrounding tissue where residual tumor cells persist. Early-phase studies using convection-enhanced delivery to deliver cintredekin besudotox (a recombinant protein combining portions of the interleukin 13 and Pseudomonas exotoxin proteins) in patients with recurrent malignant gliomas have been promising, 23 although neither it nor any other agent administered via this technique has received approval yet. ADVANCES IN IMMUNOTHERAPY Immunotherapeutic treatment for glioma includes active and passive strategies. Active immunotherapy upregulates an immune response to tumor and can confer long-term immunity that potentially continues to provide protection against future tumor recurrence. Passive immunotherapy involves the transfer of immune effectors to achieve an immediate effect but does not generate long-term immunity. Active Immunotherapy A variety of strategies are being pursued to induce cytokine secretion directly within tumors because systemic exposure leads to excessive toxic effects. Techniques using direct cell transplants or genetically engineered viral vectors to induce cytokine production within GBM are currently undergoing preclinical evaluation. 24 Another area of active research is that of pattern recognition receptors and their agonists. 25 Double-stranded RNA (dsrna), a nucleic acid variant normally associated with viruses, is one such agonist. A few clinical trials using poly-iclc (polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethyl cellulose), a dsrna moiety, have included patients with GBM and have been published, with mixed results. 26,27 Tumor vaccines attempt to induce the immune system to generate a response against the tumor. One of the few known truly tumor-specific antigens is EGFRvIII. A peptide vaccine in which the sequence encompasses the mutated segment of EGFRvIII has demonstrated a cytotoxic response against gliomas in preclinical studies. 28 This vaccine, in combination with RT and temozolomide, is being studied in a phase 2/3 trial for patients with newly diagnosed tumors that contain the mutation in question. Several other promising tumor vaccine strategies are also being used in clinical trials. 29 Dendritic cells are professional antigen-presenting cells that can be primed with tumor antigen ex vivo 30 and then readministered to the patient, where they mediate T-cell activation. Numerous preclinical studies demonstrate that dendritic cells pulsed with glioma antigens can prime a cytotoxic lymphocyte response that is tumor specific; phase 1 and 2 clinical trials have been completed using dendritic cell strategies, with encouraging results. 31 Passive Immunotherapy Antibody-mediated drug delivery is a strategy designed with the dual purpose of increasing the local drug concentration while minimizing nonspecific systemic exposure. Monoclonal antibodies targeting glioma-specific structures have been coupled to radionuclides (radioimmunoconjugates), exotoxins (immunotoxins), or chemotherapeutic agents and are administrated locally. Antigens that are overexpressed in tumors relative to normal tissue are typically used, such as mutant EGFR, tenascin, and interleukin 4 or interleukin 13 receptors. 32 ADVANCES IN GENE THERAPY Gene therapy is based on the insertion or modification of genes into a cell to treat a disease. Gene delivery can be accomplished using a variety of vectors, from viruses to cell-based systems to synthetic vectors. In gliomas, viral vectors have been used to deliver suicide genes, proapoptotic genes, p53, cytokines, and caspases. 33 Such studies have shown promising preclinical results, but clinical trials have been limited by the fact that transduced cells were found only within a very short distance of the delivery site. Synthetic vector research has focused on the use of nanoparticles. Liposomal vectors, for example, have been used to deliver therapeutic genes in the preclinical setting. OTHER THERAPIES A variety of other novel therapeutic approaches are also currently being researched, including the use of alternating electrical fields to disrupt cell division via a device called NovoTTF-100A (NovoCure Ltd, Haifa, Israel),

5 currently in phase 3 trials, and the use of thermal lasers to denature tumor tissue. In conclusion, the survival of patients with GBM continues to improve, albeit more slowly than we would like. A wide variety of new techniques and agents are currently under study, alone and in combination. Increased collective experience in their use and improved understanding of the complex biology of GBM may allow for more rational and effective therapy selection for patients, further extending survival in the years to come. Accepted for Publication: October 15, Correspondence: Jennifer Clarke, MD, MPH, Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, 400 Parnassus Ave, Room A-808, Box 0372, San Francisco, CA (clarkej@neurosurg.ucsf.edu). Author Contributions: Study concept and design: Clarke, Butowski, and Chang. Drafting of the manuscript: Clarke and Butowski. Critical revision of the manuscript for important intellectual content: Clarke, Butowski, and Chang. Administrative, technical, and material support: Clarke and Butowski. Study supervision: Butowski and Chang. Financial Disclosures: Dr Clarke has been a consultant for Schering-Plough. Dr Chang has received research funding from Genentech, Novartis, and Schering-Plough. Additional Contributions: Ilona Garner, BS, provided editorial assistance in the preparation of this manuscript. REFERENCES 1. Central Brain Tumor Registry of the United States Statistical report: primary brain tumors in the United States, /reports/reports.html. Accessed October 1, Stupp R, Mason WP, van den Bent MJ, et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10): Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10): Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ; ALA- Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5): Pichlmeier U, Bink A, Schackert G, Stummer W; ALA Glioma Study Group. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol. 2008;10(6): Narayana A, Yamada J, Berry S, et al. Intensity-modulated radiotherapy in highgrade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys. 2006; 64(3): Clarke JL, Iwamoto FM, Sul J, et al. Randomized phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J Clin Oncol. 2009;27(23): Quinn JA, Jiang SX, Reardon DA, et al. Phase II trial of temozolomide plus O 6 - benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. 2009;27(8): Chi AS, Wen PY. Inhibiting kinases in malignant gliomas. Expert Opin Ther Targets. 2007;11(4): Iwamoto FM, Fine HA. Bevacizumab for malignant gliomas. Arch Neurol. 2010; 67(3): van den Bent MJ, Brandes AA, Rampling R, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC Brain Tumor Group Study J Clin Oncol. 2009;27(8): Prados MD, Chang SM, Butowski N, et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol. 2009;27(4): Brown PD, Krishnan S, Sarkaria JN, et al; North Central Cancer Treatment Group Study N0177. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol. 2008;26(34): Haas-Kogan DA, Prados MD, Tihan T, et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst. 2005; 97(12): Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353 (19): Wen PY, Yung WK, Lamborn KR, et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study Clin Cancer Res. 2006;12(16): Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme [published correction appears in J Clin Oncol. 2006;24(7):1224]. J Clin Oncol. 2005;23(36): Galanis E, Buckner JC, Maurer MJ, et al; North Central Cancer Treatment Group. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23(23): Cloughesy TF, Wen PY, Robins HI, et al. Phase II trial of tipifarnib in patients with recurrent malignant glioma either receiving or not receiving enzymeinducing antiepileptic drugs: a North American Brain Tumor Consortium Study. J Clin Oncol. 2006;24(22): Galanis E, Jaeckle KA, Maurer MJ, et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2009;27(12): Hart MG, Grant R, Garside R, Rogers G, Somerville M, Stein K. Chemotherapeutic wafers for high grade glioma. Cochrane Database Syst Rev. 2008;(3):CD McGirt MJ, Than KD, Weingart JD, et al. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg. 2009;110(3): Kunwar S, Prados MD, Chang SM, et al; Cintredekin Besudotox Intraparenchymal Study Group. Direct intracerebral delivery of cintredekin besudotox (IL13- PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol. 2007;25(7): Mitchell DA, Fecci PE, Sampson JH. Immunotherapy of malignant brain tumors. Immunol Rev. 2008;222: Lotfi R, Schrezenmeier H, Lotze MT. Immunotherapy for cancer: promoting innate immunity. Front Biosci. 2009;14: Butowski N, Chang SM, Junck L, et al. A phase II clinical trial of poly-iclc with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05). J Neurooncol. 2009; 91(2): Salazar AM, Levy HB, Ondra S, et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery. 1996; 38(6): Choi BD, Archer GE, Mitchell DA, et al. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol. 2009;19(4): Yamanaka R. Cell- and peptide-based immunotherapeutic approaches for glioma. Trends Mol Med. 2008;14(5): Luptrawan A, Liu G, Yu JS. Dendritic cell immunotherapy for malignant gliomas. Rev Recent Clin Trials. 2008;3(1): Selznick LA, Shamji MF, Fecci P, Gromeier M, Friedman AH, Sampson J. Molecular strategies for the treatment of malignant glioma: genes, viruses, and vaccines. Neurosurg Rev. 2008;31(2): Mitchell DA, Sampson JH. Toward effective immunotherapy for the treatment of malignant brain tumors. Neurotherapeutics. 2009;6(3): Germano IM, Binello E. Gene therapy as an adjuvant treatment for malignant gliomas: from bench to bedside. J Neurooncol. 2009;93(1): Kirson ED, Dbaly V, Tovarys F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad SciUSA. 2007;104(24):

Scottish Medicines Consortium

Scottish Medicines Consortium Scottish Medicines Consortium temozolomide 5, 20, 100 and 250mg capsules (Temodal ) Schering Plough UK Ltd No. (244/06) New indication: for the treatment of newly diagnosed glioblastoma multiforme concomitantly

More information

Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma

Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma National Institute for Health and Clinical Excellence Health Technology Appraisal Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma Personal statement Conventional

More information

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL PhD THESIS THE IMPORTANCE OF TUMOR ANGIOGENESIS IN CEREBRAL TUMOR DIAGNOSIS AND THERAPY ABSTRACT PhD COORDINATOR: Prof. univ. dr. DRICU Anica PhD

More information

Antibody-Drug Conjugates in Glioblastoma Multiforme: Finding Ways Forward

Antibody-Drug Conjugates in Glioblastoma Multiforme: Finding Ways Forward Transcript Details This is a transcript of a continuing medical education (CME) activity accessible on the ReachMD network. Additional media formats for the activity and full activity details (including

More information

Off-Label Treatments. Clinical Trials for Recurrent GBM UCSF Radiation Oncology Course: Management of Recurrent Disease. Outline

Off-Label Treatments. Clinical Trials for Recurrent GBM UCSF Radiation Oncology Course: Management of Recurrent Disease. Outline Off-Label Treatments Clinical Trials for Recurrent GBM UCSF Radiation Oncology Course: Management of Recurrent Disease Jennifer Clarke, MD, MPH Assistant Professor Division of Neuro-Oncology Depts of Neurological

More information

Index. neurosurgery.theclinics.com. Note: Page numbers of article titles are in boldface type.

Index. neurosurgery.theclinics.com. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A A Complimentary Trial of an Immunotherapy Vaccine Against Tumor-specific EGFRvIII (ACTIVATE), 90 91 Active immunotherapy, 5 8, 96. See

More information

Precision medicine for gliomas

Precision medicine for gliomas Precision medicine for YAZMIN ODIA, MD MS LEAD PHYSICIAN OF MEDICAL NEURO-ONCOLOGY DISCLOSURES Novocure: Advisory Board for Optune in No other financial conflicts of interest Glioma OVERVIEW INFILTRATIVE,

More information

Concomitant (without adjuvant) temozolomide and radiation to treat glioblastoma: A retrospective study

Concomitant (without adjuvant) temozolomide and radiation to treat glioblastoma: A retrospective study Concomitant (without adjuvant) temozolomide and radiation to treat glioblastoma: A retrospective study T Sridhar 1, A Gore 1, I Boiangiu 1, D Machin 2, R P Symonds 3 1. Department of Oncology, Leicester

More information

Department of Neurological Surgery, University of California, San Francisco, California

Department of Neurological Surgery, University of California, San Francisco, California Neurosurg Focus 37 (6):E15, 2014 AANS, 2014 Molecularly targeted therapies for recurrent glioblastoma: current and future targets Darryl Lau, M.D., Stephen T. Magill, M.D., Ph.D., and Manish K. Aghi, M.D.,

More information

2015 EUROPEAN CANCER CONGRESS

2015 EUROPEAN CANCER CONGRESS 2015 EUROPEAN CANCER CONGRESS 25-29 September 2015 Vienna, Austria SUMMARY The European Cancer Congress (ECC 2015) combined the 40th European Society for Medical Oncology (ESMO) congress with the 18th

More information

Is there a role for EGFR Tyrosine Kinase Inhibitors in recurrent glioblastoma?

Is there a role for EGFR Tyrosine Kinase Inhibitors in recurrent glioblastoma? Is there a role for EGFR Tyrosine Kinase Inhibitors in recurrent glioblastoma? Juan M Sepúlveda Sánchez Neurooncology Unit Hospital Universitario 12 de Octubre. Madrid Topics 1.-EGFR pathway as a potential

More information

Hypofractionated radiation therapy for glioblastoma

Hypofractionated radiation therapy for glioblastoma Hypofractionated radiation therapy for glioblastoma Luis Souhami, MD, FASTRO Professor McGill University Department of Oncology, Division of Radiation Oncology Montreal Canada McGill University Health

More information

UPDATES ON CHEMOTHERAPY FOR LOW GRADE GLIOMAS

UPDATES ON CHEMOTHERAPY FOR LOW GRADE GLIOMAS UPDATES ON CHEMOTHERAPY FOR LOW GRADE GLIOMAS Antonio M. Omuro Department of Neurology Memorial Sloan-Kettering Cancer Center II International Neuro-Oncology Congress Sao Paulo, 08/17/12 CHALLENGES IN

More information

Contemporary Management of Glioblastoma

Contemporary Management of Glioblastoma Contemporary Management of Glioblastoma Incidence Rates of Primary Brain Tumors Central Brain Tumor Registry of the United States, 1992-1997 100 Number of Cases per 100,000 Population 10 1 0.1 x I x I

More information

Molecular Epidemiology. Financial Disclosures. Central Nervous System Tumors Neuro-Oncology Clinical Research

Molecular Epidemiology. Financial Disclosures. Central Nervous System Tumors Neuro-Oncology Clinical Research Financial Disclosures Update on clinical trials for malignant glioma Susan M. Chang MD, Director of Division of Neuro-Oncology Brain Tumor Research Center Department of Neurological Surgery UCSF Research

More information

RINDOPEPIMUT (CDX-110) IN GLIOBLASTOMA

RINDOPEPIMUT (CDX-110) IN GLIOBLASTOMA RINDOPEPIMUT (CDX-110) IN GLIOBLASTOMA MULTIFORM GEINO 2014 Dra Estela Pineda Madrid Hospital Clínic Barcelona EGFRvIII in glioblastoma multiform The most common mutation of EGFR in GBM Expressed in 30%

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Analysis of MGMT Promoter Methylation in Malignant Gliomas File Name: Origination: Last CAP Review: Next CAP Review: Last Review: analysis_of_mgmt_promoter_methylation_in_malignant_gliomas

More information

See the corresponding editorial in this issue, pp 1 2. J Neurosurg 115:3 8, An extent of resection threshold for newly diagnosed glioblastomas

See the corresponding editorial in this issue, pp 1 2. J Neurosurg 115:3 8, An extent of resection threshold for newly diagnosed glioblastomas See the corresponding editorial in this issue, pp 1 2. J Neurosurg 115:3 8, 2011 An extent of resection threshold for newly diagnosed glioblastomas Clinical article Nader Sanai, M.D., 1 Mei-Yin Polley,

More information

Protocol. Tumor Treatment Fields Therapy for Glioblastoma

Protocol. Tumor Treatment Fields Therapy for Glioblastoma Protocol Tumor Treatment Fields Therapy for Glioblastoma (10129) Medical Benefit Effective Date: 07/01/16 Next Review Date: 09/18 Preauthorization No Review Dates: 09/15, 05/16, 09/16, 09/17 This protocol

More information

Glioblastoma: Adjuvant Treatment Abdulrazag Ajlan, MD, MSc, FRCSC, UCNS(D)

Glioblastoma: Adjuvant Treatment Abdulrazag Ajlan, MD, MSc, FRCSC, UCNS(D) Glioblastoma: Adjuvant Treatment Abdulrazag Ajlan, MD, MSc, FRCSC, UCNS(D) *Neurosurgery Consultant, King Saud University, Riyadh, KSA *Adjunct Teaching Faculty, Neurosurgery, Stanford School Of Medicine,

More information

PROCARBAZINE, lomustine, and vincristine (PCV) is

PROCARBAZINE, lomustine, and vincristine (PCV) is RAPID PUBLICATION Procarbazine, Lomustine, and Vincristine () Chemotherapy for Anaplastic Astrocytoma: A Retrospective Review of Radiation Therapy Oncology Group Protocols Comparing Survival With Carmustine

More information

Neuro-Oncology Program

Neuro-Oncology Program Neuro-Oncology Program The goals of the Neuro-oncology Committee are: 1) to improve duration and quality of life of brain tumor patients; 2) to assess disease and treatment-related effects on neurocognitive

More information

Survival Analysis of Glioblastoma Multiforme

Survival Analysis of Glioblastoma Multiforme DOI:10.22034/APJCP.2018.19.9.2613 RESEARCH ARTICLE Editorial Process: Submission:04/24/2018 Acceptance:08/19/2018 Supapan Witthayanuwat, Montien Pesee*, Chunsri Supaadirek, Narudom Supakalin, Komsan Thamronganantasakul,

More information

CURRENT CONTROVERSIES IN THE MANAGEMENT OF HIGH GRADE GLIOMAS: AN INTERACTIVE CASE DISCUSSION *

CURRENT CONTROVERSIES IN THE MANAGEMENT OF HIGH GRADE GLIOMAS: AN INTERACTIVE CASE DISCUSSION * CURRENT CONTROVERSIES IN THE MANAGEMENT OF HIGH GRADE GLIOMAS: AN INTERACTIVE CASE DISCUSSION * Alessandro Olivi, MD, Jaishri Blakeley, MD, and Allen K. Sills, MD, FACS ABSTRACT The management of glioma

More information

Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma: A case series.

Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma: A case series. School of Medicine Digital Commons@Becker Open Access Publications 2016 Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma:

More information

Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: PA.CP.MP.145

Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: PA.CP.MP.145 Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: PA.CP.MP.145 Effective Date: 01/18 Last Review Date: 04/18 Coding Implications Revision Log Description Electric tumor treating

More information

Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy: A Retrospective Comparative Study

Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy: A Retrospective Comparative Study Original Article Research in Oncology June 2017; Vol. 13, No. 1: 18-22. DOI: 10.21608/resoncol.2017.552.1022 Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy:

More information

A Single Institution s Experience with Bevacizumab in Combination with Cytotoxic Chemotherapy in Progressive Malignant Glioma

A Single Institution s Experience with Bevacizumab in Combination with Cytotoxic Chemotherapy in Progressive Malignant Glioma REVIEW A Single Institution s Experience with Bevacizumab in Combination with Cytotoxic Chemotherapy in Progressive Malignant Glioma Tina Mayer, Jill Lacy and Joachim Baehring Medical Oncology, Yale University

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: tumor_treatment_fields_therapy 9/2013 11/2017 11/2018 6/2018 Description of Procedure or Service Tumor-treatment

More information

Collection of Recorded Radiotherapy Seminars

Collection of Recorded Radiotherapy Seminars IAEA Human Health Campus Collection of Recorded Radiotherapy Seminars http://humanhealth.iaea.org The Role of Radiosurgery in the Treatment of Gliomas Luis Souhami, MD Professor Department of Radiation

More information

Zurich Open Repository and Archive. Long-term survival of glioblastoma patients treated with radiotherapy and lomustine plus temozolomide

Zurich Open Repository and Archive. Long-term survival of glioblastoma patients treated with radiotherapy and lomustine plus temozolomide University of Zurich Zurich Open Repository and Archive Winterthurerstr. 19 CH-857 Zurich http://www.zora.uzh.ch Year: 29 Long-term survival of glioblastoma patients treated with radiotherapy and lomustine

More information

Treatment With Bevacizumab and Irinotecan for Recurrent High-Grade Glial Tumors

Treatment With Bevacizumab and Irinotecan for Recurrent High-Grade Glial Tumors 2267 Treatment With Bevacizumab and Irinotecan for Recurrent High-Grade Glial Tumors Felix Bokstein, MD 1 Shulim Shpigel, MD 2 Deborah T. Blumenthal, MD 1 1 Neuro-Oncology Service, Tel Aviv Sourasky Medical

More information

Predictive Biomarkers in GBM

Predictive Biomarkers in GBM Predictive Biomarkers in GBM C. David James, Ph.D. Professor & Associate Director, Brain Tumor Research Center Dept. Neurological Surgery and Helen Diller Comprehensive Cancer Center, University of California

More information

Description. Section: Durable Medical Equipment Effective Date: January 15, 2016 Subsection: Original Policy Date: December 6, 2013 Subject:

Description. Section: Durable Medical Equipment Effective Date: January 15, 2016 Subsection: Original Policy Date: December 6, 2013 Subject: Last Review Status/Date: December 2015 Page: 1 of 9 Description multiforme is the most common and deadly malignant brain tumor. It has a very poor prognosis and is associated with low quality of life during

More information

Going Past the Data for Temozolomide. J. Lee Villano, M.D., Ph.D., Nathalie Letarte, B.Pharm, M.Sc, Linda R. Bressler, Pharm. D.

Going Past the Data for Temozolomide. J. Lee Villano, M.D., Ph.D., Nathalie Letarte, B.Pharm, M.Sc, Linda R. Bressler, Pharm. D. Going Past the Data for Temozolomide J. Lee Villano, M.D., Ph.D., Nathalie Letarte, B.Pharm, M.Sc, Linda R. Bressler, Pharm. D. Departments of Medicine (JLV), Neurosurgery (JLV) and Pharmacy Practice (LRB)

More information

Biologics Effects of Targeted Therapeutics

Biologics Effects of Targeted Therapeutics Report on the isbtc Mini-symposium on Biologics Effects of Targeted Therapeutics Michael B. Atkins, MD Beth Israel Deaconess Medical Center Louis Weiner, M.D. Fox Chase Cancer Center Report on the isbtc

More information

Joachim M. Baehring, MD, DSc Associate Professor of Neurology, Medicine and Neurosurgery Director, Yale Brain Tumor Center Yale University School of

Joachim M. Baehring, MD, DSc Associate Professor of Neurology, Medicine and Neurosurgery Director, Yale Brain Tumor Center Yale University School of Joachim M. Baehring, MD, DSc Associate Professor of Neurology, Medicine and Neurosurgery Director, Yale Brain Tumor Center Yale University School of Medicine New Haven, Connecticut 1 Disclosure of Conflicts

More information

NIH Public Access Author Manuscript BioDrugs. Author manuscript; available in PMC 2010 January 1.

NIH Public Access Author Manuscript BioDrugs. Author manuscript; available in PMC 2010 January 1. NIH Public Access Author Manuscript Published in final edited form as: BioDrugs. 2009 ; 23(1): 25 35. Targeted Therapies for Malignant Glioma: Progress and Potential Ronald W. Mercer, Matthew A. Tyler,

More information

Zurich Open Repository and Archive. Long-term survival of glioblastoma patients treated with radiotherapy and lomustine plus temozolomide

Zurich Open Repository and Archive. Long-term survival of glioblastoma patients treated with radiotherapy and lomustine plus temozolomide University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2009 Long-term survival of glioblastoma patients treated with radiotherapy and lomustine

More information

Bevacizumab rescue therapy extends the survival in patients with recurrent malignant glioma

Bevacizumab rescue therapy extends the survival in patients with recurrent malignant glioma Original Article Bevacizumab rescue therapy extends the survival in patients with recurrent malignant glioma Lin-Bo Cai, Juan Li, Ming-Yao Lai, Chang-Guo Shan, Zong-De Lian, Wei-Ping Hong, Jun-Jie Zhen,

More information

University of Zurich. Temozolomide and MGMT forever? Zurich Open Repository and Archive. Weller, M. Year: 2010

University of Zurich. Temozolomide and MGMT forever? Zurich Open Repository and Archive. Weller, M. Year: 2010 University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich Year: 2010 Temozolomide and MGMT forever? Weller, M Weller, M (2010). Temozolomide and MGMT forever? Neuro-Oncology,

More information

Glioblastoma: Current Treatment Approach 8/20/2018

Glioblastoma: Current Treatment Approach 8/20/2018 Glioblastoma: Current Treatment Approach 8/20/2018 Overview What is Glioblastoma? How is it diagnosed How is it treated? Principles of Treatment Surgery, Radiation, Chemotherapy Current Standard of care

More information

New Approaches in Brain Tumor Treatment. Virginia Stark-Vance, M.D.

New Approaches in Brain Tumor Treatment. Virginia Stark-Vance, M.D. New Approaches in Brain Tumor Treatment Virginia Stark-Vance, M.D. The Primary Brain Tumors es for PicturesMCD for 004.JPG 00 Meningioma 30% Glioblastoma 20% Astrocytoma 10% Nerve sheath 8% Pituitary 6%

More information

Systemic Treatment. Third International Neuro-Oncology Course. 23 May 2014

Systemic Treatment. Third International Neuro-Oncology Course. 23 May 2014 Low-Grade Astrocytoma of the CNS: Systemic Treatment Third International Neuro-Oncology Course São Paulo, Brazil 23 May 2014 John de Groot, MD Associate Professor, Neuro-Oncology UT MD Anderson Cancer

More information

ORIGINAL PAPERS. The Impact of Surgery on the Efficacy of Adjuvant Therapy in Glioblastoma Multiforme

ORIGINAL PAPERS. The Impact of Surgery on the Efficacy of Adjuvant Therapy in Glioblastoma Multiforme ORIGINAL PAPERS Adv Clin Exp Med 2015, 24, 2, 279 287 DOI: 10.17219/acem/40456 Copyright by Wroclaw Medical University ISSN 1899 5276 Anna Brzozowska 1, 2, A D, Anna Toruń 3, G, Maria Mazurkiewicz1, 2,

More information

Citation Pediatrics international (2015), 57.

Citation Pediatrics international (2015), 57. Title Long-term efficacy of bevacizumab a pediatric glioblastoma. Umeda, Katsutsugu; Shibata, Hirofum Author(s) Hiramatsu, Hidefumi; Arakawa, Yoshi Nishiuchi, Ritsuo; Adachi, Souichi; Ken-Ichiro Citation

More information

Efficacy of Treatment for Glioblastoma Multiforme in Elderly Patients (65+): A Retrospective Analysis

Efficacy of Treatment for Glioblastoma Multiforme in Elderly Patients (65+): A Retrospective Analysis Efficacy of Treatment for Glioblastoma Multiforme in Elderly Patients (65+): A Retrospective Analysis Igal Kushnir MD 1 * and Tzahala Tzuk-Shina MD 2 1 Oncology Insitute, Tel Aviv Sourasky Medical Center,

More information

Cilengitide (Impetreve) for glioblastoma multiforme. February 2012

Cilengitide (Impetreve) for glioblastoma multiforme. February 2012 Cilengitide (Impetreve) for glioblastoma multiforme February 2012 This technology summary is based on information available at the time of research and a limited literature search. It is not intended to

More information

Changing Paradigms An Update on the Multidisciplinary Management of Malignant Glioma

Changing Paradigms An Update on the Multidisciplinary Management of Malignant Glioma This material is protected by U.S. Copyright law. Unauthorized reproduction is prohibited. For reprints contact: Reprints@AlphaMedPress.com Neuro Oncology Changing Paradigms An Update on the Multidisciplinary

More information

Tumor-Treatment Fields Therapy for Glioblastoma

Tumor-Treatment Fields Therapy for Glioblastoma Applies to all products administered or underwritten by Blue Cross and Blue Shield of Louisiana and its subsidiary, HMO Louisiana, Inc.(collectively referred to as the Company ), unless otherwise provided

More information

Corporate Medical Policy Tumor-Treatment Fields Therapy for Glioblastoma

Corporate Medical Policy Tumor-Treatment Fields Therapy for Glioblastoma Corporate Medical Policy Tumor-Treatment Fields Therapy for Glioblastoma File Name: Origination: Last CAP Review: Next CAP Review: Last Review: tumor-treatment_fields_therapy_for_glioblastoma 9/2013 11/2017

More information

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER CODING INFORMATION REFERENCES POLICY HISTORY

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER CODING INFORMATION REFERENCES POLICY HISTORY Original Issue Date (Created): November 26, 2013 Most Recent Review Date (Revised): November 26, 2013 Effective Date: April 1, 2014 POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS

More information

CNS Tumors: The Med Onc Perspective. Ronald J. Scheff, MD Associate Clinical Professor Weill Medical College of Cornell U.

CNS Tumors: The Med Onc Perspective. Ronald J. Scheff, MD Associate Clinical Professor Weill Medical College of Cornell U. CNS Tumors: The Med Onc Perspective Ronald J. Scheff, MD Associate Clinical Professor Weill Medical College of Cornell U. Disclosure Speakers Bureau, Merck Basic Oncology Concepts Tissue Diagnosis Stage

More information

Clinical Management Protocol Chemotherapy [Glioblastoma Multiforme (CNS)] Protocol for Planning and Treatment

Clinical Management Protocol Chemotherapy [Glioblastoma Multiforme (CNS)] Protocol for Planning and Treatment Protocol for Planning and Treatment The process to be followed when a course of chemotherapy is required to treat: GLIOBLASTOMA MULTIFORME (CNS) Patient information given at each stage following agreed

More information

PI3-Kinase Signaling. Rational Incorporation of Novel Agents into Multimodality Therapy. PI3-kinase. PI3-kinase 5/2/2010

PI3-Kinase Signaling. Rational Incorporation of Novel Agents into Multimodality Therapy. PI3-kinase. PI3-kinase 5/2/2010 Rational Incorporation of Novel Agents into Multimodality Therapy I3-Kinase Signaling EGF IRS1 I3K EGFR I2 I3 TEN Rictor GßL AKT RAS40 Survival Raptor GßL Daphne Haas-Kogan UCSF Annual Course April 30-May

More information

It s s Always Something!

It s s Always Something! It s s Always Something! New Approaches in Brain Tumor Treatment Virginia Stark-Vance, M.D. When Something Is a Brain Tumor Brain tumors aren t rare: there are over 100,000/yr Most originate as other cancers

More information

Temozolomide with Radiotherapy for the Treatment of Malignant Gliomas, Center Experience

Temozolomide with Radiotherapy for the Treatment of Malignant Gliomas, Center Experience Temozolomide with Radiotherapy for the Treatment of Malignant Gliomas, Center Experience *Ehab Abdou and **Mohamed Gaafar *Department of Radiation Oncology, Faculty of Medicine, Al-Azhar University, Cairo,

More information

Dose dense 1 week on/1 week off temozolomide in recurrent glioma: a retrospective study

Dose dense 1 week on/1 week off temozolomide in recurrent glioma: a retrospective study J Neurooncol (2012) 108:195 200 DOI 10.1007/s11060-012-0832-5 CLINICAL STUDY Dose dense 1 week on/1 week off temozolomide in recurrent glioma: a retrospective study Walter Taal Joyce M. W. Segers-van Rijn

More information

Glioblastoma and CNS tumors

Glioblastoma and CNS tumors Glioblastoma and CNS tumors PRECEPTORSHIP PROGRAMME IMMUNO-ONCOLOGY Amsterdam, 27 May 2017 Patrick Roth Department of Neurology and Brain Tumor Center University Hospital Zurich Challenges in immunooncology

More information

Advanced treatment in high-grade gliomas

Advanced treatment in high-grade gliomas JBUON 2019; 24(2): 424-430 ISSN: 1107-0625, online ISSN: 2241-6293 www.jbuon.com E-mail: editorial_office@jbuon.com REVIEW ARTICLE Advanced treatment in high-grade gliomas Lai Xiong 1 *, Feng Wang 1 *,

More information

CURRICULUM VITAE Prof. Dr. med. Walter Stummer

CURRICULUM VITAE Prof. Dr. med. Walter Stummer CURRICULUM VITAE Prof. Dr. med. Walter Stummer Date of birth: April 19, 1964, in Düsseldorf, Germany Medical education: 1984-91: Medical School, Ludwig-Maximilians-University, Munich 1988-90: Doctoral

More information

Breast Cancer: the interplay of biology, drugs, radiation. Prof. L. Livi Università degli Studi di Firenze. Brescia, October 3rd 4th, 2013

Breast Cancer: the interplay of biology, drugs, radiation. Prof. L. Livi Università degli Studi di Firenze. Brescia, October 3rd 4th, 2013 Breast Cancer: the interplay of biology, drugs, radiation Prof. L. Livi Università degli Studi di Firenze Brescia, October 3rd 4th, 2013 BACKGROUND (1) The complex interactions between tumor-specific signaling

More information

How genetic & biochemical alterations in brain tumors contribute to epileptogenesis

How genetic & biochemical alterations in brain tumors contribute to epileptogenesis How genetic & biochemical alterations in brain tumors contribute to epileptogenesis December 2 nd, 2012 Joon H. Uhm, MD FRCPC Departments of Neurology & Oncology Mayo Clinic, Rochester, MN American Epilepsy

More information

Glioblastoma and CNS tumors

Glioblastoma and CNS tumors Glioblastoma and CNS tumors PRECEPTORSHIP PROGRAMME IMMUNO-ONCOLOGY Amsterdam, 1 October 2016 Patrick Roth Department of Neurology and Brain Tumor Center University Hospital Zurich Immunology in the CNS

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Brachytherapy, Intracavitary Balloon Catheter for Brain Cancer File Name: Origination: Last CAP Review: Next CAP Review: Last Review: brachytherapy_intracavitary_balloon_catheter_for_brain_cancer

More information

Chemotherapy in malignant brain tumors

Chemotherapy in malignant brain tumors Chemotherapy in malignant brain tumors Frank Zimmermann Institut für Radioonkologie Universitätsspital Basel Petersgraben 4 CH 4031 Basel zimmermannf@uhbs.ch Tumor types Neuro-epithelial tumors - Glioblastoma

More information

FACT SHEET. About Optune

FACT SHEET. About Optune About Optune Optune is the Tumor Treating Fields (TTFields) delivery system that is approved by the United States (US) Food and Drug Administration (FDA) for the treatment of adult patients with glioblastoma.

More information

Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma

Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma Annals of Oncology 21: 1723 1727, 2010 doi:10.1093/annonc/mdp591 Published online 11 January 2010 Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma J. J. C. Verhoeff 1, C. Lavini

More information

Medical Necessity Guideline

Medical Necessity Guideline (MNG) Title: Electric Tumor Treatment Field Therapy MNG #: 003 SCO One Care Prior Authorization Needed? Yes No Clinical: Operational: Informational: Medicare Benefit: Yes No Last Revised Date: 1/25/2019;

More information

The PI3K/AKT axis. Dr. Lucio Crinò Medical Oncology Division Azienda Ospedaliera-Perugia. Introduction

The PI3K/AKT axis. Dr. Lucio Crinò Medical Oncology Division Azienda Ospedaliera-Perugia. Introduction The PI3K/AKT axis Dr. Lucio Crinò Medical Oncology Division Azienda Ospedaliera-Perugia Introduction Phosphoinositide 3-kinase (PI3K) pathway are a family of lipid kinases discovered in 1980s. They have

More information

MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES

MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES MALIGNANT GLIOMAS: TREATMENT AND CHALLENGES DISCLOSURE No conflicts of interest to disclose Patricia Bruns APRN, CNS Givens Brain Tumor Center Abbott Northwestern Hospital October 12, 2018 OBJECTIVES THEN

More information

Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: CP.MP.145

Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: CP.MP.145 Clinical Policy: Electric Tumor Treating Fields (Optune) Reference Number: CP.MP.145 Effective Date: 05/17 Last Review Date: 06/17 See Important Reminder at the end of this policy for important regulatory

More information

Synergistic combinations of targeted immunotherapy to combat cancer

Synergistic combinations of targeted immunotherapy to combat cancer Synergistic combinations of targeted immunotherapy to combat cancer Myung Ah Lee, M.D., Ph. D Division of Medical Oncology, Hepato-biliary pancreatic cancer center Seoul St. Mary s hospital, The Catholic

More information

Standards of care and novel approaches in the management of glioblastoma multiforme

Standards of care and novel approaches in the management of glioblastoma multiforme Chinese Journal of Cancer Review Standards of care and novel approaches in the management of glioblastoma multiforme Andreas F. Hottinger 1,3, Roger Stupp 2 and Krisztian Homicsko 3 Abstract Glioblastoma

More information

National Horizon Scanning Centre. Bevacizumab (Avastin) for glioblastoma multiforme - relapsed. August 2008

National Horizon Scanning Centre. Bevacizumab (Avastin) for glioblastoma multiforme - relapsed. August 2008 Bevacizumab (Avastin) for glioblastoma multiforme - relapsed August 2008 This technology summary is based on information available at the time of research and a limited literature search. It is not intended

More information

Pioneering vaccines that transform lives.

Pioneering vaccines that transform lives. Pioneering vaccines that transform lives. Immunomic Therapeutics, Inc. LAMP-Vax for Glioblastoma: CMV-LAMP-Vax Executive Summary Executive Summary pp65-lamp-vax First Line Therapy for Glioblastoma Multiforme

More information

Over the last decade, increasing knowledge of the

Over the last decade, increasing knowledge of the Neuro-Oncology Neurooncology clinical trial design for targeted therapies: Lessons learned from the North American Brain Tumor Consortium Susan M. Chang, Kathleen R. Lamborn, John G. Kuhn, W.K. Alfred

More information

Treatment and outcomes for glioblastoma in elderly compared with non-elderly patients: a population-based study

Treatment and outcomes for glioblastoma in elderly compared with non-elderly patients: a population-based study ORIGINAL ARTICLE Treatment and outcomes for glioblastoma in elderly compared with non-elderly patients: a population-based study E.R. Morgan md,* A. Norman md, K. Laing md, and M.D. Seal md ABSTRACT Purpose

More information

Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials

Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials Innovative Multimodal Imaging Techniques in Brain Tumor Clinical Trials Benjamin M. Ellingson, Ph.D. Assistant Professor of Radiology, Biomedical Physics, and Bioengineering Brain Tumor Imaging Laboratory

More information

This study was designed to evaluate an online prognosis

This study was designed to evaluate an online prognosis Neuro-Oncology 15(8):1074 1078, 2013. doi:10.1093/neuonc/not033 Advance Access publication March 29, 2013 NEURO-ONCOLOGY Can the prognosis of individual patients with glioblastoma be predicted using an

More information

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes.

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. ۱ RAS Genes The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. Oncogenic ras genes in human cells include H ras, N ras,

More information

CLINICAL UPDATE ON K-RAS

CLINICAL UPDATE ON K-RAS CLINICAL UPDATE ON K-RAS TARGETED THERAPY IN GASTROINTESTINAL CANCERS S. PA N T, 1 J. H U B B A R D, 2 E. M A RT I N E L L I, 3 A N D T. B E K A I I - S A A B 4 SELECTED HIGHLIGHTS 1 Department of Investigational

More information

Incidence of Early Pseudo-progression in a Cohort of Malignant Glioma Patients Treated With Chemoirradiation With Temozolomide

Incidence of Early Pseudo-progression in a Cohort of Malignant Glioma Patients Treated With Chemoirradiation With Temozolomide 405 Incidence of Early Pseudo-progression in a Cohort of Malignant Glioma Patients Treated With Chemoirradiation With Temozolomide Walter Taal, MD 1 Dieta Brandsma, MD, PhD 1 Hein G. de Bruin, MD, PhD

More information

PRESURGICAL PLANNING. Strongly consider neuropsychological evaluation before functional imaging study Strongly consider functional imaging study

PRESURGICAL PLANNING. Strongly consider neuropsychological evaluation before functional imaging study Strongly consider functional imaging study NOTE: Consider Clinical Trials as treatment options for eligible patients. Page 1 of 6 RADIOLOGICAL PRESENTATION PRESURGICAL PLANNING TREATMENT Imaging study suggestive of glioma 1 Left hemisphere speech/motor

More information

Josh is JB s brother and caregiver.

Josh is JB s brother and caregiver. PUT GBM ON PAUSE PUT LIFE ON PLAY Josh is JB s brother and caregiver. JB is an Optune user. OPTUNE + TMZ HAS BEEN PROVEN TO PROVIDE LONG-TERM QUALITY SURVIVAL TO PATIENTS WITH NEWLY DIAGNOSED GBM1,2,*

More information

Adjuvant treatment of high grade gliomas

Adjuvant treatment of high grade gliomas 17 (Supplement 10): x186 x190, 2006 doi:10.1093/annonc/mdl258 Adjuvant treatment of high grade gliomas M. J. van den Bent Department of Neuro-Oncology, Erasmus University Hospital Rotterdam/Rotterdam Cancer

More information

NCCN Guidelines for Central Nervous System Cancers V Follow-Up on 02/23/18

NCCN Guidelines for Central Nervous System Cancers V Follow-Up on 02/23/18 GLIO-3 and GLIO-4 Submission from Novocure Inc. (12/19/17 and 9/7/17) Please consider adding tumor treating fields in combination with temozolomide for the treatment of adult patients with newly diagnosed,

More information

For a subset of patients with newly diagnosed glioblastoma

For a subset of patients with newly diagnosed glioblastoma Neuro-Oncology 12(10):1071 1077, 2010. doi:10.1093/neuonc/noq071 Advance Access publication July 8, 2010 NEURO-ONCOLOGY A multi-institution phase II study of poly- ICLC and radiotherapy with concurrent

More information

21/03/2017. Disclosure. Practice Changing Articles in Neuro Oncology for 2016/17. Gliomas. Objectives. Gliomas. No conflicts to declare

21/03/2017. Disclosure. Practice Changing Articles in Neuro Oncology for 2016/17. Gliomas. Objectives. Gliomas. No conflicts to declare Practice Changing Articles in Neuro Oncology for 2016/17 Disclosure No conflicts to declare Frances Cusano, BScPharm, ACPR April 21, 2017 Objectives Gliomas To describe the patient selection, methodology

More information

Pathway inhibition: emerging molecular targets for treating glioblastoma

Pathway inhibition: emerging molecular targets for treating glioblastoma Neuro-Oncology 13(6):566 579, 2011. doi:10.1093/neuonc/nor039 NEURO-ONCOLOGY Pathway inhibition: emerging molecular targets for treating glioblastoma Wolfgang Wick, Michael Weller, Markus Weiler, Tracy

More information

An international study under the guidance of the European Organization

An international study under the guidance of the European Organization 2617 COMMENTARY Chemotherapy for Glioblastoma Is Costly Better? Ute Linz, MD, PhD Juelich Research Center, IKP/INB, Juelich, Germany. Address for reprints: Ute Linz, MD, PhD, Forschungszentrum J ulich

More information

Predictive and Prognostic Markers in Neuro-Oncology

Predictive and Prognostic Markers in Neuro-Oncology J Neuropathol Exp Neurol Copyright Ó 2007 by the American Association of Neuropathologists, Inc. Vol. 66, No. 12 December 2007 pp. 1074Y1081 REVIEW ARTICLE Predictive and Prognostic Markers in Neuro-Oncology

More information

Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San

Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San Francisco Lung Cancer Classification Pathological Classification

More information

Immunotherapy for the Treatment of Brain Metastases

Immunotherapy for the Treatment of Brain Metastases Society for Immunotherapy of Cancer (SITC) Immunotherapy for the Treatment of Brain Metastases Lawrence G. Lum, MD, DSc Karmanos Cancer Institute and Wayne State University Advances in Cancer Immunotherapy

More information

To achieve excellence in surgical neuro-oncology, the

To achieve excellence in surgical neuro-oncology, the CHAPTER 2 Defining and Achieving Excellence in Surgical Neuro-Oncology Mitchel S. Berger, MD To achieve excellence in surgical neuro-oncology, the neurosurgeon must achieve 3 particular things. The first

More information

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview Emerging mutations as predictive biomarkers in lung cancer: Overview Kirtee Raparia, MD Assistant Professor of Pathology Cancer Related Deaths: United States Men Lung and bronchus 28% Prostate 10% Colon

More information

Durable Response Rate in High Grade Glioma: an Emerging Endpoint for Immunotherapeutics. Timothy Cloughesy, MD University of California, Los Angeles

Durable Response Rate in High Grade Glioma: an Emerging Endpoint for Immunotherapeutics. Timothy Cloughesy, MD University of California, Los Angeles Durable Response Rate in High Grade Glioma: an Emerging Endpoint for Immunotherapeutics Timothy Cloughesy, MD University of California, Los Angeles Disclosure 2 FDA Endpoints for the Approval of Cancer

More information

Technology appraisal guidance Published: 27 June 2007 nice.org.uk/guidance/ta121

Technology appraisal guidance Published: 27 June 2007 nice.org.uk/guidance/ta121 Carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma Technology appraisal guidance Published: 27 June 2007 nice.org.uk/guidance/ta121 NICE 2018. All rights reserved.

More information

Concise Reference. HER2 Testing in Breast Cancer. Mary Falzon, Angelica Fasolo, Michael Gandy, Luca Gianni & Stefania Zambelli

Concise Reference. HER2 Testing in Breast Cancer. Mary Falzon, Angelica Fasolo, Michael Gandy, Luca Gianni & Stefania Zambelli Concise Reference Testing in Breast Cancer Mary Falzon, Angelica Fasolo, Michael Gandy, Luca Gianni & Stefania Zambelli Extracted from Handbook of -Targeted Agents in Breast Cancer ublished by Springer

More information

RT +/- Surgery. Concurrent ChemoRT +/- Surgery

RT +/- Surgery. Concurrent ChemoRT +/- Surgery Molecular targeted approaches to head and neck cancer Lillian L. Siu Department of Medical Oncology & Hematology Princess Margaret Hospital, University of Toronto Locally Advanced HNSCC Locally Advanced

More information