MAPPING PELVIC LYMPH NODES: GUIDELINES FOR DELINEATION IN INTENSITY-MODULATED RADIOTHERAPY

Size: px
Start display at page:

Download "MAPPING PELVIC LYMPH NODES: GUIDELINES FOR DELINEATION IN INTENSITY-MODULATED RADIOTHERAPY"

Transcription

1 doi: /j.ijrobp Int. J. Radiation Oncology Biol. Phys., Vol. 63, No. 5, pp , 2005 Copyright 2005 Elsevier Inc. Printed in the USA. All rights reserved /05/$ see front matter PHYSICS CONTRIBUTION MAPPING PELVIC LYMPH NODES: GUIDELINES FOR DELINEATION IN INTENSITY-MODULATED RADIOTHERAPY ALEXANDRA TAYLOR, F.R.C.R.,* ANDREA G. ROCKALL, F.R.C.R., RODNEY H. REZNEK, F.R.C.R., AND MELANIE E. B. POWELL, M.D., F.R.C.R.* Departments of *Radiotherapy and Radiology, St. Bartholomew s Hospital, London, United Kingdom Purpose: To establish guidelines for delineating the clinical target volume for pelvic nodal irradiation by mapping the location of lymph nodes in relation to the pelvic anatomy. Methods and Materials: Twenty patients with gynecologic malignancies underwent magnetic resonance imaging with administration of iron oxide particles. All visible lymph nodes were outlined. Five clinical target volumes were generated for each patient using modified margins of 3, 5, 7, 10, and 15 mm around the iliac vessels. The nodal contours were then overlaid and individual nodes analyzed for coverage. The volume of normal tissue within each clinical target volume and planning target volume was also measured to aid selection of the margin that could provide maximal nodal, but minimal normal tissue, coverage. Results: In total, 1216 nodal contours were evaluated. The nodal coverage was 56%, 76%, 88%, 94%, and 99% using vessel margins of 3, 5, 7, 10, and 15 mm, respectively. The mean volume of bowel within the planning target volume was cm 3 with a 7-mm margin, 190 cm 3 with a 10-mm margin, and 266 cm 3 with a 15-mm margin. Minor modification to the 7-mm margin ensured 99% coverage of the pelvic nodes. Conclusion: Blood vessels with a modified 7-mm margin offer a good surrogate target for pelvic lymph nodes. By making appropriate adjustments, coverage of specific nodal groups may be increased and the volume of normal tissue irradiated decreased. On the basis of these findings, recommended guidelines for outlining pelvic nodes have been produced Elsevier Inc. Pelvic lymph nodes, Clinical target volume, Intensity-modulated radiotherapy, Iron oxide particles. INTRODUCTION Reprint requests to: Alexandra Taylor, F.R.C.R., Department of Radiotherapy, St. Bartholomew s Hospital, West Smithfield, London EC1A 7AE, United Kingdom. Tel: ( 44) ; Fax: ( 44) ; alexandra.taylor@ blueyonder.co.uk Presented at the 46th Annual Meeting of the American Society Whole pelvic nodal radiotherapy (RT) has a key role in the management of many pelvic malignancies and may improve both locoregional control and survival. The lymph nodes are included in the radiation target volume when the tumor stage and grade indicate a significant risk of microscopic nodal metastases or if overt node involvement is already present. Treatment, which is traditionally delivered using a four-field technique defined by bony landmarks, is associated with a dose-limiting incidence of acute and late toxicity (1 3). In addition, despite large volumes of normal tissue being encompassed, conventional planning increases the risk of a geographic miss (4, 5). Planning studies comparing intensity-modulated RT (IMRT) with conventional approaches for pelvic RT have demonstrated the volume of small bowel, rectum, and bladder receiving high doses can be reduced by 20 50% (6 8). The initial clinical studies treating gynecologic malignancies with IMRT have reported a corresponding reduction in acute and late GI toxicity (9, 10). However, one factor that has prevented widespread implementation of pelvic IMRT has been the lack of a validated method for defining the nodal clinical target volume (CTV). The probability of a node containing metastases is assessed with CT and MRI using size criteria, usually a nodal short axis diameter 1 cm, but the sensitivity of this method is only 40 70% (11 13). Unenlarged nodes may still contain tumor deposits; therefore, it is necessary to include all lymph nodes within the draining regions in the CTV. Most normal size lymph nodes are too small to be visualized directly with standard imaging, and delineation of the CTV depends on their relationship to other pelvic structures. Anatomic studies have demonstrated that pelvic lymph nodes lie adjacent to major blood vessels. These are relatively well visualized on conventional imaging and can, with a margin, be used as a surrogate target for lymph for Therapeutic Radiology and Oncology (ASTRO), Atlanta, GA, October 3 7, This research was supported by the X-Appeal Fund, Royal College of Radiologists, and The BUPA Foundation, UK. Received Jan 9, 2005, and in revised form May 27, Accepted for publication May 31,

2 Pelvic lymph nodes for IMRT A. TAYLOR et al Fig. 1. Axial magnetic resonance images of pelvis with lymph nodes indicated (arrows). (a) T2-weighted images without contrast. (b) Lymph nodes have high signal on T2*-weighted images before contrast. (c) Decrease in signal intensity on T2*-weighted images after ultrasmall particles of iron oxide administration improved visibility of lymph nodes. nodes. Debate is ongoing about whether the use of a uniform margin around the blood vessels is the appropriate method to define the CTV for nodal regions. The question as to what margin will ensure the maximal nodal, but minimal normal tissue, coverage has not been satisfactorily answered, and different groups have used margins varying from 5 to 20 mm (6, 9, 14, 15). Ultrasmall particles of iron oxide (USPIO) are a novel class of MRI contrast agent developed for the assessment of lymph nodes. Initial clinical studies have reported USPIOenhanced MRI improves the sensitivity, whilst maintaining a high specificity, for the detection of nodal metastases for head-and-neck, lung, and pelvic tumors (16 21). The nanoparticles, which are administered intravenously, are taken up by macrophages within benign lymph nodes. The magnetic susceptibility effects of the iron oxide causes a marked loss in the signal intensity of normally functioning nodes on T2- and T2*-weighted sequences, resulting in a black appearance. This makes the nodes easily visible on the postcontrast images (Fig. 1). The purposes of this study were first to map the distribution of normal pelvic lymph nodes in relation to the blood vessels using the USPIO contrast agent; second, to use these data to determine the margin needed around the blood vessels to allow full coverage of the lymph nodes while achieving maximal sparing of normal tissue; and third, to propose guidelines for pelvic lymph node definition that can be applied to standard CT imaging for three-dimensional planning techniques. Fig. 2. Gradient echo T2*-weighted axial pelvic magnetic resonance image after ultrasmall particles of iron oxide administration. Margins of 3, 5, 7, 10, and 15 mm drawn around pelvic blood vessels, and nodal contours overlaid in yellow. Fig. 3. Axial magnetic resonance image of external iliac region composed of lateral nodes (EI lat) lateral to external iliac artery (a), anterior nodes (EI ant) anteriomedial to external iliac vein (v), and medial nodes (EI med) medial and directly posterior to vein. Obturator (obt) nodes lie between internal and external iliac vessels.

3 1606 I. J. Radiation Oncology Biology Physics Volume 63, Number 5, 2005 Fig. 4. Modified 7-mm contour to ensure coverage of lymph node groups (red outline). (a) Common iliac nodes can lie in lateral and posterior spaces. (b) Contour must extend fully to pelvic sidewall. (c) To cover distal lateral external iliac nodes, extend anterior border along iliopsoas muscle (i-p) by additional 10 mm. (d) Obturator region covered by extending medial contour around external iliac vessels posteriorly, parallel to pelvic sidewall, to join internal iliac contour. This strip should be 18 mm wide. CI common iliac; II internal iliac; EI lat lateral external iliac; EI ant anterior external iliac; EI med medial external iliac; Obt obturator. METHODS AND MATERIALS Twenty patients with gynecologic (12 cervical and 8 endometrial) tumors underwent preoperative assessment of their pelvic lymph nodes with USPIO contrast medium (Sinerem, Guerbet, Roissy, France and Combidex, Advanced Magnetics Inc., Cambridge, MA). The local research ethics committee approved the study, and the Medical Controls Agency (United Kingdom) approved off-license use of USPIO. All patients were 18 years old and provided written informed consent. MRI of the pelvis was performed with axial T2-weighted fast spin echo and T2*- weighted gradient-echo (GE) sequences taken at 4-mm increments. After the scan, intravenous USPIO was administered, and the nodal imaging sequences were repeated after h. The postcontrast T2* images were co-registered with the precontrast T2- weighted and T2* scans. This enabled positive identification of the lymph nodes by demonstrating a change in signal intensity between the matched images. When delineating nodes, agreement was required between two observers a radiation oncologist and a radiologist. All pelvic nodes were contoured and measured on the postcontrast T2* images (Fig. 2). Lymph nodes were assigned to a nodal group depending on their position in relation to the blood vessels. The common iliac nodes are adjacent to the common iliac vessels from the aortic bifurcation to the division of the common iliac artery into the external and internal iliac branches. The internal iliac nodes lie in relation to the internal iliac vessels and their branches and tributaries. The external iliac nodes surround the external iliac vessels until they pass through the inguinal ligament. This group is subdivided into the medial, anterior, and lateral subgroups (Fig. 3). The medial external iliac nodes are medial and directly posterior to the external iliac

4 Pelvic lymph nodes for IMRT A. TAYLOR et al Lymph node group Total Table 1. Distribution and size of lymph node contours Contours per patient (n) Short axis diameter (mm) Mean Range Median SD Range Common iliac* Medial external iliac Anterior external iliac Lateral external iliac Obturator Internal iliac Presacral Total * Common iliac region imaged in 13 patients. vein; the anterior external iliac nodes sit in the sulcus between the artery and vein and anteromedial to the artery; and the lateral external iliac nodes extend laterally from the external iliac artery. The obturator nodes lie within the triangle between the external and internal iliac vessels. The presacral nodes are situated directly anterior to the sacrum and are subdivided into the subaortic nodes, below the aortic bifurcation over the sacral promontory, and the perirectal nodes, found within the mesorectal fascia in the sacral hollow. The pelvic blood vessels were outlined, and three-dimensional margins of 3, 5, 7, 10, and 15 mm were used, creating five CTVs for each patient. In the lower pelvis, the obturator nodes would inevitably be inadequately covered by vessel expansion alone. To encompass this region, the medial contour around the external iliac vessel was continued posteriorly, parallel to the pelvic sidewall, until it joined the internal iliac contour (Fig. 4d). This created a single volume on each side of the pelvis that would incorporate the obturator region with varying width. Muscle and bone were excluded from each volume. The lymph node outlines were then overlaid on each CTV to determine which margin would result in best coverage of the node (Fig. 2). Each CTV was expanded uniformly by an additional 10 mm to generate the planning target volumes (PTV). The rectum was delineated from the anal margin to the sigmoid flexure, and the whole bladder was contoured. The bowel (comprising the large and small intestine) was outlined on all slices up to the level of the aortic bifurcation. The volume of each normal structure overlapped by the CTV and PTV was measured. Each nodal group was examined to assess whether a simple modification to the CTV could improve nodal coverage and achieve maximal sparing of normal tissues. To determine the volume width necessary to cover the obturator region adequately, the distance from the pelvic sidewall to the medial border of each obturator node was also measured. This information was used to generate the proposed guidelines for delineating the pelvic nodal CTV. RESULTS In total, 1216 nodal contours were evaluated in 20 patients. The median number of nodal contours identified was 58 per patient (range, ). The distribution of the nodal groups is presented in Table 1. The external iliac group had the greatest number of nodes identified, with a total of 627 contours, evenly distributed among the three subgroups as 196 medial, 241 anterior, and 190 lateral external iliac nodes. We visualized 303 obturator, 144 internal iliac, and 135 common iliac nodal contours, although only 13 patients had imaging to assess this region adequately. Only 7 presacral nodes were identified, 3 overlying the sacral prominence and 4 in the perirectal fascia. The median short axis diameter of the lymph nodes was 3.6 mm. Very few nodes were enlarged, with only 30 (2.5%) measuring 8 mmand 7 (0.6%) 10 mm. The number of nodes fully encompassed by a margin around the blood vessels increased correspondingly with the margin size. The percentage of lymph node contours covered by a 3-, 5-, 7-, 10-, and 15-mm margin was 56%, 76%, 88%, 94%, and 99%, respectively (Table 2). Normal tissue coverage The volume of normal tissue within each CTV and PTV is shown in Table 3. The PTV created with the 15-mm Table 2. Lymph node contours covered by margin around blood vessels Lymph node group 3 mm (%) 5 mm (%) 7 mm (%) 10 mm (%) 15 mm (%) Common iliac (n 135) 41 (30.3) 90 (66.7) 123 (91.1) 135 (100) 135 (100) Medial external iliac (n 196) 122 (62.2) 167 (85.2) 193 (98.4) 196 (100) 196 (100) Anterior external iliac (n 241) 124 (51.4) 190 (78.8) 227 (94.2) 241 (100) 241 (100) Lateral external iliac (n 190) 16 (8.4) 41 (21.6) 76 (40) 123 (64.7) 178 (93.7) Obturator (n 303) 275 (90.1) 295 (97.3) 302 (99.7) 303 (100) 303 (100) Internal iliac (n 144) 105 (72.9) 135 (93.8) 142 (98.6) 144 (100) 144 (100) Presacral (n 7) 0 (0) 0 (0) 3 (42.9) 3 (42.9) 3 (42.9) Total (n 1216) 683 (56.2) 918 (75.7) 1066 (87.7) 1145 (94.2) 1200 (98.7)

5 1608 I. J. Radiation Oncology Biology Physics Volume 63, Number 5, 2005 Table 3. Volume of normal structures within clinical target volumes (CTV) and planning target volumes (PTV) Total volume A. Mean volume of normal structure within CTV (cm 3 ) 3 mm (%) 5 mm (%) 7 mm (%) 10 mm (%) 15 mm (%) Bowel (0.9) 16.8 (2.6) 32.4 (5.1) 63.2 (10.2) (19.9) Bladder (0.3) 2.1 (1.0) 3.9 (1.9) 7.4 (3.8) 14.3 (7.7) Rectum (0.2) 0.5 (0.7) 0.9 (1.4) 2.2 (3.6) 5.4 (9.7) Total B. Mean volume of normal structure within PTV (cm 3 ) volume 3 mm (%) 5 mm (%) 7 mm (%) 10 mm (%) 15 mm (%) Bowel (15.4) (19.4) (23.7) (30.8) (42.9) Bladder (7.5) 16.7 (9.8) 21.2 (12.8) 28 (17.5) 40.6 (26.5) Rectum (6.8) 5.5 (19.9) 7.2 (13.3) 10.4 (19.9) 17.1 (34.1) margin included 266 cm 3 of bowel, 41 cm 3 of bladder, and 17 cm 3 of rectum. A 10-mm margin reduced the normal tissue encompassed to 190 cm 3 of bowel, 28 cm 3 of bladder, and 10 cm 3 of rectum, and a 7-mm margin further reduced the volumes to 147 cm 3 of bowel, 21 cm 3 of bladder, and 7cm 3 of rectum. In view of the large volume of bowel within the 15-mm PTV, the lymph nodal coverage was examined further to assess whether a margin 15 mm, with some modification, could maximize normal tissue sparing without compromising nodal coverage. Lymph node groups The coverage of each nodal group by the different vessel margins was assessed (Table 2). Even a 15-mm margin failed to cover fully the lateral external iliac and presacral nodes. Excluding these two groups, all other nodes were included by a 10-mm expansion and 95% nodes by a 7-mm expansion. The 150 nodal contours incompletely encompassed by a 7-mm margin were scrutinized to determine which simple adjustments to this volume would increase nodal coverage. Of these nodes, 93 (62%) were readily visible on the T2 precontrast scans. The results of the required modifications are summarized below for each nodal group, with the provision that all enlarged, and therefore visible, nodes were also included in the CTV (Table 4). Common iliac nodes. Although the common iliac nodes are usually situated in direct contact with the vessels, they may also lie some distance away in the posterior and lateral spaces. Because of this, a nonuniform margin is necessary. The CTV should be drawn 7-mm anterior and medial to the vessels; however, posterolaterally, it must be extended to the psoas muscle and vertebral body (Fig. 4a). Internal iliac nodes. The internal iliac vessels have many branches, and all need to be included in the CTV. A 7-mm margin around these vessels will provide coverage of 100% of the nodes provided the lateral border reaches to the pelvic sidewall (Fig. 4b). External iliac nodes. The external iliac nodes consist of three connecting subgroups the lateral, anterior, and medial groups. Although a 7-mm margin uniformly around the external iliac vessels covers all the medial and anterior nodes, the lateral external iliac nodes are poorly covered, with only 40% completely encompassed. Additional extension of only the anterior margin by another 10 mm (a total of 17 mm from the vessel) anterolaterally along the iliopsoas muscle would include 99% of the external iliac nodes. A nonuniform margin around the vessel should, therefore, be used (Fig. 4c). Obturator nodes. The obturator nodes would not be included by uniform expansion of the vessel contour, unless a very large margin were used. In this study, the potential CTVs were designed to cover this region with varying widths by joining the corresponding medial and lateral borders of the internal and external iliac contours, creating a single volume on each side of the pelvis. All obturator nodes were covered by joining the contours created with the 7-mm vessel margin. The average distance from the pelvic sidewall required to cover the nodes was 8 mm (range, 2 21 mm; SD, 3.6). Therefore, a volume along the pelvic sidewall to encompass 95% of the lymph nodes needs a width of 15 mm, and 99% nodes would be covered with an 18-mmwide strip (Fig. 4d). Presacral nodes. Very few sacral nodes were identified in this study. A uniform vessel margin is not an appropriate method to cover these nodes, and it is necessary to cover the presacral region specifically, if indicated by the tumor site Table 4. Recommend modifications to margins Lymph node group Common iliac External iliac Obturator Internal iliac Presacral * Also include any visible nodes. Recommended margins* 7-mm margin around vessels; extend posterior and lateral borders to psoas and vertebral body 7-mm margin around vessels; extend anterior border by additional 10- mm anterolaterally along iliopsoas muscle to include lateral external iliac nodes Join external and internal iliac regions with 18-mm-wide strip along pelvic sidewall 7-mm margin around vessels; extend lateral borders to pelvic sidewall 10-mm strip over anterior sacrum

6 Pelvic lymph nodes for IMRT A. TAYLOR et al and stage. A 10-mm strip over the sacral prominence connecting the common iliac contours would include the subaortic presacral nodes. Similarly, a volume should be drawn anterior to the sacrum to cover the lower sacral nodes, but there were insufficient nodes in this study to draw conclusions on the width required. Recommendations for pelvic nodal CTV delineation The guidelines for delineating the pelvic lymph node CTV are summarized below: 1. Uniformly draw a contour around the pelvic blood vessels by 7 mm. 2. Include all visible nodes and exclude muscle and bone from the volume. 3. Ensure the lateral border of the volume extends to the psoas muscle and pelvic sidewall. 4. Continue the medial border around the external iliac vessels posteriorly, parallel to the sidewall, until it joins the medial contour of the internal iliac vessels to encompass the obturator region. This creates a strip medial to the pelvic sidewall that should be at least 18 mm wide. 5. To include all the lateral external iliac nodes, extend the contour around the external iliac artery anterolaterally along the iliopsoas muscle by an additional 10 mm. 6. To cover the presacral region, connect the volumes on each side of the pelvis with a 10-mm strip over the anterior sacrum. DISCUSSION Intensity-modulated RT has great potential for normal tissue sparing and dose escalation when treating pelvic tumors. The CTV usually comprises the primary tumor, or tumor bed, structures at risk of direct tumor spread, such as the parametrium, and the draining lymph node regions. The pelvic lymph nodes, however, are difficult to delineate, because most cannot be visualized on CT or MRI, but still may contain metastases. Consistent and accurate target volume definition is essential, because salvage treatment for relapsed disease due to a geographic miss is rarely successful (22). Magnetic resonance imaging with USPIO is a promising new method for differentiating benign from malignant lymph nodes. The technique also improves the visibility of nodes and provides information about lymph node morphology and function. This is the first study to demonstrate that magnetic resonance lymphography can also be used to aid RT target volume localization. The lymph node positions within the pelvis have been identified to generate practical recommendations for delineating the lymph node regions. The technique could also be applied to other anatomic sites. The number of nodes visualized with USPIO is consistent with other surgical and radiographic series (23 26). Vinnicombe et al. (24) identified 45 nodes on CT scans after lymphangiography compared with only 10 on prelymphangiography CT images. Benedetti-Panici et al. (23) dissected a median of 38 pelvic nodes in a detailed anatomic study treating gynecologic cancers. In the current study, the average was 61 lymph nodal contours per patient, slightly more than on previous studies. It is possible that because larger nodes would have been visible on more than one image, the numbers may have been overestimated. The nodes, however, occurred in a highly consistent pattern, without great variations in the position of lymph nodes from the predicted anatomic location. It is desirable to reduce the volume of irradiated normal tissue, but it is essential not to compromise the target coverage. Alternative methods for identifying the nodal CTV have been suggested by other groups (6, 27). Chao et al. (14) used CT lymphangiograms to document the nodal position in relation to the blood vessels. Our guidelines resulted in smaller volumes than those in previous reports. There are two possible reasons for this. First, we were able to identify normal-size nodes, with an average node diameter of only 3.8 mm. Such small nodes are not usually visible on CT. Second, evidence has shown that lymphangiography using lipiodol for ionizing radiation can increase the apparent size of the nodes, which would require a corresponding increase in the CTV (28). In terms of clinical significance, changing the margin from 10 mm to 7 mm reduced the volume of bowel, bladder, and rectum within the PTV in this study by 23%, 24%, and 31%, respectively, which is very likely to reduce the incidence of toxicity. The conventional RT target volume covers all the pelvic nodes not only because identification of metastatic involvement is difficult, but also as an inevitable consequence of the standard dose distribution of the four-field box technique. With the complexity of dose patterns that can be achieved with IMRT, it is now possible to select which nodal groups need to be covered depending on the tumor site and stage. The proposed guidelines have been applied to generate an atlas of reference images defining each of the pelvic lymph node regions and enabling standardization of the target volumes for IMRT (Fig. 5). For most pelvic tumors, the nodal CTV would typically comprise the common iliac, external iliac, internal iliac, and obturator nodes. Frequently, the upper presacral region is also included. A particular point of discussion is the necessity of including the distal lateral external iliac nodes. These nodes often lie distant from the vessels, and encompassing all the nodes will significantly move the position of the anterior field border, resulting in a large increase in the volume of small bowel within the target volume. Review of lymphangiograms has shown that conventional fields miss these nodes in 34 45% of cases (4, 5, 29). Despite this, the region is a rare site of recurrence. In the absence of other external iliac nodal enlargement, the incidence of distal lateral external iliac node involvement is low, and it may be justifiable to exclude these nodes from the CTV (30, 31). The selection of the appropriate nodal groups will depend on existing data from surgical and autopsy series, but more informa-

7 1610 I. J. Radiation Oncology Biology Physics Volume 63, Number 5, 2005

8 Pelvic lymph nodes for IMRT A. TAYLOR et al Fig. 5. (a g) Guidelines applied to computed tomography images for delineating typical clinical target volume for gynecologic tumor, contoured in yellow, to cover common iliac (CI), subaortic presacral (PS), internal iliac (II), obturator (Ob), and medial (EIm) and anterior (EIa) external iliac lymph nodes. Modification to include all lateral external iliac (EIl) nodes shown in blue and parametrial (Pm) region in red. tion will increasingly be available from positron emission tomography and sentinel lymph node studies. It is also essential to collect data on the site of local recurrence in all patients treated with pelvic IMRT. In addition to the selection of which nodal groups should be in the CTV, the increasing sophistication of imaging could enable further individualization of the target volumes. New techniques, including USPIO and positron emission tomography may be incorporated to modify the volume definition by identifying involved nodes. For example, USPIO assists in the visualization of normal nodes, as was done in this study, but can also localize those nodes with metastatic disease with a high sensitivity and specificity. Treatment with IMRT could integrate a boost to these nodes while excluding uninvolved areas. CONCLUSION Using MRI with USPIO, the pelvic lymph node distribution was mapped and a relation to the pelvic blood vessels defined. Because blood vessels are readily seen on standard CT imaging, these are suitable as a surrogate lymph node target. Guidelines for the accurate definition of different nodal CTV groups using a standardized target definition have been proposed. REFERENCES 1. Kirwan JM, Symonds P, Green JA, et al. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiother Oncol 2003;68: Creutzberg CL, van Putten WL, Koper PC, et al. The morbidity of treatment for patients with Stage I endometrial cancer: Results from a randomized trial. Int J Radiat Oncol Biol Phys 2001;51: Perez CA, Grigsby PW, Lockett MA, et al. Radiation therapy morbidity in carcinoma of the uterine cervix: Dosimetric and clinical correlation. Int J Radiat Oncol Biol Phys 1999;44: Bonin SR, Lanciano RM, Corn BW, et al. Bony landmarks are not an adequate substitute for lymphangiography in defining pelvic lymph node location for the treatment of cervical cancer with radiotherapy. Int J Radiat Oncol Biol Phys 1996;34: Greer BE, Koh WJ, Figge DC, et al. Gynecologic radiotherapy fields defined by intraoperative measurements. Gynecol Oncol 1990;38: Roeske JC, Lujan A, Rotmensch J, et al. Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2000;48: Nutting CM, Convery DJ, Cosgrove VP, et al. Reduction of small and large bowel irradiation using an optimized intensitymodulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 2000;48: Portelance L, Chao KS, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001;51: Mundt AJ, Lujan AE, Rotmensch J, et al. Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2002;52: Mundt AJ, Mell LK, Roeske JC. Preliminary analysis of chronic gastrointestinal toxicity in gynecology patients treated with intensity-modulated whole pelvic radiation therapy. Int J Radiat Oncol Biol Phys 2003;56: Scheidler J, Hricak H, Yu KK, et al. Radiological evaluation of lymph node metastases in patients with cervical cancer: A meta-analysis. JAMA 1997;278: Williams AD, Cousins C, Soutter WP, et al. Detection of pelvic lymph node metastases in gynecologic malignancy: A comparison of CT, MR imaging, and positron emission tomography. AJR Am J Roentgenol 2001;177: Bipat S, Glas AS, van der Velden J, et al. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: A systematic review. Gynecol Oncol 2003;91: Chao KS, Lin M. Lymphangiogram-assisted lymph node target delineation for patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys 2002;54: Adli M, Mayr NA, Kaiser HS, et al. Does prone positioning reduce small bowel dose in pelvic radiation with intensitymodulated radiotherapy for gynecologic cancer? Int J Radiat Oncol Biol Phys 2003;57: Rockall AG, Sohaib SA, Harisinghani MG, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol 2005;23: Mack MG, Balzer JO, Straub R, et al. Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 2002;222: Sigal R, Vogl T, Casselman J, et al. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) Results of a phase III multicenter clinical trial. Eur Radiol 2002;12: Pannu HK, Wang KP, Borman TL, et al. MR imaging of mediastinal lymph nodes: Evaluation using a superparamagnetic contrast agent. J Magn Reson Imaging 2000;12: Keller TM, Michel SC, Frohlich J, et al. USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: Preliminary results. Eur Radiol 2004;14: Koh DM, Brown G, Temple L, et al. Rectal cancer: Mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings Initial observations. Radiology 2004; 231:91 99.

9 1612 I. J. Radiation Oncology Biology Physics Volume 63, Number 5, Hong JH, Tsai CS, Lai CH, et al. Recurrent squamous cell carcinoma of cervix after definitive radiotherapy. Int J Radiat Oncol Biol Phys 2004;60: Benedetti-Panici P, Maneschi F, Scambia G, et al. Lymphatic spread of cervical cancer: An anatomical and pathological study based on 225 radical hysterectomies with systematic pelvic and aortic lymphadenectomy. Gynecol Oncol 1996;62: Vinnicombe SJ, Norman AR, Nicolson V, et al. Normal pelvic lymph nodes: Evaluation with CT after bipedal lymphangiography. Radiology 1995;194: Grubnic S, Vinnicombe SJ, Norman AR, et al. MR evaluation of normal retroperitoneal and pelvic lymph nodes. Clin Radiol 2002;57: Sakuragi N, Satoh C, Takeda N, et al. Incidence and distribution pattern of pelvic and paraaortic lymph node metastasis in patients with Stages IB, IIA, and IIB cervical carcinoma treated with radical hysterectomy. Cancer 1999;85: Heron DE, Gerszten K, Selvaraj RN, et al. Conventional 3D conformal versus intensity-modulated radiotherapy for the adjuvant treatment of gynecologic malignancies: A comparative dosimetric study of dose-volume histograms small star, filled. Gynecol Oncol 2003;91: McIvor J. Changes in lymph node size induced by lymphography. Clin Radiol 1980;31: Pendlebury SC, Cahill S, Crandon AJ, et al. Role of bipedal lymphangiogram in radiation treatment planning for cervix cancer. Int J Radiat Oncol Biol Phys 1993;27: Cherry CP, Glucksmann A, Dearing R, et al. Observations on lymph node involvement in carcinoma of the cervix. J Obstet Gynaecol Br Emp 1953;60: Henriksen E. The lymphatic spread of carcinoma of the cervix and of the body of the uterus: A study of 420 necropsies. Am J Obstet Gynecol 1949;58:

TRANS-TASMAN RADIATION ONCOLOGY GROUP INC. Quality Assurance. Treatment Planning Benchmark

TRANS-TASMAN RADIATION ONCOLOGY GROUP INC. Quality Assurance. Treatment Planning Benchmark TRANS-TASMAN RADIATION ONCOLOGY GROUP INC. Quality Assurance Treatment Planning Benchmark PORTEC-3/ TROG 08.04 Randomised Phase III Trial Comparing Concurrent Chemoradiation and Adjuvant Chemotherapy with

More information

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Tan Chek Wee 15 06 2016 National University Cancer Institute, Singapore Clinical Care Education Research

More information

MRI in Cervix and Endometrial Cancer

MRI in Cervix and Endometrial Cancer 28th Congress of the Hungarian Society of Radiologists RCR Session Budapest June 2016 MRI in Cervix and Endometrial Cancer DrSarah Swift St James s University Hospital Leeds, UK Objectives Cervix and endometrial

More information

PET/CT in Gynaecological Cancers. Stroobants Sigrid, MD, PhD Departement of Nuclear Medicine University Hospital,Antwerp

PET/CT in Gynaecological Cancers. Stroobants Sigrid, MD, PhD Departement of Nuclear Medicine University Hospital,Antwerp PET/CT in Gynaecological Cancers Stroobants Sigrid, MD, PhD Departement of Nuclear Medicine University Hospital,Antwerp Cervix cancer Outline of this talk Initial staging Treatment monitoring/guidance

More information

The Evolution of RT Techniques for Gynaecological Cancers in a developing country context

The Evolution of RT Techniques for Gynaecological Cancers in a developing country context The Evolution of RT Techniques for Gynaecological Cancers in a developing country context Hannah Simonds Stellenbosch University/ Tygerberg Academic Hospital ESMO Africa 2017 I have no disclosures External

More information

Staging and Treatment Update for Gynecologic Malignancies

Staging and Treatment Update for Gynecologic Malignancies Staging and Treatment Update for Gynecologic Malignancies Bunja Rungruang, MD Medical College of Georgia No disclosures 4 th most common new cases of cancer in women 5 th and 6 th leading cancer deaths

More information

Nordic Society for Gynecological Oncology Advisory Board of Radiotherapy

Nordic Society for Gynecological Oncology Advisory Board of Radiotherapy Nordic Society for Gynecological Oncology Advisory Board of Radiotherapy Guidelines for postoperative irradiation of cervical cancer Contents: 1. Treatment planning for EBRT. 2 2. Target definition for

More information

Bone Marrow Dosimetric Parameters and Hematological Toxicity In Cervical Cancer Patients Undergoing Concurrent Chemoradiation.

Bone Marrow Dosimetric Parameters and Hematological Toxicity In Cervical Cancer Patients Undergoing Concurrent Chemoradiation. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 17, Issue 4 Ver. 18 (April. 2018), PP 28-32 www.iosrjournals.org Bone Marrow Dosimetric Parameters and

More information

Cervical Cancer: 2018 FIGO Staging

Cervical Cancer: 2018 FIGO Staging Cervical Cancer: 2018 FIGO Staging Jonathan S. Berek, MD, MMS Laurie Kraus Lacob Professor Stanford University School of Medicine Director, Stanford Women s Cancer Center Senior Scientific Advisor, Stanford

More information

Early clinical outcomes of 3D-conformal radiotherapy using. accelerated hyperfractionation without intracavitary brachytherapy

Early clinical outcomes of 3D-conformal radiotherapy using. accelerated hyperfractionation without intracavitary brachytherapy K. Matsuura, et al 1 Early clinical outcomes of 3D-conformal radiotherapy using accelerated hyperfractionation without intracavitary brachytherapy for cervical cancer K. Matsuura, M.D., Ph.D., a,b H. Tanimoto,

More information

Does conformal therapy improve dose distribution in comparison to old techniques in teleradiotherapy of cervical cancer patients?

Does conformal therapy improve dose distribution in comparison to old techniques in teleradiotherapy of cervical cancer patients? ORIGINAL PAPER Received: 14.12.2006 Accepted: 19.08.2008 Subject: original paper 1 Oddział Radioterapii i Onkologii Ginekologicznej, Wielkopolskie Centrum Onkologii Address for correspondence: Oddział

More information

Intra-operative frozen section analysis of common iliac lymph nodes in patients with stage IB1 and IIA1 cervical cancer

Intra-operative frozen section analysis of common iliac lymph nodes in patients with stage IB1 and IIA1 cervical cancer Arch Gynecol Obstet (2012) 285:811 816 DOI 10.1007/s00404-011-2038-z GYNECOLOGIC ONCOLOGY Intra-operative frozen section analysis of common iliac lymph nodes in patients with stage IB1 and IIA1 cervical

More information

An Unusual Case of Cervical Cancer with Inguinal Lymph Node Metastasis: A Case Report and Review of the Literature

An Unusual Case of Cervical Cancer with Inguinal Lymph Node Metastasis: A Case Report and Review of the Literature Archives of Clinical and Medical Case Reports doi: 10.26502/acmcr.9655003 Volume 1, Issue 1 Case Report An Unusual Case of Cervical Cancer with Inguinal Lymph Node Metastasis: A Case Report and Review

More information

Prognosis and recurrence pattern of patients with cervical carcinoma and pelvic lymph node metastasis

Prognosis and recurrence pattern of patients with cervical carcinoma and pelvic lymph node metastasis NJOG 2009 June-July; 4 (1): 19-24 Prognosis and recurrence pattern of patients with cervical carcinoma and pelvic lymph node metastasis Eliza Shrestha 1, Xiong Ying 1,2, Liang Li-Zhi 1,2, Zheng Min 1,2,

More information

A THREE-DIMENSIONAL DEFINITION OF NODAL SPACES ON THE BASIS OF CT IMAGES SHOWING ENLARGED NODES FOR PELVIC RADIOTHERAPY

A THREE-DIMENSIONAL DEFINITION OF NODAL SPACES ON THE BASIS OF CT IMAGES SHOWING ENLARGED NODES FOR PELVIC RADIOTHERAPY doi:10.1016/j.ijrobp.2005.03.042 Int. J. Radiation Oncology Biol. Phys., Vol. 63, No. 4, pp. 1101 1107, 2005 Copyright 2005 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/05/$ see front

More information

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES GYNECOLOGIC CANCER CERVIX

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES GYNECOLOGIC CANCER CERVIX PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES GYNECOLOGIC CANCER CERVIX Site Group: Gynecology Cervix Author: Dr. Stephane Laframboise 1. INTRODUCTION 3 2. PREVENTION 3 3. SCREENING AND

More information

Implementation of Gynaecological IMRT Planning Technique Clinical Guidelines and Constraints. Chloe Pandeli

Implementation of Gynaecological IMRT Planning Technique Clinical Guidelines and Constraints. Chloe Pandeli Implementation of Gynaecological IMRT Planning Technique Clinical Guidelines and Constraints Chloe Pandeli 1 Session Name: Proffered papers - Gastrointestinal / Gynaecological In accordance with the policy

More information

CHAPTER 7 Concluding remarks and implications for further research

CHAPTER 7 Concluding remarks and implications for further research CONCLUDING REMARKS AND IMPLICATIONS FOR FURTHER RESEARCH CHAPTER 7 Concluding remarks and implications for further research 111 CHAPTER 7 Molecular staging of large sessile rectal tumors In this thesis,

More information

Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiation Therapy ORIGINAL STUDY

Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiation Therapy ORIGINAL STUDY ORIGINAL STUDY Association Between Bone Marrow Dosimetric Parameters and Acute Hematologic Toxicity in Cervical Cancer Patients Undergoing Concurrent Chemoradiotherapy Comparison of Three-Dimensional Conformal

More information

Protocol. Intensity-Modulated Radiation Therapy (IMRT): Abdomen and Pelvis

Protocol. Intensity-Modulated Radiation Therapy (IMRT): Abdomen and Pelvis Intensity-Modulated Radiation Therapy (IMRT): Abdomen and (80149) Medical Benefit Effective Date: 07/01/11 Next Review Date: 03/13 Preauthorization* No Review Dates: 09/09, 09/10, 03/11, 03/12 The following

More information

Radiation Oncology MOC Study Guide

Radiation Oncology MOC Study Guide Radiation Oncology MOC Study Guide The following study guide is intended to give a general overview of the type of material that will be covered on the Radiation Oncology Maintenance of Certification (MOC)

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005 Advantages of inflatable multichannel endorectal applicator in the neo-adjuvant treatment of patients with locally advanced

More information

UPDATE IN THE MANAGEMENT OF INVASIVE CERVICAL CANCER

UPDATE IN THE MANAGEMENT OF INVASIVE CERVICAL CANCER UPDATE IN THE MANAGEMENT OF INVASIVE CERVICAL CANCER Susan Davidson, MD Professor Department of Obstetrics and Gynecology Division of Gynecologic Oncology University of Colorado- Denver Anatomy Review

More information

Disclosure. Acknowledgement. What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Rectal cancer imaging. None

Disclosure. Acknowledgement. What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Rectal cancer imaging. None What is the Best Workup for Rectal Cancer Staging: US/MRI/PET? Zhen Jane Wang, MD Assistant Professor in Residence UC SF Department of Radiology Disclosure None Acknowledgement Hueylan Chern, MD, Department

More information

Role of MRI for Staging Rectal Cancer

Role of MRI for Staging Rectal Cancer Role of MRI for Staging Rectal Cancer High-resolution MRI has supplanted endoscopic ultrasound for staging rectal cancer. High-resolution MR images closely match histology and can show details such as

More information

Locally advanced disease & challenges in management

Locally advanced disease & challenges in management Gynecologic Cancer InterGroup Cervix Cancer Research Network Cervix Cancer Education Symposium, February 2018 Locally advanced disease & challenges in management Carien Creutzberg Radiation Oncology, Leiden

More information

Chapter 2: Initial treatment for endometrial cancer (including histologic variant type)

Chapter 2: Initial treatment for endometrial cancer (including histologic variant type) Chapter 2: Initial treatment for endometrial cancer (including histologic variant type) CQ01 Which surgical techniques for hysterectomy are recommended for patients considered to be stage I preoperatively?

More information

ACR Appropriateness Criteria Role of Adjuvant Therapy in the Management of Early Stage Cervical Cancer EVIDENCE TABLE

ACR Appropriateness Criteria Role of Adjuvant Therapy in the Management of Early Stage Cervical Cancer EVIDENCE TABLE 1. Koehler C, Gottschalk E, Chiantera V, Marnitz S, Hasenbein K, Schneider A. From laparoscopic assisted radical vaginal hysterectomy to vaginal assisted laparoscopic radical hysterectomy. BJOG. 01;119():5-6..

More information

Role of IMRT in the Treatment of Gynecologic Malignancies. John C. Roeske, PhD Associate Professor The University of Chicago

Role of IMRT in the Treatment of Gynecologic Malignancies. John C. Roeske, PhD Associate Professor The University of Chicago Role of IMRT in the Treatment of Gynecologic Malignancies John C. Roeske, PhD Associate Professor The University of Chicago Acknowledgements B Aydogan, PhD Univ of Chicago P Chan, MD Princess Margaret

More information

Index. Surg Oncol Clin N Am 14 (2005) Note: Page numbers of article titles are in boldface type.

Index. Surg Oncol Clin N Am 14 (2005) Note: Page numbers of article titles are in boldface type. Surg Oncol Clin N Am 14 (2005) 433 439 Index Note: Page numbers of article titles are in boldface type. A Abdominosacral resection, of recurrent rectal cancer, 202 215 Ablative techniques, image-guided,

More information

Advanced Pelvic Malignancy: Defining Resectability Be Aggressive. Lloyd A. Mack September 19, 2015

Advanced Pelvic Malignancy: Defining Resectability Be Aggressive. Lloyd A. Mack September 19, 2015 Advanced Pelvic Malignancy: Defining Resectability Be Aggressive Lloyd A. Mack September 19, 2015 CONFLICT OF INTEREST DECLARATION I have no conflicts of interest Advanced Pelvic Malignancies Locally Advanced

More information

Enterprise Interest None

Enterprise Interest None Enterprise Interest None Cervical Cancer -Management of late stages ESP meeting Bilbao Spain 2018 Dr Mary McCormack PhD FRCR Consultant Clinical Oncologist University College Hospital London On behalf

More information

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer 1 Charles Poole April Case Study April 30, 2012 Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer Abstract: Introduction: This study

More information

Lymph nodes in gynecologic malignancies with imaging biomarkers scope.

Lymph nodes in gynecologic malignancies with imaging biomarkers scope. Lymph nodes in gynecologic malignancies with imaging biomarkers scope. Poster No.: C-1291 Congress: ECR 2012 Type: Educational Exhibit Authors: C. Suh, H. J. Choi, M.-H. Kim, K.-S. Cho; Seoul/KR Keywords:

More information

Department of Radiotherapy & Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt.

Department of Radiotherapy & Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt. Original article Res. Oncol. Vol. 12, No. 1, Jun. 2016:10-14 Dosimetric comparison of 3D conformal conventional radiotherapy versus intensity-modulated radiation therapy both in conventional and high dose

More information

IMAGING GUIDELINES - COLORECTAL CANCER

IMAGING GUIDELINES - COLORECTAL CANCER IMAGING GUIDELINES - COLORECTAL CANCER DIAGNOSIS The majority of colorectal cancers are diagnosed on colonoscopy, with some being diagnosed on Ba enema, ultrasound or CT. STAGING CT chest, abdomen and

More information

Cervical Cancer 3/25/2019. Abnormal vaginal bleeding

Cervical Cancer 3/25/2019. Abnormal vaginal bleeding Cervical Cancer Abnormal vaginal bleeding Postcoital, intermenstrual or postmenopausal Vaginal discharge Pelvic pain or pressure Asymptomatic In most patients who are not sexually active due to symptoms

More information

UCL. Rectum Adenocarcinoma. Quality of conformal radiotherapy Impact for the surgeon P. Scalliet & K. Haustermans

UCL. Rectum Adenocarcinoma. Quality of conformal radiotherapy Impact for the surgeon P. Scalliet & K. Haustermans Rectum Adenocarcinoma Quality of conformal radiotherapy Impact for the surgeon P. Scalliet & K. Haustermans Fifth Belgian Surgical Week May 6th, 2004, Oostende SOR rectum adenocarcinoma Indication of radiotherapy

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen and File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis

More information

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia IMRT - the physician s eye-view Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia The goals of cancer therapy Local control Survival Functional status Quality of life Causes

More information

Staging Colorectal Cancer

Staging Colorectal Cancer Staging Colorectal Cancer CT is recommended as the initial staging scan for colorectal cancer to assess local extent of the disease and to look for metastases to the liver and/or lung Further imaging for

More information

Sectional Anatomy Quiz - III

Sectional Anatomy Quiz - III Sectional Anatomy - III Rashid Hashmi * Rural Clinical School, University of New South Wales (UNSW), Wagga Wagga, NSW, Australia A R T I C L E I N F O Article type: Article history: Received: 30 Jun 2018

More information

Abscopal Effect of Radiation on Toruliform Para-aortic Lymph Node Metastases of Advanced Uterine Cervical Carcinoma A Case Report

Abscopal Effect of Radiation on Toruliform Para-aortic Lymph Node Metastases of Advanced Uterine Cervical Carcinoma A Case Report Abscopal Effect of Radiation on Toruliform Para-aortic Lymph Node Metastases of Advanced Uterine Cervical Carcinoma A Case Report MAMIKO TAKAYA 1, YUZURU NIIBE 1, SHINPEI TSUNODA 2, TOSHIKO JOBO 2, MANAMI

More information

CT/MRI of nodal metastases in pelvic cancer

CT/MRI of nodal metastases in pelvic cancer Cancer Imaging (2002) 2, 123 129 DOI: 10.1102/1470-7330.2002.0015 CI CT/MRI of nodal metastases in pelvic cancer Janet E Husband Academic Department of Diagnostic Radiology, The Royal Marsden NHS Trust,

More information

Cervical cancer presentation

Cervical cancer presentation Carcinoma of the cervix: Carcinoma of the cervix is the second commonest cancer among women worldwide, with only breast cancer occurring more commonly. Worldwide, cervical cancer accounts for about 500,000

More information

Akira Yamazaki, Hiroki Shirato, Takeshi Nishioka, Seiko Hashimoto, Toshihiro Kitahara, Kenji Kagei and Kazuo Miyasaka

Akira Yamazaki, Hiroki Shirato, Takeshi Nishioka, Seiko Hashimoto, Toshihiro Kitahara, Kenji Kagei and Kazuo Miyasaka Jpn J Clin Oncol 2000;30(4)180 184 Reduction of Late Complications After Irregularly Shaped Four-Field Whole Pelvic Radiotherapy Using Computed Tomographic Simulation Compared with Parallel Opposed Whole

More information

ESGO-ESTRO-ESP Cervical Cancer Clinical Practice Guidelines Management of early stages: algorithms focusing on the histological data

ESGO-ESTRO-ESP Cervical Cancer Clinical Practice Guidelines Management of early stages: algorithms focusing on the histological data ESGO-ESTRO-ESP Cervical Cancer Clinical Practice Guidelines Management of early stages: algorithms focusing on the histological data David Cibula Gynecologic Oncology Centre General University Hospital

More information

Gynecologic Oncology

Gynecologic Oncology Gynecologic Oncology 116 (2010) 33 37 Contents lists available at ScienceDirect Gynecologic Oncology journal homepage: www.elsevier.com/locate/ygyno Pelvic lymphadenectomy in cervical cancer surgical anatomy

More information

New Technologies for the Radiotherapy of Prostate Cancer

New Technologies for the Radiotherapy of Prostate Cancer Prostate Cancer Meyer JL (ed): IMRT, IGRT, SBRT Advances in the Treatment Planning and Delivery of Radiotherapy. Front Radiat Ther Oncol. Basel, Karger, 27, vol. 4, pp 315 337 New Technologies for the

More information

North of Scotland Cancer Network Clinical Management Guideline for Carcinoma of the Uterine Cervix

North of Scotland Cancer Network Clinical Management Guideline for Carcinoma of the Uterine Cervix THIS DOCUMENT North of Scotland Cancer Network Carcinoma of the Uterine Cervix UNCONTROLLED WHEN PRINTED DOCUMENT CONTROL Prepared by A Kennedy/AG Macdonald/Others Approved by NOT APPROVED Issue date April

More information

VAGINAL MOTION AND BLADDER AND RECTAL VOLUMES DURING PELVIC INTENSITY-MODULATED RADIATION THERAPY AFTER HYSTERECTOMY

VAGINAL MOTION AND BLADDER AND RECTAL VOLUMES DURING PELVIC INTENSITY-MODULATED RADIATION THERAPY AFTER HYSTERECTOMY doi:10.1016/j.ijrobp.2010.08.024 Int. J. Radiation Oncology Biol. Phys., Vol. 82, No. 1, pp. 256 262, 2012 Copyright Ó 2012 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/$ - see front

More information

MUSCLE - INVASIVE AND METASTATIC BLADDER CANCER

MUSCLE - INVASIVE AND METASTATIC BLADDER CANCER 10 MUSCLE - INVASIVE AND METASTATIC BLADDER CANCER Recommendations from the EAU Working Party on Muscle Invasive and Metastatic Bladder Cancer G. Jakse (chairman), F. Algaba, S. Fossa, A. Stenzl, C. Sternberg

More information

IMRT for Prostate Cancer

IMRT for Prostate Cancer IMRT for Cancer All patients are simulated in the supine position. Reproducibility is achieved using a custom alpha cradle cast that extends from the mid-back to mid-thigh. The feet are positioned in a

More information

Staging. Carcinoma confined to the corpus. Carcinoma confined to the endometrium. Less than ½ myometrial invasion. Greater than ½ myometrial invasion

Staging. Carcinoma confined to the corpus. Carcinoma confined to the endometrium. Less than ½ myometrial invasion. Greater than ½ myometrial invasion 5 th of June 2009 Background Most common gynaecological carcinoma in developed countries Most cases are post-menopausal Increasing incidence in certain age groups Increasing death rates in the USA 5-year

More information

The International Federation of Gynecology and Obstetrics (FIGO) updated the staging

The International Federation of Gynecology and Obstetrics (FIGO) updated the staging Continuing Education Column Revised FIGO Staging System Hee Sug Ryu, MD Department of Obstetrics and Gynecology, Ajou University School of Medicine E - mail : hsryu@ajou.ac.kr J Korean Med Assoc 2010;

More information

Preoperative lymph node staging in patients with primary prostate cancer: usefulness of diffusion-weighted MR imaging at 3T-device

Preoperative lymph node staging in patients with primary prostate cancer: usefulness of diffusion-weighted MR imaging at 3T-device Preoperative lymph node staging in patients with primary prostate cancer: usefulness of diffusion-weighted MR imaging at 3T-device Poster No.: C-1894 Congress: ECR 2015 Type: Scientific Exhibit Authors:

More information

The association of the uterine motion with bladder volume during radiotherapy in gynecological malignancies

The association of the uterine motion with bladder volume during radiotherapy in gynecological malignancies Original Article The association of the uterine motion with bladder volume during radiotherapy in gynecological malignancies Bhandari Virendra, Mutneja Abhinav, Gurjar Omprakash, Saadvik Raghuram, Bagdare

More information

Atlas of Lymph Node Anatomy

Atlas of Lymph Node Anatomy Atlas of Lymph Node Anatomy Mukesh G. Harisinghani Editor Atlas of Lymph Node Anatomy This publication was developed through an unrestricted educational grant from Siemens. Editor Mukesh G. Harisinghani

More information

A phase II study of weekly paclitaxel and cisplatin followed by radical hysterectomy in stages IB2 and IIA2 cervical cancer AGOG14-001/TGOG1008

A phase II study of weekly paclitaxel and cisplatin followed by radical hysterectomy in stages IB2 and IIA2 cervical cancer AGOG14-001/TGOG1008 A phase II study of weekly paclitaxel and cisplatin followed by radical hysterectomy in stages IB2 and IIA2 cervical cancer AGOG14-001/TGOG1008 NCT02432365 Chyong-Huey Lai, MD On behalf of Principal investigator

More information

ENDOMETRIAL CANCER. Endometrial cancer is a great concern in UPDATE. For personal use only. Copyright Dowden Health Media

ENDOMETRIAL CANCER. Endometrial cancer is a great concern in UPDATE. For personal use only. Copyright Dowden Health Media For mass reproduction, content licensing and permissions contact Dowden Health Media. UPDATE ENDOMETRIAL CANCER Are lymphadenectomy and external-beam radiotherapy valuable in women who have an endometrial

More information

Isolated Para-Aortic Lymph Nodes Recurrence in Carcinoma Cervix

Isolated Para-Aortic Lymph Nodes Recurrence in Carcinoma Cervix J Nepal Health Res Counc 2009 Oct;7(15):103-7 Original Article Isolated Para-Aortic Lymph Nodes Recurrence in Carcinoma Cervix Ghimire S 1, Hamid S, 2 Rashid A 2 1 Bhaktapur Cancer Hospital, Bhaktapur,

More information

Current staging of endometrial carcinoma with MR imaging

Current staging of endometrial carcinoma with MR imaging Current staging of endometrial carcinoma with MR imaging Poster No.: C-1436 Congress: ECR 2015 Type: Educational Exhibit Authors: M. Magalhaes, H. Donato, C. B. Marques, P. Gomes, F. Caseiro Alves; Coimbra/PT

More information

Inferior Pelvic Border

Inferior Pelvic Border Pelvis + Perineum Pelvic Cavity Enclosed by bony, ligamentous and muscular wall Contains the urinary bladder, ureters, pelvic genital organs, rectum, blood vessels, lymphatics and nerves Pelvic inlet (superior

More information

Role and Techniques of Surgery in Carcinoma Cervix. Dr Vanita Jain Additional Professor OBGYN PGIMER, Chandigarh

Role and Techniques of Surgery in Carcinoma Cervix. Dr Vanita Jain Additional Professor OBGYN PGIMER, Chandigarh Role and Techniques of Surgery in Carcinoma Cervix Dr Vanita Jain Additional Professor OBGYN PGIMER, Chandigarh Points for Discussion Pattern of spread Therapeutic options Types of surgical procedures

More information

GYNECOLOGIC CANCER and RADIATION THERAPY. Jon Anders M.D. Radiation Oncology

GYNECOLOGIC CANCER and RADIATION THERAPY. Jon Anders M.D. Radiation Oncology GYNECOLOGIC CANCER and RADIATION THERAPY Jon Anders M.D. Radiation Oncology Brachytherapy Comes from the Greek brakhus meaning short Brachytherapy is treatment at short distance Intracavitary vs interstitial

More information

Gynecologic Cancer InterGroup Cervix Cancer Research Network. Management of Cervical Cancer in Resource Limited Settings.

Gynecologic Cancer InterGroup Cervix Cancer Research Network. Management of Cervical Cancer in Resource Limited Settings. Management of Cervical Cancer in Resource Limited Settings Linus Chuang MD Conflict of Interests None Cervical cancer is the fourth most common malignancy in women worldwide 530,000 new cases per year

More information

Original Date: June 2013 ENDOMETRIAL CANCER

Original Date: June 2013 ENDOMETRIAL CANCER National Imaging Associates, Inc. Clinical guidelines Original Date: June 2013 ENDOMETRIAL CANCER Page 1 of 6 Radiation Oncology Last Review Date: July 2018 Guideline Number: NIA_CG_129 Last Revised Date:

More information

Outline - MRI - CT - US. - Combinations of imaging modalities for treatment planning

Outline - MRI - CT - US. - Combinations of imaging modalities for treatment planning Imaging Outline - MRI - CT - US - Combinations of imaging modalities for treatment planning Imaging Part 1: MRI MRI for cervical cancer high soft tissue contrast multiplanar imaging MRI anatomy: the normal

More information

ASTRO econtouring for Lymphoma. Stephanie Terezakis, MD

ASTRO econtouring for Lymphoma. Stephanie Terezakis, MD ASTRO econtouring for Lymphoma Stephanie Terezakis, MD Disclosures No conflicts to disclose 1970 Total Lymphoid Irradiation (TLI) 1995 Involved-Field Radiotherapy (IFRT) 2008 Involved Node Radiotherapy

More information

RECTAL CARCINOMA: A DISTANCE APPROACH. Stephanie Nougaret

RECTAL CARCINOMA: A DISTANCE APPROACH. Stephanie Nougaret RECTAL CARCINOMA: A DISTANCE APPROACH Stephanie Nougaret stephanienougaret@free.fr Despite the major improvements that have been made due to total mesorectal excision (TME) management of rectal cancer

More information

ARROCase: Locally Advanced Endometrial Cancer

ARROCase: Locally Advanced Endometrial Cancer ARROCase: Locally Advanced Endometrial Cancer Charles Vu, MD (PGY-3) Faculty Advisor: Peter Y. Chen, MD, FACR Beaumont Health (Royal Oak, MI) November 2016 Case 62yo female with a 3yr history of vaginal

More information

Dose-Volume Histogram Analysis in Point A-based Dose Prescription of High-dose-rate Brachytherapy for Cervical Carcinoma

Dose-Volume Histogram Analysis in Point A-based Dose Prescription of High-dose-rate Brachytherapy for Cervical Carcinoma Showa Univ J Med Sci 30 2, 227 235, June 2018 Original Dose-Volume Histogram Analysis in Point A-based Dose Prescription of High-dose-rate Brachytherapy for Cervical Carcinoma Rei KOBAYASHI 1, Yoshikazu

More information

Definitive Extended-field Intensity-modulated Radiotherapy with Chemotherapy for Cervical Cancer with Para-aortic Nodal Metastasis

Definitive Extended-field Intensity-modulated Radiotherapy with Chemotherapy for Cervical Cancer with Para-aortic Nodal Metastasis Definitive Extended-field Intensity-modulated Radiotherapy with Chemotherapy for Cervical Cancer with Para-aortic Nodal Metastasis JINHONG JUNG 1,2, GEUMJU PARK 1 and YOUNG SEOK KIM 1 Departments of 1

More information

Interobserver variation in cervical cancer tumor delineation for image-based radiotherapy planning among and within different specialties

Interobserver variation in cervical cancer tumor delineation for image-based radiotherapy planning among and within different specialties JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 4, FALL 2005 Interobserver variation in cervical cancer tumor delineation for image-based radiotherapy planning among and within different

More information

Challenging Cases in Cervical Cancer: Parametrial Boosting. Beth Erickson, MD, FACR, FASTRO Medical College Wisconsin

Challenging Cases in Cervical Cancer: Parametrial Boosting. Beth Erickson, MD, FACR, FASTRO Medical College Wisconsin Challenging Cases in Cervical Cancer: Parametrial Boosting Beth Erickson, MD, FACR, FASTRO Medical College Wisconsin Disclosure Chart Rounds participant No COI Learning Objectives Discuss the challenges

More information

JMSCR Vol 05 Issue 06 Page June 2017

JMSCR Vol 05 Issue 06 Page June 2017 www.jmscr.igmpublication.org Impact Factor 5.84 Index Copernicus Value: 83.27 ISSN (e)-2347-176x ISSN (p) 2455-0450 DOI: https://dx.doi.org/10.18535/jmscr/v5i6.29 MRI in Clinically Suspected Uterine and

More information

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer Tony Kin Ming Lam Radiation Planner Dr Patricia Lindsay, Radiation Physicist Dr John Kim, Radiation Oncologist Dr Kim Ann Ung,

More information

Outline. Contour quality control. Dosimetric impact of contouring errors and variability in Intensity Modulated Radiation Therapy (IMRT)

Outline. Contour quality control. Dosimetric impact of contouring errors and variability in Intensity Modulated Radiation Therapy (IMRT) Dosimetric impact of contouring errors and variability in Intensity Modulated Radiation Therapy (IMRT) James Kavanaugh, MS DABR Department of Radiation Oncology Division of Medical Physics Outline Importance

More information

PORTEC-4. Patient seqnr. Age at inclusion (years) Hospital:

PORTEC-4. Patient seqnr. Age at inclusion (years) Hospital: May 2016 Randomisation Checklist Form 1, page 1 of 2 Patient seqnr. Age at inclusion (years) Hospital: Eligible patients should be registered and randomised via the Internet at : https://prod.tenalea.net/fs4/dm/delogin.aspx?refererpath=dehome.aspx

More information

Vagina. 1. Introduction. 1.1 General Information and Aetiology

Vagina. 1. Introduction. 1.1 General Information and Aetiology Vagina 1. Introduction 1.1 General Information and Aetiology The vagina is part of internal female reproductive system. It is an elastic, muscular tube that connects the outside of the body to the cervix.

More information

Treatment Planning for Breast Cancer: Contouring Targets. Julia White MD Professor

Treatment Planning for Breast Cancer: Contouring Targets. Julia White MD Professor Treatment Planning for Breast Cancer: Contouring Targets Julia White MD Professor Outline 1. RTOG Breast Cancer Atlas 2. Target development on Clinical Trials Whole Breast Irradiation 2-D Radiotherapy

More information

SURGICAL ANATOMY OF RETROPERITONEUM AND LYMPHADENECTOMY

SURGICAL ANATOMY OF RETROPERITONEUM AND LYMPHADENECTOMY SURGICAL ANATOMY OF RETROPERITONEUM AND LYMPHADENECTOMY P. De Iaco S.Orsola-Malpighi Hospital - Bologna Unit Oncological Gynecology PELVIC AND AORTIC LYMPH NODE METASTASIS IN EPITHELIEL OVARIAN CANCER

More information

Radiation Therapy for Soft Tissue Sarcomas

Radiation Therapy for Soft Tissue Sarcomas Radiation Therapy for Soft Tissue Sarcomas Alexander R. Gottschalk, MD, PhD Assistant Professor, Radiation Oncology University of California, San Francisco 1/25/08 NCI: limb salvage vs. amputation 43 patients

More information

Xinglan Li 1,2, Yueju Yin 1, Xuigui Sheng 1*, Xiaoyun Han 1, Li Sun 1, Chunhua Lu 1 and Xiang Wang 1,2

Xinglan Li 1,2, Yueju Yin 1, Xuigui Sheng 1*, Xiaoyun Han 1, Li Sun 1, Chunhua Lu 1 and Xiang Wang 1,2 Li et al. Radiation Oncology (2015) 10:40 DOI 10.1186/s13014-015-0352-5 RESEARCH Open Access Distribution pattern of lymph node metastases and its implication in individualized radiotherapeutic clinical

More information

Definitions. Brachytherapy in treatment of cancer. Implantation Techniques and Methods of Dose Specifications. Importance of Brachytherapy in GYN

Definitions. Brachytherapy in treatment of cancer. Implantation Techniques and Methods of Dose Specifications. Importance of Brachytherapy in GYN Implantation Techniques and Methods of Dose Specifications Brachytherapy Course Lecture V Krishna Reddy, MD, PhD Assistant Professor, Radiation Oncology Brachytherapy in treatment of cancer GYN Cervical

More information

Colorectal Pathway Board (Clinical Subgroup): Imaging Guidelines September 2015

Colorectal Pathway Board (Clinical Subgroup): Imaging Guidelines September 2015 Colorectal Pathway Board (Clinical Subgroup): Imaging Guidelines September 2015 1 Contents Page No. 1. Objective 3 2. Imaging Techniques 3 3. Staging of Colorectal Cancer 5 4. Radiological Reporting 6

More information

receive adjuvant chemotherapy

receive adjuvant chemotherapy Women with high h risk early stage endometrial cancer should receive adjuvant chemotherapy Michael Friedlander The Prince of Wales Cancer Centre and Royal Hospital for Women The Prince of Wales Cancer

More information

Imaging in gastric cancer

Imaging in gastric cancer Imaging in gastric cancer Gastric cancer remains a deadly disease because of late diagnosis. Adenocarcinoma represents 90% of malignant tumors. Diagnosis is based on endoscopic examination with biopsies.

More information

GUIDELINES FOR CANCER IMAGING Lung Cancer

GUIDELINES FOR CANCER IMAGING Lung Cancer GUIDELINES FOR CANCER IMAGING Lung Cancer Greater Manchester and Cheshire Cancer Network Cancer Imaging Cross-Cutting Group April 2010 1 INTRODUCTION This document is intended as a ready reference for

More information

ART for Cervical Cancer: Dosimetry and Technical Aspects

ART for Cervical Cancer: Dosimetry and Technical Aspects ART for Cervical Cancer: Dosimetry and Technical Aspects D.A. Jaffray, Ph.D. Radiation Therapy Physics Princess Margaret Cancer Centre/Techna/Ontario Cancer Institute Professor Departments of Radiation

More information

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC MRI Based treatment planning for with focus on prostate cancer Xinglei Shen, MD Department of Radiation Oncology KUMC Overview How magnetic resonance imaging works (very simple version) Indications for

More information

Colorectal Cancer Treatment

Colorectal Cancer Treatment Scan for mobile link. Colorectal Cancer Treatment Colorectal cancer overview Colorectal cancer, also called large bowel cancer, is the term used to describe malignant tumors found in the colon and rectum.

More information

MR Imaging of Carcinoma of the Vulva

MR Imaging of Carcinoma of the Vulva S. A. Aslam Sohaib 1,2 Polly S. Richards 1 Thomas Ind 2 Arjun R. Jeyarajah 3 John H. Shepherd 3 Ian J. Jacobs 3 Rodney H. Reznek 1 Received May 7, 2001; accepted after revision August 20, 2001. S. A. Sohaib

More information

Open Radical Cystectomy Tips and Tricks in Males and Females

Open Radical Cystectomy Tips and Tricks in Males and Females Open Radical Cystectomy Tips and Tricks in Males and Females Seth P. Lerner, MD, FACS Professor of Urology Beth and Dave Swalm Chair in Urologic Oncology Scott Department of Urology Baylor College of Medicine

More information

Adjuvant Chemotherapy in High Risk Patients after Wertheim Hysterectomy 10-year Survivals

Adjuvant Chemotherapy in High Risk Patients after Wertheim Hysterectomy 10-year Survivals 6 Adjuvant Chemotherapy in High Risk Patients after Wertheim Hysterectomy 0-year Survivals V Sivanesaratnam,*FAMM, FRCOG, FACS Abstract Although the primary operative mortality following radical hysterectomy

More information

STAGING AND FOLLOW-UP STRATEGIES

STAGING AND FOLLOW-UP STRATEGIES ATHENS 4-6 October 2018 European Society of Urogenital Radiology STAGING AND FOLLOW-UP STRATEGIES Ahmet Tuncay Turgut, MD Professor of Radiology Hacettepe University, Faculty of Medicine Ankara 2nd ESUR

More information

Ruolo dell imaging nella pianificazione del trattamento

Ruolo dell imaging nella pianificazione del trattamento Simposio AIRO-SIRM: Diagnostica per immagini morfologica e funzionale nella stadiazione, terapia e follow-up dei sarcomi delle parti molli Ruolo dell imaging nella pianificazione del trattamento Marco

More information

Post operative Radiotherapy in Carcinoma Endometrium - KMIO Experience (A Retrospective Study)

Post operative Radiotherapy in Carcinoma Endometrium - KMIO Experience (A Retrospective Study) Post operative Radiotherapy in Carcinoma Endometrium - KMIO Experience (A Retrospective Study) Sridhar.P, M.D. 1, Sruthi.K, M.D. 2, Naveen.T, M.D. 3, Siddanna.R.P, M.D. 4 Department of Radiation Oncology,

More information