How Cells Work. Chapter 4

Size: px
Start display at page:

Download "How Cells Work. Chapter 4"

Transcription

1 How Cells Work Chapter 4

2 Energy Laws Energy is the capacity to do work The total amount of energy in the universe is constant-energy can t be created or destroyed..only transferred! Energy is flowing from high-energy forms to forms lower in energy

3 Energy Gained Energy Lost Sunlight energy reaches Earth. Producers secure some and convert it to stored forms of energy. They and all other organisms convert stored energy to forms that can do cellular work. With each conversion, there is a one-way flow of energy back to the environment Energy Lost

4 ATP nucleotide base (adenine) Main energy carrier in cells (in the phosphate groups) Can give up phosphate group to another molecule sugar (ribose) Phosphorylation primes a molecule to react 3 phosphate groups

5 The Cell s Energy Currency ATP couples energy inputs and outputs ATP/ADP cycle regenerates ATP ATP energy input ADP + P i energy output

6 Energy Changes Endergonic reactions require energy Synthesis of glucose from carbon dioxide and water during photosynthesis Exergonic reactions release energy Breakdown of glucose to carbon dioxide and water by aerobic respiration

7 Electron Transfers Oxidation: loss of an electron Reduction: gain of an electron Electron transfer chains are vital to the formation of ATP during photosynthesis and aerobic respiration

8 H 2 1/2 O 2 H 2 2H + 2e - 1. Water molecules split; hydrogen ions, electrons, oxygen released 1/2 O 2 electric spark 3. Some released energy is used to make ATP Explosive release of energy as heat cannot be harnessed for cellular work 2. Electrons transferred through an electron transfer system 2e - 2H + 1/2 O 2 H 2 O H 2 O

9 Participants in Metabolic Pathways Reactants Intermediates Products Energy carriers Enzymes Cofactors Transport proteins

10 Which Way Will a Reaction Run? Nearly all chemical reactions are reversible The direction a reaction runs depends upon Energy content of participants Reactant-to-product ratio

11 highly spontaneous equilibrium highly spontaneous

12 Metabolic Pathways Biosynthetic (anabolic) pathways Require energy inputs Assemble large molecules from subunits Photosynthesis Degradative (catabolic) pathways Release energy Breakdown large molecules to subunits Aerobic respiration

13 Enzymes Catalyze (speed up) reactions Recognize and bind specific substrates Act repeatedly Most are proteins

14 Activation Energy For a reaction to occur, an energy barrier must be surmounted Enzymes make the energy barrier smaller Figure 4.6, page 62 starting substance energy released by the reaction activation energy without enzyme activation energy with enzyme products

15 reactants A lower energy Barrier means more Product! energy barrier with no enzyme to promote reaction energy barrier with an enzyme s participation products

16 Factors Influencing Enzyme Activity Coenzymes and cofactors Allosteric regulators Temperature ph Salt concentration

17 Allosteric Control Activator or inhibitor binds to an enzyme Binding changes enzyme shape Change hides or exposes active site Feedback inhibition Product of pathway binds to and inhibits enzyme in the pathway

18 allosteric activator vacant allosteric binding site enzyme active site active site cannot bind substrate allosteric inhibitor allosteric binding site vacant; active site can bind substrate active site altered, can bind substrate active site altered, can t bind substrate Allosteric activation Allosteric inhibition

19 Feedback Inhibition enzyme 2 enzyme 3 enzyme 4 enzyme 5 enzyme 1 SUBSTRATE Excess end-product molecules bind with molecules of enzyme 1. The greater the excess, the more enzyme molecules are inhibited and the greater the decrease in tryptophan synthesis. END PRODUCT (tryptophan)

20 Effect of Temperature Small increase in temperature increases molecular collisions, reaction rates High temperatures disrupt bonds and destroy the shape of active site - denaturation

21 Figure 4.10a Page 64

22

23 Concentration Gradient Means the number of molecules or ions in one region is different than the number in another region In the absence of other forces, a substance moves from a region where it is more concentrated to one where it is less concentrated: down gradient

24 oxygen, carbon dioxide, and other small, nonpolar molecules; some water molecules glucose and other large, polar, water-soluable molecules; ions (e.g., H+, Na+, K+, CA++, CI ); water molecules

25 Diffusion The net movement of like molecules or ions down a concentration gradient Although molecules collide randomly, the net movement is away from the place with the most collisions (down gradient)

26

27 Factors Affecting Diffusion Rate Steepness of concentration gradient Steeper gradient, faster diffusion Molecular size Smaller molecules, faster diffusion Temperature Higher temperature, faster diffusion Electrical or pressure gradients

28 Transport Proteins-proteins that help large molecules cross a membrane Span the lipid bilayer Interior is able to open to both sides Change shape when they interact with solute Move water-soluble substances across a membrane

29 Passive and Active Transport Passive Transport Doesn t require energy inputs Solutes diffuse through a channel inside the protein s interior Net movement is down concentration gradient Active Transport Requires ATP Protein is an ATPase pump Pumps solute against its concentration gradient

30 Osmosis Water molecules tend to diffuse down water concentration gradient Total number of molecules or ions dictates concentration of water Tonicity: relative solute concentrations

31 semipermeable membrane between two compartments water molecule protein molecule

32 Figure % sucrose Page solution 69 distilled water 10% sucrose solution 2% sucrose solution Hypotonic Conditions Hypertonic Conditions Isotonic Conditions

33 Hydrostatic Pressure Also called OSMOTIC PRESSURE Pressure that a fluid exerts against structure enclosing it Increases with increased solute concentration Influences the osmotic movement of water

34 Hypotonic Solution Hypertonic Solution membrane permeable to water but not to solutes

35 Membrane Traffic Endocytosis Membrane sinks inward around a substance bringing it into the cell in a vesicle Exocytosis Vesicle carrying substance fuses with membrane releasing it into the intracellular fluid

36 Types of Endocytosis Bulk-phase endocytosis Receptor-mediated endocytosis Phagocytosis

37 Exocytosis plasma membrane cytoplasm Endocytosis cytoplasm

38 amoeba edible bacterium phagocytic vesicle

Chapter 5 Ground Rules Of Metabolism

Chapter 5 Ground Rules Of Metabolism Chapter 5 Ground Rules Of Metabolism Energy and the World of Life Energy Capacity to do work Two Forms Of energy Kinetic Energy is the energy an object has because it is moving Potential Energy is the

More information

5.6 Diffusion, Membranes, and Metabolism

5.6 Diffusion, Membranes, and Metabolism 5.6 Diffusion, Membranes, and Metabolism Concentration of a substance Number of atoms or molecules in a given volume Concentration gradient of a substance A difference in concentration between two regions

More information

Chapter 5. The Working Cell. Lecture by Richard L. Myers

Chapter 5. The Working Cell. Lecture by Richard L. Myers Chapter 5 The Working Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Richard L. Myers MEMBRANE STRUCTURE AND FUNCTION

More information

A Closer Look at Cell Membranes

A Closer Look at Cell Membranes A Closer Look at Cell Membranes BOZEMAN VIDEO CELL MEMBRANES http://www.youtube.com/watch?v=y31dlj6ugge http://www.youtube.com/watch?v=s7cj7xzojm0 http://www.youtube.com/watch?v=y31dlj6ugge http://www.youtube.com/watch?v=s7cj7xzojm0

More information

Chapter 5 Ground Rules of Metabolism Sections 6-10

Chapter 5 Ground Rules of Metabolism Sections 6-10 Chapter 5 Ground Rules of Metabolism Sections 6-10 5.6 Cofactors in Metabolic Pathways Most enzymes require cofactors Energy in ATP drives many endergonic reactions Table 5-1 p86 Cofactors and Coenzymes

More information

The Working Cell: G: Membrane Transport & H: Enzymes. Chapter 5

The Working Cell: G: Membrane Transport & H: Enzymes. Chapter 5 The Working Cell: G: Membrane Transport & H: Enzymes Chapter 5 Standards Unit G: Membrane Transport I can recognize the fluid mosaic model and accurately identify and describe the function of the components.

More information

1. I can explain the structure of ATP and how it is used to store energy.

1. I can explain the structure of ATP and how it is used to store energy. 1. I can explain the structure of ATP and how it is used to store energy. ATP is the primary energy molecule for the cell. It is produced in the mitochondria during cellular respiration, which breaks down

More information

Key Concepts - All Cells Use Energy Energy Conversions - Reactions Absorb or Release Energy Endergonic, Exergonic - ATP is Cellular Energy

Key Concepts - All Cells Use Energy Energy Conversions - Reactions Absorb or Release Energy Endergonic, Exergonic - ATP is Cellular Energy Key Concepts - All Cells Use Energy Energy Conversions - Reactions Absorb or Release Energy Endergonic, Exergonic - ATP is Cellular Energy ATP Cycle - Enzymes Speed Up Reactions Enzyme Function, Factors

More information

Chapter 5. The Working Cell. Lecture by Richard L. Myers

Chapter 5. The Working Cell. Lecture by Richard L. Myers Chapter 5 The Working Cell PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Richard L.

More information

Chapter 6. Ground Rules of Metabolism

Chapter 6. Ground Rules of Metabolism Chapter 6 Ground Rules of Metabolism Alcohol dehydrogenase removes ethanol molecules from the liver Binge Drinking by State (Source Centers for Disease Control and Prevention (CDC). Rank States Amount

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Chapter 5. The Working Cell. PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey

Chapter 5. The Working Cell. PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Chapter 5 The Working Cell PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Lesson Plans Flipped Classroom

More information

Chapter 5 Problem set

Chapter 5 Problem set Chapter 5 Problem set Matching Choose the most appropriate answer for each of the following. 1 fluid mosaic model 2. Transport proteins 3. freeze-fracturing and freeze-etching 4. recognition proteins 5.

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Membranes: Membranes:

Membranes: Membranes: Membranes: organize the chemical activities of cells by organizing different metabolic processes Control the flow of substances into or out of the cell The plasma membrane of the cell is selectively permeable

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins)

II. Active Transport (move molecules against conc. gradient - cell must expend energy) (uses carrier proteins) Chapter 5 - Homeostasis and Transport I. Passive Transport (no energy from cell required) A. Diffusion 1. movement of molecules from an area of higher concentration to an area of lower concentration a.

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL Gateway to the Cell The cell membrane is flexible and allows a unicellular organism to move Isolates the cell, yet allows communication with its surroundings fluid mosaics = proteins (and everything else)

More information

Cells and Their Environment Chapter 8. Cell Membrane Section 1

Cells and Their Environment Chapter 8. Cell Membrane Section 1 Cells and Their Environment Chapter 8 Cell Membrane Section 1 Homeostasis Key Idea: One way that a cell maintains homeostasis is by controlling the movement of substances across the cell membrane. Homeostasis

More information

Life and the Flow of Energy. Chapter 6. The Flow of Energy

Life and the Flow of Energy. Chapter 6. The Flow of Energy Life and the Flow of Energy Chapter 6 Metabolism: Energy and Enzymes Energy is the ability to do work Cells (and organisms) need a constant supply of Life on Earth is dependent on solar Solar The Flow

More information

CH 7.2 & 7.4 Biology

CH 7.2 & 7.4 Biology CH 7.2 & 7.4 Biology LABEL THE MEMBRANE Phospholipids Cholesterol Peripheral proteins Integral proteins Cytoskeleton Cytoplasm Extracellular fluid Most of the membrane A phospholipid bi-layer makes up

More information

TRANSPORT ACROSS MEMBRANES

TRANSPORT ACROSS MEMBRANES Unit 2: Cells, Membranes and Signaling TRANSPORT ACROSS MEMBRANES Chapter 5 Hillis Textbook TYPES OF TRANSPORT ACROSS THE CELL (PLASMA) MEMBRANE: What do you remember? Complete the chart with what you

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 3 ESSENTIALS OF METABOLISM WHY IS THIS IMPORTANT? It is important to have a basic understanding of metabolism because it governs the survival and growth of microorganisms The growth of microorganisms

More information

Unit 3 Review Game Page 1

Unit 3 Review Game Page 1 Unit 3 Review Game Page 1 1 What best characterizes the role of TP in cellular metabolism? It is catabolized to carbon dioxide and water. The G associated with its hydrolysis is positive. The charge on

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

Name 5 The Working Cell Test Date Study Guide You must know: The key role of ATP in energy coupling That enzymes work by lowering the energy of

Name 5 The Working Cell Test Date Study Guide You must know: The key role of ATP in energy coupling That enzymes work by lowering the energy of Name _ 5 The Working Cell Test Date Study Guide You must know: The key role of ATP in energy coupling That enzymes work by lowering the energy of activation. The catalytic cycle of an enzyme that results

More information

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy Bell Work How is energy made available to the cell to move large starch molecules across the cell membrane through the process of endocytosis? a. removing a phosphate from ATP b. combining two glucose

More information

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers CELL TRANSPORT Constant Motion of Molecules Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers Solution homogenous liquid throughout which two or more substances

More information

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes

3/1/2011. Enzymes. Enzymes and Activation Energy. Enzymes Enzyme Structure and Action. Chapter 4 Outline. Enzymes Free content 3/1/2011 Chapter 4 Outline Enzymes as catalysts Control of enzyme activity Bioenergetics Enzymes 4-2 4-3 Enzymes Enzymes - function as biological catalysts permit reactions to occur rapidly

More information

Plasma Membranes. Plasma Membranes WJEC GCE BIOLOGY 4.6

Plasma Membranes. Plasma Membranes WJEC GCE BIOLOGY 4.6 4.6 Repeat Fig 3.20A here Fluid Mosaic Model of the Plasma Membrane Carbohydrate chain Glycoprotein Intrinsic Protein Non-polar hydrophobic fatty acid Phospholipids Appearance of the Cell Membrane Seen

More information

Life Needs Energy. The Rules (Laws of Thermodynamics) 1) energy can not be created or destroyed, but it can be changed from one form to another

Life Needs Energy. The Rules (Laws of Thermodynamics) 1) energy can not be created or destroyed, but it can be changed from one form to another Intro to Metabolism Learning Outcomes Explain laws governing energy and energy transfers. Describe enzymes and how they work. Explain what is meant by selectively permeable. Explain the differences between

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show 2 of 47 7-3 Cell Boundaries All cells are surrounded by a thin, flexible barrier known as the cell membrane. Many cells also produce a strong supporting layer around the membrane known as a cell wall.

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes All cells have a cell membrane Functions: a. Controls what enters and exits the cell to maintain an internal balance called homeostasis b. Provides protection

More information

Chapter 8 Cells and Their Environment

Chapter 8 Cells and Their Environment Chapter Outline Chapter 8 Cells and Their Environment Section 1: Cell Membrane KEY IDEAS > How does the cell membrane help a cell maintain homeostasis? > How does the cell membrane restrict the exchange

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

BSC Exam I Lectures and Text Pages

BSC Exam I Lectures and Text Pages BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Ch 4 Cells & Their Environment

Ch 4 Cells & Their Environment Ch 4 Cells & Their Environment Biology Mrs. Stolipher MEMBRANE STRUCTURE AND FUNCTION Membranes organize the chemical activities of cells Membranes are selectively permeable They control the flow of substances

More information

2/9/15 CONCEPTS OF BIOLOGY BIOSC 10 ANNOUNCEMENTS 2/9 CHAPTER 3 REVIEW. Review Q3 (chapter 3- notes allowed!)

2/9/15 CONCEPTS OF BIOLOGY BIOSC 10 ANNOUNCEMENTS 2/9 CHAPTER 3 REVIEW. Review Q3 (chapter 3- notes allowed!) BIOSC 10 ANNOUNCEMENTS /9 Review Q3 (chapter 3- notes allowed!) Lecture: chapter 4 Wed: Quiz covering chapters 3-4 Next Wed (/18)- Exam 1 (chapters 1-4) Extra Credit: answer all study guide Q s (guide

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

Monday Tuesday Wednesday Thursday Friday October 26 Test Correction

Monday Tuesday Wednesday Thursday Friday October 26 Test Correction CELLULAR PROCESSES UNIT GUIDE Due Wed, November 11 Monday Tuesday Wednesday Thursday Friday October 26 Test Correction November 2 Gummy Bear Lab November 9 Respiration/ Fermentation lab 27 Cell Membrane

More information

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Chapter 4 - Cell Structure Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen Microscopes provide windows to the world of the cell compare light versus electron microscopes illumination type

More information

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell.

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Enzymes Metabolism Metabolism A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Energy is the capacity to do work. Metabolism

More information

1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome

1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome Figure 1 Use Figure 1 to answer the following questions: 1. Structure A is the a. Cell wall b. Cell membrane c. Vacuole d. Lysosome 2. Structure E controls cellular functions. It is the a. Nucleolus b.

More information

A Closer Look at Cell Membranes. Chapter 5 Part 2

A Closer Look at Cell Membranes. Chapter 5 Part 2 A Closer Look at Cell Membranes Chapter 5 Part 2 5.5 Membrane Trafficking By processes of endocytosis and exocytosis, vesicles help cells take in and expel particles that are too big for transport proteins,

More information

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants CELL BOUNDARIES CELL BOUNDARIES Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants TYPES OF MEMBRANES Some substances = too large or

More information

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014 Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion

More information

Cellular Respiration

Cellular Respiration Cellular Respiration C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) 1. Energy Capacity to move or change matter Forms of energy are important to life include Chemical, radiant (heat

More information

1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D.

1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D. Part I: Short answers 1. Membrane proteins have a variety of functions. State four membrane protein functions. A. B. C. D. Part II: Label the components 2. Label the components of a biological membrane

More information

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

Maintained by plasma membrane controlling what enters & leaves the cell

Maintained by plasma membrane controlling what enters & leaves the cell CELL TRANSPORT AND HOMEOSTASIS Homeostasis Balanced internal condition of cells Also called equilibrium Maintained by plasma membrane controlling what enters & leaves the cell Functions of Plasma Membrane

More information

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration Question No. 1 of 10 1. What is the final electron acceptor in aerobic respiration? Question #01 (A) NADH (B) Mitochondria

More information

Ch. 5 Homeostasis & Cell Transport

Ch. 5 Homeostasis & Cell Transport Ch. 5 Homeostasis & Cell Transport 5.1 Homeostasis & Permeability Homeostasis ability of cell to maintain balance needed for life To maintain balance: cells must transport needed materials into cells &

More information

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 1 The cell membrane Lecture Overview Osmotic pressure and tonicity Movement of substances

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

Cell Membrane (Transport) Notes

Cell Membrane (Transport) Notes Cell Membrane (Transport) Notes Cell Membrane and Cell Wall: ALL cells have a cell membrane made of proteins and lipids protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump SOME cells

More information

MEMBRANE STRUCTURE & FUNCTION

MEMBRANE STRUCTURE & FUNCTION MEMBRANE STRUCTURE & FUNCTION Chapter 8 KEY CONCEPTS Cellular s are fluid mosaics of lipids and proteins Membrane structure results in selective permeability Passive transport is diffusion of a substance

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

Review: Cellular Transport

Review: Cellular Transport Review: Cellular Transport OSMOSIS 1. Label the pictures below ( isotonic, hypertonic, or hypotonic). The dots represent solutes. A. B. C. 2. means there is a GREATER concentration of solute molecules

More information

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane

Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Ch. 7 Diffusion, Osmosis, and Movement across a Membrane Diffusion Spontaneous movement of particles from an area of high concentration to an area of low concentration Does not require energy (exergonic)

More information

Equilibrium when two areas have the same concentration or are filled evenly

Equilibrium when two areas have the same concentration or are filled evenly Aim: How does the cell membrane function to maintain homeostasis? Do Now: Describe what homeostasis is. Homework: Vocab: Homeostasis, equilibrium, concentration gradient, diffusion, carrier protein, osmosis,

More information

Movement Through the Cell Membrane

Movement Through the Cell Membrane Movement Through the Cell Membrane Cellular Movement All living organisms rely on diffusion Get oxygen for respiration Removing waste products Transpiration in plants Cellular Movement The cell membrane

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Multiple Choice Review- Membranes & Enzymes

Multiple Choice Review- Membranes & Enzymes Multiple Choice Review- Membranes & Enzymes 1. Cell membranes are and regulate the materials moving into and out of the cell, in order to maintain equilibrium. a. completely permeable b. ionically permeable

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment Cells interact with their environment in a number of ways. Each cell needs to obtain oxygen and other nutrients

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 An Introduction to Microbial Metabolism Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Energy. Energy is the ability to do work or bring about a change. Energy transactions must follow the laws of Thermodynamics

Energy. Energy is the ability to do work or bring about a change. Energy transactions must follow the laws of Thermodynamics Chapter 6 Energy Energy is the ability to do work or bring about a change Kinetic Energy: Energy of motion Potential Energy: Stored energy Energy transactions must follow the laws of Thermodynamics 1 st

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

The Cell Membrane and Cellular Transportation

The Cell Membrane and Cellular Transportation The Cell Membrane and Cellular Transportation Oct 20 7:07 PM Cell Membrane Forms a barrier between the cell and the external environment. Has three main functions: 1) helps the cell retain the molecules

More information

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion).

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). CELL TRANSPORT and THE PLASMA MEMBRANE SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). What if What would happen if an organism could not get energy or get rid of wastes?

More information

B.4B Cellular Processes

B.4B Cellular Processes B.4B Cellular Processes Picture Vocabulary homeostasis The process of maintaining a constant state of balance cell membrane Cell part surrounding the cytoplasm and is also a barrier between the inside

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 2004 BCOR 11 Exam 2 Name: Section: Please note that the chapters covered in this exam 2 (2004) are not the same chapters we are covering this year (2005). That means that you won't be getting more questions

More information

Biological Science 101 General Biology

Biological Science 101 General Biology Lecture Seven: Cellular Respiration Ch. 9, Pgs. 163-181 Figs. 9.2-9.20 Biological Science 101 General Biology Cellular Respiration: - A series of processes that is involved in converting food to energy

More information

CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION Section B: Traffic Across Membranes 1. A membrane s molecular organization results in selective permeability 2. Passive transport is diffusion across a membrane

More information

Membrane Structure. Membrane Structure. Membranes. Chapter 5

Membrane Structure. Membrane Structure. Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Cell Boundaries. Chapter 7.3 Strand: B2.5h

Cell Boundaries. Chapter 7.3 Strand: B2.5h Cell Boundaries Chapter 7.3 Strand: B2.5h Review: Cell Membrane What is the role of the cell membrane within a cell? The cell membrane regulates what enters and leaves the cell and also provides protection

More information

Study Guide for Biology Chapter 5

Study Guide for Biology Chapter 5 Class: Date: Study Guide for Biology Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following led to the discovery of cells? a.

More information

General Biology 1004 Chapter 5 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 5 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 5 The Working Cell PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Copyright 2004 Pearson Education,

More information

Transport through membranes

Transport through membranes Transport through membranes Membrane transport refers to solute and solvent transfer across both cell membranes, epithelial and capillary membranes. Biological membranes are composed of phospholipids stabilised

More information

Chapter 3 Review Assignment

Chapter 3 Review Assignment Class: Date: Chapter 3 Review Assignment Multiple Choice 40 MC = 40 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following organelles produces transport

More information

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Metabolism of Microbes metabolism all chemical

More information

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 4 Membrane Structure and Function Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4.1 Plasma Membrane Structure and Function Regulates the entrance

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Monday Tuesday Wednesday Thursday Friday October 26 Test Correction

Monday Tuesday Wednesday Thursday Friday October 26 Test Correction CELLULAR PROCESSES UNIT GUIDE Due November 11 Monday Tuesday Wednesday Thursday Friday October 26 Test Correction 27 Plant Cells Lab Activity 28 Cell Membrane Worksheet / with Cell Membrane Lecture 29

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes 1.All cells have a cell membrane a.controls what enters and exits the cell to maintain an internal balance called homeostasis b.provides protection and support

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid mosaic model

More information

Movement of Substances in the Cell

Movement of Substances in the Cell Movement of Substances in the Cell The Marble Memories Biology All cells are surrounded by a plasma membrane (also called cell membrane). This membrane regulates the entry and exit of substances into and

More information

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy. Chapter 7 How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of

More information

Movement of substances across the cell membrane

Movement of substances across the cell membrane Ch 4 Movement of substances across the cell membrane Think about (Ch 4, p.2) 1. The structure of the cell membrane can be explained by the fluid mosaic model. It describes that the cell membrane is mainly

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information