ORIGINAL INVESTIGATION. Human Metapneumovirus Infections in Adults

Size: px
Start display at page:

Download "ORIGINAL INVESTIGATION. Human Metapneumovirus Infections in Adults"

Transcription

1 ORIGINAL INVESTIGATION Human Metapneumovirus Infections in Adults Another Piece of the Puzzle Edward E. Walsh, MD; Derick R. Peterson, PhD; Ann R. Falsey, MD Background: Each winter respiratory viruses account for a significant proportion of serious respiratory illness, including hospitalization, in older adults and those with underlying medical conditions. We describe the incidence and clinical impact of human metapneumovirus (HMPV), a newly identified virus, in adults. Methods: Infection with HMPV was identified in 3 prospectively enrolled adult cohorts (young persons years old, healthy adults 65 years old, and high-risk adults) and a hospitalized cohort for 4 consecutive winters (November 15 through April 15 for the years 1999 through 2003). The incidence and clinical impact were compared with those of influenza A and respiratory syncytial virus infection in the same groups. Results: Using reverse transcriptase polymerase chain reaction and serologic testing, we identified HMPV infection in 2.2% to 10.5% of the 3 prospectively followed-up outpatient cohorts annually. Asymptomatic infection was common, accounting for at least 38.8% of infections in each of the cohorts. Symptoms, when they occurred, were typical of an upper respiratory tract illness, although a few high-risk persons required hospitalization. Among 1386 hospitalized patients, HMPV was identified in 8.5% (range, 4.4%-13.2%), depending on the year. Dual viral infection was identified in 22.9%. Wheezing was frequent (80%) and more common than with influenza. Twelve percent required intensive care unit admission and 11% ventilatory support, rates similar to those for influenza and respiratory syncytial virus infection. Conclusions: In adults of all ages, HMPV is a common infection, and, although often asymptomatic, it can result in serious infection that requires hospitalization. Like influenza A and respiratory syncytial virus, HMPV is also a major contributor to the burden of wintertime respiratory illnesses in older adults. Arch Intern Med. 2008;168(22): Author Affiliations: Departments of Medicine (Drs Walsh and Falsey) and Biostatistics and Computational Biology (Dr Peterson), University of Rochester School of Medicine and Dentistry, and Department of Medicine, Rochester General Hospital (Drs Walsh and Falsey), Rochester, New York. VIRAL RESPIRATORY TRACT infections are common among adults at all ages and, although they generally represent reinfection with common childhood viruses, may cause severe disease among elderly persons and persons with underlying cardiopulmonary disease. 1 Influenza A and respiratory syncytial virus (RSV) account for a substantial proportion of these illnesses, and their impact in adults is relatively well described. 2,3 Other agents, such as parainfluenza viruses, coronaviruses, rhinoviruses, and adenovirus, also contribute to a lesser extent to the burden of respiratory illnesses in these populations. 4,5 Human metapneumovirus (HMPV), a recently identified cause of respiratory illness in children, has also been linked to respiratory illness in adults, although its overall clinical significance has yet to be fully elucidated. 6 Human metapneumovirus was first identified in 2001 in the Netherlands from archived respiratory cultures collected from infants and young children in whom other pathogens could not be isolated. 7 It is an enveloped RNA virus classified in the Paramyxoviridae family (Pneumovirinae subfamily) and closely related to RSV and parainfluenza viruses. Two major lineages, designated A and B, each with 2 sublineages, have been identified by antigenic and genetic analysis. 8,9 Since its discovery, infection has been widely reported each winter in young infants with an illness similar to RSV and characterized by wheezing and bronchiolitis However, as with many pediatric respiratory viral pathogens, HMPV infection induces incomplete immunity and reinfections occur later at all ages. 13,14 Although nursing home outbreaks and severe disease in hospitalized older persons have been reported, the complete epidemiology and clinical spectrum of HMPV disease in adults have not been established. 13,15 In this report, we describe the incidence and clinical impact of HMPV infec- 2489

2 tion during 4 consecutive winters in younger and older adults in inpatient and outpatient settings. Infection was identified in healthy young and elderly persons, frail highrisk adults, and persons hospitalized with acute respiratory symptoms who were prospectively evaluated for respiratory tract infections. METHODS STUDY DESIGN Infections were identified by analysis of serum and respiratory secretion samples collected from volunteers participating in a study of RSV and influenza infections as previously described, 2 some of whom were also included in the study by Falsey et al. 14 The study encompassed 4 consecutive winters from 1999 through 2003 in Rochester, New York. Four groups were studied: 3 prospective cohorts (young adults years old, healthy adults 65 years old, and high-risk adults) and a hospitalized cohort. High-risk adults were those with symptomatic lung disease, primarily chronic obstructive pulmonary disease (COPD), or congestive heart failure. The prospective cohorts were enrolled in late summer or early fall and followed up for a maximum of 2 consecutive winters. We used a rolling enrollment scheme to ensure that one-third to onehalf of the participants were new each season. On enrollment, demographic, medical history, and functional performance were recorded, a directed respiratory examination was performed, and a serum specimen was collected. Prospective volunteers notified study personnel of any respiratory symptoms (cough, sore throat, sputum production, nasal congestion, dyspnea, or wheezing) or change in baseline respiratory tract symptoms for high-risk individuals from November 15 through April 15 each winter. Reminders were also mailed every 8 weeks. Illnesses were evaluated by study personnel in the study clinic or during home visits. Evaluation included a directed respiratory tract examination, including measurement of arterial oxygen saturation, and collection of nasal swab and serum specimens. Four to 6 weeks later, a convalescent serum specimen was collected at a follow-up visit during which symptom resolution and medical care use were assessed. Postseason blood samples were collected within 6 weeks of completing surveillance. The hospitalized cohort was recruited from persons with admission diagnoses consistent with an acute cardiopulmonary illness. Eligible participants included those with admission diagnoses of community- or nursing home acquired pneumonia, acute bronchitis, acute exacerbations of COPD or congestive heart failure, upper respiratory tract illness, viral or influenza syndrome, asthma, or respiratory failure. Patients with acute coronary syndrome, myocardial infarction, or documented pulmonary embolism were excluded. Acute illness and follow-up evaluations were identical to those used for the prospective cohorts, except that hospital records were also reviewed. The University of Rochester Research Subjects Review Board and the Clinical Investigation Committee of Rochester General Hospital approved this study. All participants or their legal guardians signed informed consent before enrollment. LABORATORY DIAGNOSTICS Nasopharyngeal swab specimens were stored at 80 C for 3 to 6 years and were then analyzed for HMPV RNA by real-time reverse transcription polymerase chain reaction (RT-PCR). Conserved forward and reverse primers and a FAM-labeled probe were selected from HMPV N gene sequences available in Gen- Bank (CAN strain; AY145284). Briefly, RNA was extracted from 250-µL aliquots of sample using LS STAT-50 (Tel- Test, Inc, Friendswood, Texas) according to the manufacturer s instructions, resuspended in water, and subjected to reverse transcription using a concentration of 200nM of forward primer (5 CATCGTATATTAAAAGAGTCTCA3 ). The resulting DNA was subjected to 42 cycles of PCR (5 seconds at 95 C, 40 seconds at 55 C, and 15 seconds at 68 C in a thermocycler (icycler; Bio-Rad, Hercules, California) using the forward primer and reverse primer (5 TCTGCAGCATATTTGTAATCAG3 ), each at a concentration of 300nM, and a probe (FAM- TGCATTGATGAGGGTGTCACTGCGGTTG-BHQ). The RT- PCR has a sensitivity of 1 plaque-forming unit of virus, using both lineage A and B viruses. Serologic testing for HMPV was performed using an enzyme immunoassay in which purified virus was used in the solid phase. Briefly, the CAN and CAN strains (lineage A and B viruses, respectively) were obtained from Guy Boivin, MD (Laval University, Quebec City, Quebec, Canada), and grown in media that contained 0.1% porcine pancreatic trypsin and 1% albumen on LLC-MK2 monolayers as previously described. 16 After a cytopathic effect was evident, the supernatant was harvested and clarified at low speed for 10 minutes. The viruses were pelleted followed by banding on 60%/30% sucrose gradients. Each purified virus was diluted at equivalent protein concentration in bicarbonate buffer and coated separately overnight on enzyme immunoassay microtiter plates. Serum dilutions were incubated in plates and developed using alkaline phosphatase conjugated goat anti human IgG followed by substrate. The assay was validated and sensitivity and specificity determined to be 90% (95% confidence interval, 76%- 98%) and 99% (95% confidence interval, 92%-100%), respectively, using 111 paired serum samples from patients with previously identified viral infections. These infections included 33 seropositive HMPV infections (defined at the Centers for Disease Control and Prevention by positive serologic test results in all and RT-PCR in 18) and 10 to 12 each of RSV, influenza A, influenza B, coronavirus 229E and OC43, and parainfluenza virus infections. Because identical serologic test results were obtained using either virus alone, presumably from antigenic cross-reactivity between some of the virus proteins, only lineage A virus antigen was used in the study. LABORATORY DIAGNOSTIC ASSAYS FOR ADDITIONAL RESPIRATORY TRACT VIRUSES Although the study was initially designed to evaluate RSV and influenza A infections (diagnosed by culture, RT-PCR, and serologic testing), other viruses were also identified either concurrently or retrospectively. These viruses include influenza B (culture and serologic testing), parainfluenza viruses (culture only), adenovirus (culture only), and coronaviruses 229E and OC43 (serologic testing and RT-PCR). DEFINITION OF INFECTION Symptomatic HMPV infection was defined as an illness with any upper or lower respiratory tract symptom, but not fever alone, associated with a positive RT-PCR sample collected at the time of symptoms or a 4-fold or higher increase in serum HMPV-specific IgG titer between acute and convalescent serum. Asymptomatic infection was defined as a 4-fold or higher increase in HMPV-specific IgG in serum samples bracketing a time frame in which no illnesses were reported. For example, an increase in titer from preseason to postseason serum samples in persons who did not report an illness during the observation period of November 15 to April 15 was considered evi- 2490

3 Table 1. Demographic and Clinical Characteristics of Cohorts Characteristic Healthy Elderly (n=611) High Risk (n=537) Young (n=291) Hospitalized (n=1386) Age, mean (SD), y 75 (6) 70 (11) 33 (5) 75 (12) Female, % a Race, % White a Black Hispanic Living situation, % Alone With adults only With children Chronic illnesses, % Any cardiac disease Lung disease Diabetes mellitus Smoking (current or past), % Influenza vaccine, % a IADL score, mean (SD) b 0.31 (1.1) 1.2 (2.2) 0.03 (0.4) 3.8 (4.1) No. of illnesses Abbreviation: IADL, instrumental activities of daily living. a Significantly different compared with the other groups of older patients (P.001). b Instrumental activities of daily living are functional assessments based on a 12-point scale, with 0 representing total independence and 12, total dependence. dence of asymptomatic infection. Incompletely evaluated illnesses were those respiratory tract illnesses for which study participants were either out of town or failed to report during the winter but reported to study staff at the final spring interview and demonstrated an increase in HMPV antibody titer. Thus, respiratory samples for RT-PCR were not available for these illnesses, and most did not have tightly bracketed serum samples. STATISTICAL ANALYSIS Differences between groups were first analyzed by analysis of variance, and, if significant differences were noted, comparisons between specific groups were calculated using the 2 test of independence for dichotomous variables and unpaired, 2-tailed t tests for continuous variables. RESULTS POPULATIONS STUDIED One thousand four hundred thirty-nine persons were enrolled in the prospective cohorts (611 healthy elderly persons, 537 high-risk persons, and 291 young persons) and 1386 hospitalized patients were recruited during the 4 winters of study. The demographic and baseline clinical characteristics of each cohort are given in Table 1. All except the young persons have previously been described in detail. 2 The latter group had a mean age of 33 years, was predominantly female and nonsmokers, and had daily exposure to children. These characteristics differ from those of the healthy elderly group, who had a mean age of 75 years and rarely lived with children, and from the older high-risk group, who had high rates of underlying heart and pulmonary disease. The hospitalized cohort was slightly older and frailer than the highrisk group (reflected by worse functional scores) but was similar in other respects with a high incidence of underlying cardiopulmonary conditions and smoking history. INCIDENCE OF HMPV INFECTION IN THE PROSPECTIVE COHORTS The healthy elderly and high-risk persons reported, on average, slightly fewer than 1 illness each and the young cohort reported slightly greater than 1 illness per person during the 2-year period when most were under observation (Table 2). Overall, 36, 49, and 38 HMPV infections were documented by RT-PCR and/or serologic testing in the healthy elderly, high-risk, and young cohorts, respectively. The percentage of study participants under surveillance who were infected with HMPV each year varied considerably, from 2.2% to 10.6%, with the highest number and rate of infections in the second and fourth winters. It was striking that a significant proportion of infections were asymptomatic, detected by serologic testing during intervals when no respiratory illness symptoms were reported. Among the healthy elderly group, 16 of 36 infections (44%) were asymptomatic, whereas 19 of 49 infections (39%) in the high-risk group were asymptomatic. The percentage of asymptomatic infection was greatest in the young group (27 of 38 infections [71%]). Among study participants with symptomatic infection, in whom both RT-PCR and serologic test results were available, there was evidence of coinfection with other viruses in 26% and 14% of the healthy elderly and highrisk groups, respectively, and in none of the young persons. Coinfecting viruses included influenza A (2 cases; 1 culture positive and 1 seropositive), coronaviruses 229E (5 cases; 2 RT-PCR positive and 3 seropositive), and OC43 (1 case; RT-PCR positive). 2491

4 Table 2. Incidence of HMPV Infection by Year Year Healthy Elderly High Risk Young Hospitalized No. in cohort No. of illnesses No. of HMPV infections (% of cohort) 5 (2.4) 6 (2.9) 6 (5.8) 12 (4.4) No. of asymptomatic HMPV infections NA No. in cohort No. of illnesses No. of HMPV infections (% of cohort) 8 (2.9) 17 (6.3) 19 (10.6) 39 (13.2) No. of asymptomatic HMPV infections NA No. in cohort No. of illnesses No. of HMPV infections (% of cohort) 4 (2.2) 8 (4.1) 7 (4.3) 30 (6.9) No. of asymptomatic HMPV infections NA No. in cohort No. of illnesses No. of HMPV infections (% of cohort) 19 (6.4) 18 (8.6) 6 (6.7) 37 (9.6) No. of asymptomatic HMPV infections NA All years combined No. in cohort a No. of illnesses No. of HMPV infections (% of cohort) 36 (5.9) 49 (9.1) 38 (13.1) 118 (8.5) No. of asymptomatic HMPV infections NA Abbreviations: HMPV, human metapneumovirus; NA, not applicable. a Most subjects were in the study for more than 1 year; therefore, the number in the cohort for all years does not sum to the total of the numbers from the individual years No. of HMPV Infections Nov Dec Jan Feb Mar Apr Nov Dec Jan Feb Mar Apr Nov Dec Jan Feb Mar Apr Nov Dec Jan Feb Mar Apr Figure 1. Epidemic pattern of symptomatic human metapneumovirus (HMPV) infections in combined prospective and hospitalized cohorts during 4 consecutive winters. INCIDENCE OF HMPV INFECTION IN HOSPITALIZED PATIENTS One thousand three hundred eighty-six patients had 1471 hospitalizations evaluated during the 4 winters of study. Overall, 118 HMPV infections were identified, representing 8.5% of the cohort and 8.0% of the illnesses evaluated (Table 2). The yearly incidence varied, paralleling the infection rates noted in the prospective groups, ranging from 4.4% to 13.2% of illnesses each winter. Twenty-seven of the 118 HMPV infections (22.9%) in this group had evidence of dual infection with other viruses, a rate similar to that observed in the elderly and high-risk prospective cohorts. The most frequent coinfecting viruses were RSV (13 patients), coronavirus 229E (6), and influenza A (4). TEMPORAL DISTRIBUTION OF HMPV INFECTIONS Human metapneumovirus infections were detected during each of the 4 winters (Figure 1). The number of symptomatic illnesses attributable to HMPV was 23, 62, 34, and 60 during the 4 winters, indicating variable activity from year to year. Infections were detected during most months studied, with heaviest activity in late winter to early spring. 2492

5 Table 3. Clinical Characteristics of Symptomatic HMPV Infections in Patients, Exclusive of Mixed Viral Infections Characteristic Healthy Elderly (n=13) High Risk (n=17) Young (n=11) Hospitalized (n=91) Symptoms, No. (%) a Congestion 12 (92) 12 (71) 11 (100) 42 (49) b Sore throat 7 (58) 7 (41) 7 (64) 23 (27) Hoarseness 5 (38) 5 (29) 10 (91) a 25 (29) Cough 13 (100) 17 (100) 10 (91) 84 (94) Sputum 6 (62) 11 (65) 5 (45) 65 (74) Dyspnea 4 (31) 13 (76) 2 (18) 88 (98) b Wheeze 4 (31) 7 (41) 1 (9) 68 (79) b Constitutional 12 (92) 12 (72) 7 (64) 29 (33) b Feverish 4 (31) 6 (35) 6 (55) 48 (53) Signs, No. (%) a Rhinorrhea 11 (85) 11 (65) 8 (73) 8 (9) b Wheezing 2 (15) 2 (12) 0 75 (82) b Rales 3 (23) 4 (24) 0 49 (54) Temperature, mean (SD), C 36.4 (0.9) 36.8 (1.1) 36.7 (0.8) 37.8 (1.0) b SaO 2 on room air, mean (SD) 96.2 (2.9) 95.4 (2.3) 97.8 (1.2) 88.4 (9.6) b Abbreviations: HMPV, human metapneumovirus; SaO 2, arterial oxygen saturation. a Denominators vary because of missing data. b P.01 compared with other groups. DIAGNOSTIC VIROLOGIC TESTING Of the 241 HMPV infections identified, 179 were considered symptomatic (50.4% of the prospective and all of the hospitalized infections), of whom 122 (68.2%) had both RT-PCR and tightly bracketed serologic test results available. Of these, 46 (37.7%) were RT-PCR positive and seropositive, 14 (11.5%) were RT-PCR positive and seronegative, and 63 (51.6%) were RT-PCR negative and seropositive. Assuming serologic testing provides the most sensitive assay for HMPV diagnosis, RT- PCR had a sensitivity of 42.2% (46 of 109). Conversely, using RT-PCR as the standard for diagnosis, serologic testing was 78% sensitive (46 of 59), slightly lower than in the validation assessment (see the Methods section). CLINICAL CHARACTERISTICS OF HMPV INFECTION IN PROSPECTIVE COHORTS Table 4. Outcomes in HMPV-Infected Patients in Prospective Cohorts Outcome Healthy Elderly (n=13) High Risk (n=17) Young (n=11) Outcome of illness, No. (%) a Days of illness, mean (range) 12 (5-30) 16 (5-34) 10 (3-21) Days house bound, mean (SD) 1.8 (3.1) 3.9 (6.6) 0.6 (1.1) Telephone call to physician 3 (23) 8 (53) 4 (36) Office visit 5 (38) 10 (67) b 1 (9) Emergency department visit 0 1 (7) 0 Hospitalization 0 3 (18) 0 Medications, No. (%) a Antipyretics 9 (69) 4 (27) 8 (73) Cough suppressants 9 (69) 9 (60) 4 (36) Decongestants 5 (38) 0 c 6 (55) Bronchodilators 0 6 (35) c 0 Systemic glucocorticosteroids 0 6 (35) c 0 Antibiotics 3 (23) 14 (82) c 2 (18) a Denominators vary because of missing data. b P.05 compared with young group. c P.05 compared with other 2 groups. To characterize the clinical syndrome associated with HMPV infection in each of the 3 prospective groups, only symptomatic, fully evaluated illnesses not associated with other viruses were analyzed (Table 3). The symptoms were typical of upper respiratory tract virus infection, with most study participants complaining of nasal congestion and cough; rhinorrhea was present in 73.2%. The younger group had significantly more complaints of hoarseness but was less dyspneic than the other groups. Approximately one-third of the healthy elderly and high-risk groups complained of wheezing, although observed wheezing on examination was less common. Although feverishness was reported in 31% to 55%, recorded temperatures were generally normal. The outcome of HMPV infection varied according to group (Table 4). Illness duration ranged from a mean of 10 days in the young group to 16 days in the high-risk group, although some remained ill for as long as 34 days. Utilization of medical care services was greatest in the high-risk group; more than half made a physician office visit, 1 used the emergency department, and 3 were hospitalized during the illness. Treatment primarily consisted of symptom relief, although most high-risk patients and several from the other 2 groups were prescribed antibiotics. CLINICAL CHARACTERISTICS AND OUTCOME OF HMPV INFECTION IN HOSPITALIZED PATIENTS The clinical characteristics of the 91 hospitalized patients with HMPV infections (excluding those with dual virus infection) are given in Table 3 and Figure 2. Upper respiratory tract symptoms, such as nasal congestion, were present in approximately half of the patients, although rhinorrhea was rarely observed on examination. Cough was nearly universal, as in the prospective cohorts, and most 2493

6 HMPV RSV Influenza A % of Patients Congestion Sore Throat Cough Sputum Dyspnea Wheezing Constitutional Feverish Wheeze Examination Hospital Stay ICU Death Figure 2. Comparison of clinical presentation for human metapneumovirus (HMPV) (n=91), respiratory syncytial virus (RSV) (n=109), and influenza A (n=138) in hospitalized patients, exclusive of mixed viral infections. RSV and influenza data are from Falsey et al. 2 *P=.006 for HMPV compared with influenza A; P=.06 for HMPV compared with influenza A. ICU indicates intensive care unit. complained of shortness of breath on admission, consistent with a mean room air arterial oxygen saturation of 88.4%. Wheezing was frequent as elicited on history in 80.2% and confirmed on chest examination in an equal number. Half complained of feverishness, although the mean temperature was only 37.8 C. The average symptom duration before hospitalization was 5 days. The most frequent admission diagnoses were acute bronchitis or COPD exacerbation (35 patients [38%]), pneumonia (23 [25%]), and congestive heart failure (14 [15%]). Admission chest radiographs were normal in 34 patients (37%) and showed an infiltrate in 25 (27%). Sputum was obtained in 40 admitted patients (44%) but yielded a pathogen in only 1 patient. Blood cultures were obtained in a similar proportion, with Streptococcus pneumoniae isolated in 1 patient who died. Systemic glucocorticosteroids were administered to 65 patients (71%), bronchodilators to 78 (86%), and antibiotics to 85 (93%). Twelve patients (13%) required intensive care unit care and 11 (12%) ventilatory support. The mean (SD) length of hospitalization in patients with HMPV infection alone was 9 (7) days (range, 2-42 days), and 6 patients (7%) died during or shortly after hospitalization. These 6 averaged 85 years of age, 4 had underlying COPD, and 1 each had coronary artery disease and prior stroke. They died between 10 and 30 days after admission, generally of respiratory failure. One patient presented with pneumococcal bacteremia and lobar pneumonia 7 days after the onset of upper respiratory tract symptoms. COMMENT Even though HMPV was discovered only 6 years ago, a large body of information has already been accumulated about this condition. Published epidemiologic data indicate that it accounts for 5% to 15% of respiratory diseases among hospitalized infants with a clinical syndrome similar to RSV ,17-19 Like RSV, HMPV induces incomplete immunity, and reinfection later in life is well documented among adults of all ages. 14 Infection has been associated with febrile respiratory illnesses in young and older adults, asthma and COPD exacerbations, and fatal diffuse pneumonia in immunocompromised patients. 13,20,21 Although these reports provide information on the clinical spectrum of disease in adults, none present a comprehensive picture of annual attack rates or the full burden of HMPV disease in communitydwelling adults over an extended time. Because most published studies used RT-PCR or culture for diagnosis, the prevalence of asymptomatic or minimally symptomatic infection has not been determined. Thus, we took advantage of a recently completed 4-year prospective study of acute respiratory illness in several large adult cohorts, includingapproximately 1400 hospitalized persons, to assess the incidence and clinical impact of HMPV infection in this population. We found that the proportion of the combined prospective cohorts with evidence of HMPV infection varied each winter, ranging from 3.0% to 3.3% in years 1 and 3 to 6.0% to 7.1% in years 2 and 4. The rate of symptomatic infection may have been underestimated in years 3 and 4 because surveillance ended on April 15th when viral activity continued. The variable pattern of virus activity is consistent with the small number of published studies 11,22-25 that report HMPV infections during more than a single year. Notably, the incidence of HMPV infection was similar to the 5.5% annual average infection rate for RSV and greater than that of influenza A (2.4%) in these cohorts during the same time frame. 2 The low infection rate for influenza may reflect the high uptake of influenza vaccination. This differs from estimates in infants, in whom the relative activity of HMPV is generally 2- to 3-fold less than that for RSV. 12,24,26 This apparent difference in adults may be due to the relatively high frequency of serologically diagnosed asymptomatic or unreported illnesses found in the outpatient cohorts. Although most evident in the young healthy adult, it also was relatively common even among frail elderly patients with underlying cardiopulmonary disease. It is unlikely that the high asymptomatic infection rate resulted from poor specificity of the serologic assay. However, because illness identification required self-reporting, it is possible that some symptomatic illnesses were missed and later forgotten by patients. It is also possible that some illnesses occurred after surveillance ended but before the postseason blood draw, thus misidentifying in- 2494

7 fection as asymptomatic. Nevertheless, HMPV is distinctly different from RSV or influenza A infection in these same populations in which asymptomatic infection is relatively uncommon (approximately 10%). 2 Asymptomatic illness has generally not been described in infants, in part because most pediatric studies use RT-PCR evaluation of symptomatic illnesses. 11,24,27,28 A previous study 29 found that randomly selected asymptomatic adults do not have HMPV RNA detectable in their respiratory secretions during the winter. Nevertheless, it appears that mild infection characterized by a serologic response is relatively common. Thus, determining causality with an acute illness solely on the basis of antibody response may be difficult. It is notable that the only description of asymptomatic infection in adults, detected by RT-PCR or culture, is a survey study in severely immunocompromised bone marrow transplant recipients. 30 Among outpatients, typical upper and lower respiratory tract signs and symptoms characterized illness similar to other winter respiratory viruses. Given the high incidence of asymptomatic infection, one might expect minor symptoms if they occurred. However, when symptoms occurred, illness was not trivial because 38% and 67% of the healthy elderly and high-risk group visited their physicians and one-third of the young adult group called their physicians. Symptoms lasted approximately 2 weeks, and treatment with antipyretics and cough suppressants was frequent. Across all cohorts, use of antibiotics was common, especially among high-risk patients. Perhaps the most significant finding is the association of HMPV infection with hospitalization for acute respiratory tract symptoms in elderly adults. During the 4-year period, HMPV infection was identified in 118 of 1471 illnesses (8.0%), 56.1% of which were RT-PCR positive. In comparison, we had previously reported the incidence of influenza A and RSV in this group at 10.5% and 9.6%, respectively. 2 Presenting signs and symptoms were also similar to these other viruses, although, like RSV, wheezing was more common in HMPV infection than in influenza A infection (Figure 2). This latter finding is consistent with the similarity of RSV and HMPV in infants in which wheezing is characteristic. The average length of hospitalization for HMPV-infected adults was 9 days, with 13.2% requiring intensive care unit care, and the mortality was slightly less than with influenza A and RSV. Human metapneumovirus infection, similar to RSV, can be mistaken clinically for influenza during winter months when documented influenza circulates. Of the 118 HMPV infections, coinfection with another virus was noted in 27 (22.9%). Because of the high rate of asymptomatic infection in the outpatient cohorts, it is possible that some patients whose diagnosis was made by serologic testing only may have been hospitalized for reasons other than HMPV infection. Interestingly, a high rate of dual-virus infection also has been reported in infants with HMPV diagnosed by RT-PCR. 22,27 We did not note more severe disease to be associated with the dual infections, as reported by some investigators in infants with RSV- HMPV coinfection. 27,28 In conclusion, as with other respiratory tract viruses common in childhood, HMPV is a relatively frequent infection in adults of all ages with a wide disease spectrum, ranging from asymptomatic to severe respiratory failure. Overall, HMPV has a substantial impact, although less than that of influenza A and RSV infection, especially in frail older persons with heart or lung disease. Collectively, these 3 viruses were associated with nearly 30% of hospitalizations for acute respiratory illness during the winter. Development of an HMPV vaccine for use in high-risk adults should be considered. Accepted for Publication: May 23, Correspondence: Edward E. Walsh, MD, Infectious Diseases Unit, Rochester General Hospital, 1425 Portland Ave, Rochester, NY (Edward.walsh@viahealth.org). Author Contributions: Study concept and design: Walsh and Falsey. Acquisition of data: Walsh and Falsey. Analysis and interpretation of data: Walsh, Peterson, and Falsey. Drafting of the manuscript: Walsh and Peterson. Critical revision of the manuscript for important intellectual content: Walsh, Peterson, and Falsey. Statistical analysis: Peterson. Obtained funding: Walsh and Falsey. Administrative, technical, and material support: Walsh and Falsey. Study supervision: Walsh and Falsey. Financial Disclosure: None reported. Funding/Support: This work was supported by grants AI and AI from the National Institute of Allergy and Infectious Diseases. Additional Contributions: Patricia Hennessey, RN, and Mary Criddle, RN, enrolled patients and performed patient surveillance; Maryanne Formica, MS, Ben Korones, and Gloria Andolina, BS, provided technical support; and Christine Brower, BS, organized and maintained patient records and reports. REFERENCES 1. Falsey AR, Walsh EE. Viral pneumonia in older adults. Clin Infect Dis. 2006;42(4): Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352(17): Dowell SF, Anderson LJ, Gary HE Jr, et al. Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults. J Infect Dis. 1996;174(3): Glezen WP, Greenberg SB, Atmar RL, Piedra PA, Couch RB. Impact of respiratory virus infections on persons with chronic underlying conditions. JAMA. 2000; 283(4): El-Sahly HM, Atmar RL, Glezen WP, Greenberg SB. Spectrum of clinical illness in hospitalized patients with common cold virus infections. Clin Infect Dis. 2000; 31(1): van den Hoogen BG. Respiratory tract infection due to human metapneumovirus among elderly patients. Clin Infect Dis. 2007;44(9): van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6): Biacchesi S, Skiadopoulos MH, Boivin G, et al. Genetic diversity between human metapneumovirus subgroups. Virology. 2003;315(1): van den Hoogen BG, Besterbroer TM, Osterhaus AD, Fouchier RA. Analysis of the genomic sequence of a human metapneumovirus. Virology. 2002;295(1): Boivin G, Abed Y, Pelletier G, et al. Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory-tract infections in all age groups. J Infect Dis. 2002; 186(9): Williams JV, Wang CK, Yang CF, et al. The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis. 2006;193(3): Mullins JA, Erdman DD, Weinberg GA, et al. Human metapneumovirus infection 2495

8 among children hospitalized with acute respiratory illness. Emerg Infect Dis. 2004; 10(4): Boivin G, De Serres G, Hamelin ME, et al. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin Infect Dis. 2007;44(9): Falsey AR, Erdman D, Anderson LJ, Walsh EE. Human metapneumovirus infections in young and elderly adults. J Infect Dis. 2003;187(5): Louie JK, Schnurr DP, Pan C-Y, et al. A summer outbreak of human metapneumovirus infection in a long-term-care facility. J Infect Dis. 2007;196(5): Peret TC, Boivin G, Li Y, et al. Characterization of human metapneumoviruses isolated from patients in North America. J Infect Dis. 2002;185(11): van den Hoogen BG, van Doornum GJ, Fockens JC, et al. Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients. JInfect Dis. 2003;188(10): Freymouth F, Vabret A, Legrand L, et al. Presence of the new human metapneumovirus in French children with bronchiolitis. Pediatr Infect Dis J. 2003;22 (1): Peiris JSM, Tang W, Chan K, et al. Children with respiratory disease associated with metapneumovirus in Hong Kong. Emerg Infect Dis. 2003;9(6): Hamelin ME, Côté S, Laforge J, et al. Human metapneumovirus infection in adults with community-acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. Clin Infect Dis. 2005;41(4): Englund JA, Boeckh M, Kuypers J, et al. Brief communication: fatal human metapneumovirus infection in stem-cell transplant recipients. Ann Intern Med. 2006; 144(5): García-García ML, Calvo C, Perez-Brena P, De Cea JM, Acosta B, Casas I. Prevalence and clinical characteristics of human metapneumovirus infections in hospitalized infants in Spain. Pediatr Pulmonol. 2006;41(9): Sloots TP, Mackay IM, Bialasiewicz S, et al. Human metapneumovirus, Australia, Emerg Infect Dis. 2006;12(8): Williams JV, Harris PA, Tollefson SJ, et al. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004;350(5): Madhi SA, Ludewick H, Kuwanda L, van Niekerk N, Cutland C, Klugman KP. Seasonality, incidence, and repeat human metapneumovirus lower respiratory tract infections in an area with a high prevalence of human immunodeficiency virus type-1 infection. Pediatr Infect Dis J. 2007;26(8): Bosis S, Esposito S, Niesters HG, Crovari P, Osterhaus AD, Principi N. Impact of human metapneumovirus in childhood: comparison with respiratory syncytial virus and influenza viruses. J Med Virol. 2005;75(1): Maggi F, Pifferi M, Vatteroni M, et al. Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy. J Clin Microbiol. 2003;41(7): Semple MG, Cowell A, Dove W, et al. Dual infection of infants by human metapneumovirus and human respiratory syncytial virus is strongly associated with severe bronchiolitis. J Infect Dis. 2005;191(3): Falsey AR, Criddle MC, Walsh EE. Detection of respiratory syncytial virus and human metapneumovirus by reverse transcription polymerase chain reaction in adults with and without respiratory illness. J Clin Virol. 2006;35(1): Debiaggi M, Canducci F, Sampaolo M, et al. Persistent symptomless human metapneumovirus infection in hematopoietic stem cell transplant recipients. J Infect Dis. 2006;194(4): Correction Errors in Figures. In the Original Investigation by Chakravarty et al titled Reduced Disability and Mortality Among Aging Runners: A 21-Year Longitudinal Study, published in the August 11/25, 2008, issue of the Archives (2008;168[15]: ), an error occurred in the Figure 2 legend on page The corrected legend reads as follows: Figure 2. Mean disability levels by year separated by sex. Solid lines represent data for male participants, and dashed lines represent data for female participants who continued participation through Only subjects who completed the 21-year follow-up are included. Error bars indicate SD. An error also occurred in Figure 1B on page In the key, the dark dashed line should read Never runners (completers, n=83) and the light dashed line should read Ever runners (completers, n=357). 2496

Respiratory Syncytial Virus (RSV) in Older Adults: A Hidden Annual Epidemic. Webinar Agenda

Respiratory Syncytial Virus (RSV) in Older Adults: A Hidden Annual Epidemic. Webinar Agenda Respiratory Syncytial Virus (RSV) in Older Adults: A Hidden Annual Epidemic Wednesday, November 2, 2016 12:00 PM ET Webinar Agenda Agenda Welcome and Introductions William Schaffner, MD, NFID Medical Director

More information

Human metapneumovirus:hmpv

Human metapneumovirus:hmpv 51 2005217 Human metapneumovirus:hmpv Hideaki KIKUTA RS 2001 RS 5 10 2003 severe acute respiratory syndrome: SARS SARS 20042005 NL63 HKU1 Human metapneu- 0070841 41 16 14 movirus: hmpv 13.35kb ssrna 150

More information

In Case of Technical Difficulties

In Case of Technical Difficulties In Case of Technical Difficulties If you hear an echo: -- Make sure you are only logged in once on your computer -- Select one form of audio only (either computer speakers or telephone connection) If the

More information

Is Clinical Recognition of Respiratory Syncytial Virus Infection in Hospitalized Elderly and High-Risk Adults Possible?

Is Clinical Recognition of Respiratory Syncytial Virus Infection in Hospitalized Elderly and High-Risk Adults Possible? MAJOR ARTICLE Is Clinical Recognition of Respiratory Syncytial Virus Infection in Hospitalized Elderly and High-Risk Adults Possible? Edward E. Walsh, 1,3 Derick R. Peterson, 2 and Ann R. Falsey 1,3 Departments

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Edwards KM, Zhu Y, Griffin MR, et al. Burden of human metapneumovirus

More information

The causes and diagnosis of influenza-like illness

The causes and diagnosis of influenza-like illness Cough THEME The causes and diagnosis of influenza-like illness BACKGROUND Influenza and other respiratory viruses circulate between spring and autumn in temperate climates and all year in tropical climates.

More information

Accepted 29 January, 2013

Accepted 29 January, 2013 International Journal of Disease and Disorder Vol. 1 (2), pp. 020-023, April, 2013. Available online at www.internationalscholarsjournals.org International Scholars Journals Full Length Research Paper

More information

Estimating RSV Disease Burden in the United States

Estimating RSV Disease Burden in the United States Estimating RSV Disease Burden in the United States Brian Rha, MD, MSPH Medical Epidemiologist, Division of Viral Diseases Centers for Disease Control and Prevention Severe Acute Respiratory Infection Surveillance

More information

New viruses causing respiratory tract infections. Eric C.J. Claas

New viruses causing respiratory tract infections. Eric C.J. Claas New viruses causing respiratory tract infections Eric C.J. Claas (Re) emerging infectious diseases: what is new? Morens et al. Nature 2004 Virus discovery New molecular methods result in frequent detection

More information

Respiratory System Virology

Respiratory System Virology Respiratory System Virology Common Cold: Rhinitis. A benign self limited syndrome caused by several families of viruses. The most frequent acute illness in industrialized world. Mild URT illness involving:

More information

INFECTIONS WITH INFLUENZA VIRUSES, RESPIRATORY-SYNCYTIAL VIRUS AND HUMAN METAPNEUMOVIRUS AMONG HOSPITALIZED CHILDREN AGED 3 YEARS IN BULGARIA

INFECTIONS WITH INFLUENZA VIRUSES, RESPIRATORY-SYNCYTIAL VIRUS AND HUMAN METAPNEUMOVIRUS AMONG HOSPITALIZED CHILDREN AGED 3 YEARS IN BULGARIA Trakia Journal of Sciences, Vol. 12, Suppl. 1, pp 226-232, 2014 Copyright 2014 Trakia University Available online at: http://www.uni-sz.bg ISSN 1313-7050 (print) ISSN 1313-3551 (online) INFECTIONS WITH

More information

Appendix E1. Epidemiology

Appendix E1. Epidemiology Appendix E1 Epidemiology Viruses are the most frequent cause of human infectious diseases and are responsible for a spectrum of illnesses ranging from trivial colds to fatal immunoimpairment caused by

More information

journal of medicine The new england Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults abstract

journal of medicine The new england Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults abstract The new england journal of medicine established in 1812 april 28, 2005 vol. 352 no. 17 Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults Ann R. Falsey, M.D., Patricia A. Hennessey,

More information

ORIGINAL ARTICLE /j x

ORIGINAL ARTICLE /j x ORIGINAL ARTICLE 10.1111/j.1469-0691.2005.01129.x Human metapneumovirus-associated respiratory tract infections in the Republic of Ireland during the influenza season of 2003 2004 M. J. Carr 1, G. P. McCormack

More information

ARIZONA INFLUENZA SUMMARY Week 1 (1/4/2015 1/10/2015)

ARIZONA INFLUENZA SUMMARY Week 1 (1/4/2015 1/10/2015) ARIZONA INFLUENZA SUMMARY Week 1 (1/4/2015 1/10/2015) 2014-2015 Season (9/28/2014 10/3/2015) Synopsis: Influenza activity is increasing in Arizona. Arizona reported Widespread activity for week 1. Influenza

More information

Disclosures. Objectives. Epidemiology. Enterovirus 68. Enterovirus species 9/24/2015. Enterovirus D68: Lessons Learned from the Frontline

Disclosures. Objectives. Epidemiology. Enterovirus 68. Enterovirus species 9/24/2015. Enterovirus D68: Lessons Learned from the Frontline Enterovirus D68: Lessons Learned from the Frontline Disclosures Jennifer Schuster, MD MSCI Children s Mercy Hospital Pediatric Infectious Diseases September 16, 2015 I have nothing to disclose I do not

More information

INFLUENZA (Outbreaks; hospitalized or fatal pediatric cases)

INFLUENZA (Outbreaks; hospitalized or fatal pediatric cases) INFLUENZA (Outbreaks; hospitalized or fatal pediatric cases) 1. Agent: Influenza viruses A, B, and C. Only influenza A and B are of public health concern since they are responsible for epidemics. 2. Identification:

More information

Influenza Season and EV-D68 Update. Johnathan Ledbetter, MPH

Influenza Season and EV-D68 Update. Johnathan Ledbetter, MPH 2014-2015 Influenza Season and EV-D68 Update Johnathan Ledbetter, MPH 2014-2015 Influenza Season Influenza Reporting Individual cases are not reportable in the state of Texas Situations where influenza

More information

Viral Pneumonia in Older Adults

Viral Pneumonia in Older Adults AGING AND INFECTIOUS DISEASE INVITED ARTICLE Kevin P. High, Section Editor Viral Pneumonia in Older Adults Ann R. Falsey and Edward E. Walsh Department of Medicine at Rochester General Hospital, and Department

More information

Influenza Backgrounder

Influenza Backgrounder Influenza Backgrounder Influenza Overview Influenza causes an average of 36,000 deaths and 200,000 hospitalizations in the U.S. every year. 1,2 Combined with pneumonia, influenza is the seventh leading

More information

THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE

THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE The following content is provided for informational purposes only. PREVENTION AND CONTROL OF INFLUENZA Lisa McHugh, MPH Influenza can be a serious

More information

Influenza-Associated Pediatric Mortality rev Jan 2018

Influenza-Associated Pediatric Mortality rev Jan 2018 rev Jan 2018 Infectious Agent Influenza A, B or C virus BASIC EPIDEMIOLOGY Transmission Transmission occurs via droplet spread. After a person infected with influenza coughs, sneezes, or talks, influenza

More information

2009 (Pandemic) H1N1 Influenza Virus

2009 (Pandemic) H1N1 Influenza Virus 2009 (Pandemic) H1N1 Influenza Virus September 15, 2009 Olympia, Washington Anthony A Marfin Washington State Department of Health Goals Understand current situation & pattern of transmission of 2009 H1N1

More information

Human Metapneumovirus

Human Metapneumovirus Article Human Metapneumovirus Jennifer E. Schuster, MD,* John V. Williams, MD* Author Disclosure Dr Schuster has disclosed no financial relationships relevant to this article. Dr Williams has disclosed

More information

Early February Surveillance of severe atypical pneumonia in Hospital Authority in Hong Kong. Initiate contacts in Guangdong

Early February Surveillance of severe atypical pneumonia in Hospital Authority in Hong Kong. Initiate contacts in Guangdong SARS: Aetiology JSM Peiris The University of Hong Kong & Queen Mary Hospital WHO SARS Laboratory Network Hospital Authority and Department of Health, HK Early February 2003 Surveillance of severe atypical

More information

Chapter. Severe Acute Respiratory Syndrome (SARS) Outbreak in a University Hospital in Hong Kong. Epidemiology-University Hospital Experience

Chapter. Severe Acute Respiratory Syndrome (SARS) Outbreak in a University Hospital in Hong Kong. Epidemiology-University Hospital Experience content Chapter Severe Acute Respiratory Syndrome (SARS) Outbreak in a University Hospital in Hong Kong 3 Nelson Lee, Joseph JY Sung Epidemiology-University Hospital Experience Diagnosis of SARS Clinical

More information

Human Metapneumovirus: A New Player among Respiratory Viruses

Human Metapneumovirus: A New Player among Respiratory Viruses INVITED ARTICLE EMERGING INFECTIONS Larry J. Strausbaugh, Section Editor Human Metapneumovirus: A New Player among Respiratory Viruses Marie-Ève Hamelin, Yacine Abed, and Guy Boivin Research Center in

More information

Table 1: Summary of Texas Influenza (Flu) and Influenza-like Illness (ILI) Activity for the Current Week Texas Surveillance Component

Table 1: Summary of Texas Influenza (Flu) and Influenza-like Illness (ILI) Activity for the Current Week Texas Surveillance Component Texas Surveillance Report 2017 2018 Season/2018 MMWR Week 03 (Jan. 14, 2018 Jan. 20, 2018) Report produced on 1/27/2018 Summary activity remains high across the state of Texas. Compared to the previous

More information

10/6/2014. INFLUENZA: Why Should We Take The Vaccine? OUTLINE INFLUNZA VIRUS INFLUENZA VIRUS INFLUENZA VIRUS

10/6/2014. INFLUENZA: Why Should We Take The Vaccine? OUTLINE INFLUNZA VIRUS INFLUENZA VIRUS INFLUENZA VIRUS INFLUENZA: Why Should We Take The Vaccine? Baptist Hospital Baptist Children s Hospital Doctors Hospital J. Milton Gaviria, MD, FACP October 17, 2014 Homestead Hospital Mariners Hospital Baptist Cardiac

More information

Downloaded from:

Downloaded from: Muller-Pebody, B; Crowcroft, NS; Zambon, MC; Edmunds, WJ (2006) Modelling hospital admissions for lower respiratory tract infections in the elderly in England. Epidemiology and infection, 134 (6). pp.

More information

RSV Surveillance in the U.S.

RSV Surveillance in the U.S. RSV Surveillance in the U.S. Susan I. Gerber, MD Respiratory Virus Program Division of Viral Diseases National Center for Immunization and Respiratory Diseases Centers for Disease Control and Prevention

More information

Respiratory Syncytial Virus. Respiratory Syncytial Virus. Parainfluenza virus. Acute Respiratory Infections II. Most Important Respiratory Pathogens

Respiratory Syncytial Virus. Respiratory Syncytial Virus. Parainfluenza virus. Acute Respiratory Infections II. Most Important Respiratory Pathogens Acute Respiratory Infections II Most Important Respiratory Pathogens From microbes.historique.net/images An Introduction to One Health Problem Solving PHC 6006 Gregory C. Gray, MD, MPH, FIDSA Professor,

More information

Microbiology Laboratory Directors, Infection Preventionists, Primary Care Providers, Emergency Department Directors, Infectious Disease Physicians

Microbiology Laboratory Directors, Infection Preventionists, Primary Care Providers, Emergency Department Directors, Infectious Disease Physicians MEMORANDUM DATE: October 1, 2009 TO: FROM: SUBJECT: Microbiology Laboratory Directors, Infection Preventionists, Primary Care Providers, Emergency Department Directors, Infectious Disease Physicians Michael

More information

Respiratory virus associated communityacquired pneumonia in Western Australian Children: case-control study

Respiratory virus associated communityacquired pneumonia in Western Australian Children: case-control study Respiratory virus associated communityacquired pneumonia in Western Australian Children: case-control study Mejbah Bhuiyan PhD Candidate, School of Paediatrics and Child Health The University of Western

More information

Malik Sallam. Ola AL-juneidi. Ammar Ramadan. 0 P a g e

Malik Sallam. Ola AL-juneidi. Ammar Ramadan. 0 P a g e 1 Malik Sallam Ola AL-juneidi Ammar Ramadan 0 P a g e Today's lecture will be about viral upper respiratory tract infections. Those include: common cold, sinusitis, otitis, etc. Infections in the upper

More information

Coronaviruses cause acute, mild upper respiratory infection (common cold).

Coronaviruses cause acute, mild upper respiratory infection (common cold). Coronaviruses David A. J. Tyrrell Steven H. Myint GENERAL CONCEPTS Clinical Presentation Coronaviruses cause acute, mild upper respiratory infection (common cold). Structure Spherical or pleomorphic enveloped

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 11: Mar 10-16, 2019

Tarrant County Influenza Surveillance Weekly Report CDC Week 11: Mar 10-16, 2019 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 11: Mar 10-16, 2019 Influenza Activity Code: County and State Levels Tarrant

More information

ORIGINAL ARTICLE /j x. Laboratory Microbiology, Onze Lieve Vrouw Ziekenhuis,

ORIGINAL ARTICLE /j x. Laboratory Microbiology, Onze Lieve Vrouw Ziekenhuis, ORIGINAL ARTICLE 10.1111/j.1469-0691.2007.01682.x Use of a multiplex real-time PCR to study the incidence of human metapneumovirus and human respiratory syncytial virus infections during two winter seasons

More information

INFLUENZA VACCINATION AND MANAGEMENT SUMMARY

INFLUENZA VACCINATION AND MANAGEMENT SUMMARY INFLUENZA VACCINATION AND MANAGEMENT SUMMARY Morbidity and mortality related to influenza occur at a higher rate in people over 65 and those with underlying chronic medical conditions. Annual influenza

More information

MolDX: Multiplex Nucleic Acid Amplified Tests for Respiratory Viral Panels

MolDX: Multiplex Nucleic Acid Amplified Tests for Respiratory Viral Panels MolDX: Multiplex Nucleic Acid Amplified Tests for Respiratory Viral Panels CMS Policy for Iowa, Kansas, Missouri, and Nebraska Local policies are determined by the performing test location. This is determined

More information

Upper Respiratory Infections. Mehreen Arshad, MD Assistant Professor Pediatric Infectious Diseases Duke University

Upper Respiratory Infections. Mehreen Arshad, MD Assistant Professor Pediatric Infectious Diseases Duke University Upper Respiratory Infections Mehreen Arshad, MD Assistant Professor Pediatric Infectious Diseases Duke University Disclosures None Objectives Know the common age- and season-specific causes of pharyngitis

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 2-8, 2014

Tarrant County Influenza Surveillance Weekly Report CDC Week 10: March 2-8, 2014 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 10: March 2-8, 2014 Influenza Activity Code, County and State Levels Tarrant

More information

Washoe County Health District Influenza Surveillance Program Final Hospitalization & Death Data

Washoe County Health District Influenza Surveillance Program Final Hospitalization & Death Data Washoe County Health District 2017-2018 Influenza Surveillance Program Final Hospitalization & Death Data Date: Monday, September 17, 2018 Overview of Hospitalized Cases, 2017-18 Influenza Surveillance

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 2-8, 2014

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 2-8, 2014 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 06: February 2-8, 2014 Influenza Activity Code, County and State Levels

More information

3. Rapidly recognize influenza seasons in which the impact of influenza appears to be unusually severe among children.

3. Rapidly recognize influenza seasons in which the impact of influenza appears to be unusually severe among children. 07-ID-14 Committee: Title: Infectious Disease Influenza-Associated Pediatric Mortality Statement of the Problem: In 2004, CSTE adopted influenza-associated pediatric mortality reporting with a provision

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم - 1 - - - 1 P a g e بسم هللا الرحمن الرحيم This sheet was made from record section 1 all information are included - Introduction Our respiratory tract is divided anatomically to upper (URT),middle and

More information

Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance

Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance Human infection with pandemic (H1N1) 2009 virus: updated interim WHO guidance on global surveillance 10 July 2009 Background This document updates the interim WHO guidance on global surveillance of pandemic

More information

Appendix B: Provincial Case Definitions for Reportable Diseases

Appendix B: Provincial Case Definitions for Reportable Diseases Infectious Diseases Protocol Appendix B: Provincial Case Definitions for Reportable Diseases Disease: Influenza Revised December 2014 Influenza 1.0 Provincial Reporting Confirmed cases of disease 2.0 Type

More information

Vaccines in the Pipeline: Norovirus and Respiratory Syncytial Virus (RSV)

Vaccines in the Pipeline: Norovirus and Respiratory Syncytial Virus (RSV) National Center for Immunization & Respiratory Diseases Vaccines in the Pipeline: Norovirus and Respiratory Syncytial Virus (RSV) Aron J. Hall, DVM, MSPH, Dipl ACVPM (RSV slides courtesy of Sue Gerber,

More information

Winter Respiratory Viruses and Health Care Use: A Population-Based Study in the Northwest United States

Winter Respiratory Viruses and Health Care Use: A Population-Based Study in the Northwest United States MAJOR ARTICLE Winter Respiratory Viruses and Health Care Use: A Population-Based Study in the Northwest United States Kathleen M. Neuzil, 1,3 Charles Maynard, 2,4 Marie R. Griffin, 5 and Patrick Heagerty

More information

point-of-care test (POCT) Definition: an analytical or diagnostic test undertaken in a setting distinct from a normal hospital or non-hospital

point-of-care test (POCT) Definition: an analytical or diagnostic test undertaken in a setting distinct from a normal hospital or non-hospital point-of-care test (POCT) Definition: an analytical or diagnostic test undertaken in a setting distinct from a normal hospital or non-hospital laboratory performed by a health care professional or non-medical

More information

INFLUENZA AND OTHER RESPIRATORY VIRUSES

INFLUENZA AND OTHER RESPIRATORY VIRUSES INFLUENZA AND OTHER RESPIRATORY VIRUSES Lung Foundation Australia Patient Seminar 21 st October 2017 Lynette Reid Respiratory Clinical Nurse Specialist, RHH What is influenza (the flu )? Influenza (flu)

More information

Surveillance of influenza in Northern Ireland

Surveillance of influenza in Northern Ireland Surveillance of influenza in Northern Ireland 2011-2012 Summary: The influenza season started later than normal, clinical indices began to increase marginally in mid-february, much later than previous

More information

Weekly Influenza & Respiratory Activity: Statistics Summary

Weekly Influenza & Respiratory Activity: Statistics Summary Weekly Influenza & Respiratory Activity: Statistics Summary 2011-12 updated 7/12/12 Influenza Activity in Minnesota Summary of the 2011-12 Season Since the start of the influenza season, 552 people were

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Jain S, Kamimoto L, Bramley AM, et al. Hospitalized patients

More information

Weekly Influenza Activity: Statistics Summary

Weekly Influenza Activity: Statistics Summary Weekly Influenza Activity: Statistics Summary 2010-11 updated 9/9/11 Summary of the 2010-11 Influenza Season Since the start of the influenza season, 215 schools reported outbreaks of ILI. Influenza Activity

More information

Seasonal Influenza in Alberta 2010/2011 Summary Report

Seasonal Influenza in Alberta 2010/2011 Summary Report Seasonal Influenza in Alberta 21/211 Summary Report Government of Alberta October 211 ISSN 1927-4114, Surveillance and Assessment Branch Send inquiries to: Health.Surveillance@gov.ab.ca Executive Summary

More information

Surveillance of Influenza in Northern Ireland

Surveillance of Influenza in Northern Ireland Surveillance of Influenza in Northern Ireland 2016 2017 Contents Summary... 1 Introduction... 3 Enhanced influenza surveillance systems... 3 In-hours Sentinel GP Practice surveillance... 3 GP Out-of-Hours

More information

an inflammation of the bronchial tubes

an inflammation of the bronchial tubes BRONCHITIS DEFINITION Bronchitis is an inflammation of the bronchial tubes (or bronchi), which are the air passages that extend from the trachea into the small airways and alveoli. Triggers may be infectious

More information

Guidance for Influenza in Long-Term Care Facilities

Guidance for Influenza in Long-Term Care Facilities Guidance for Influenza in Long-Term Care Facilities DSHS Region 2/3 Epidemiology Team January 2018 1. Introduction Every year, the flu affects people around the world, regardless of age. However, residents

More information

Human metapneumovirus (hmpv) and parainfluenza virus 3 (PIV3) vaccine (mrna-1653)

Human metapneumovirus (hmpv) and parainfluenza virus 3 (PIV3) vaccine (mrna-1653) Human metapneumovirus (hmpv) and parainfluenza virus 3 (PIV3) vaccine (mrna-1653) Conference Call February 12, 2019 Flu H10N8 H7N9 Prophylactic vaccines RSV VZV CMV hmpv+piv3 Chikungunya VLP Zika VLP Cancer

More information

Incidence and viral aetiologies of acute respiratory illnesses (ARIs) in the United States: a population-based study

Incidence and viral aetiologies of acute respiratory illnesses (ARIs) in the United States: a population-based study Epidemiol. Infect. (2016), 144, 2077 2086. Cambridge University Press 2016 doi:10.1017/s0950268816000315 Incidence and viral aetiologies of acute respiratory illnesses (ARIs) in the United States: a population-based

More information

COPD exacerbation. Dr. med. Frank Rassouli

COPD exacerbation. Dr. med. Frank Rassouli Definition according to GOLD report: - «An acute event - characterized by a worsening of the patients respiratory symptoms - that is beyond normal day-to-day variations - and leads to a change in medication»

More information

Syncytial Virus. Surveillance: A. Respiratory (RSV) New Initiative for NM

Syncytial Virus. Surveillance: A. Respiratory (RSV) New Initiative for NM Respiratory Syncytial Virus (RSV) Surveillance: A New Initiative for NM Sarah Shrum, MPH EIP Surveillance Officer, NMDOH EIP Day Conference September 23 rd, 2016 Objectives 1. Describe basic virology,

More information

HPS Weekly National Seasonal Respiratory Report

HPS Weekly National Seasonal Respiratory Report HPS Weekly National Seasonal Respiratory Report Week ending 14 January 218 week 2 1 Overall assessment In week 2, the overall assessment remains amber (moderate season activity). The rate of change in

More information

Surveillance of influenza in Northern Ireland

Surveillance of influenza in Northern Ireland Surveillance of influenza in Northern Ireland 2012 2013 Contents Summary... 1 Introduction... 2 Sources of data... 2 Sentinel GP surveillance... 2 Out-of-Hours Centres... 2 Virological surveillance...

More information

From the Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis.

From the Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis. Epidemiologic Analysis of Respiratory Viral Infections Mainly in Hospitalized Children and Adults in a Midwest University Medical Center After the Implementation of a 14-Virus Multiplex Nucleic Acid Amplification

More information

Antimicrobial Stewardship in Community Acquired Pneumonia

Antimicrobial Stewardship in Community Acquired Pneumonia Antimicrobial Stewardship in Community Acquired Pneumonia Medicine Review Course 2018 Dr Lee Tau Hong Consultant Department of Infectious Diseases National Centre for Infectious Diseases Scope 1. Diagnosis

More information

Chapter 10 Respiratory System J00-J99. Presented by: Jesicca Andrews

Chapter 10 Respiratory System J00-J99. Presented by: Jesicca Andrews Chapter 10 Respiratory System J00-J99 Presented by: Jesicca Andrews 1 Respiratory System 2 Respiratory Infections A respiratory infection cannot be assumed from a laboratory report alone; physician concurrence

More information

MASSACHUSETTS DEPARTMENT OF PUBLIC HEALTH WEEKLY INFLUENZA UPDATE January 4, 2019

MASSACHUSETTS DEPARTMENT OF PUBLIC HEALTH WEEKLY INFLUENZA UPDATE January 4, 2019 MASSACHUSETTS DEPARTMENT OF PUBLIC HEALTH WEEKLY INFLUENZA UPDATE January 4, 2019 All data in this report are preliminary and subject to change as more information is received. Sentinel Provider Surveillance:

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 51: Dec 17-23, 2017

Tarrant County Influenza Surveillance Weekly Report CDC Week 51: Dec 17-23, 2017 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 51: Dec 17-23, 2017 Influenza Activity Code: County and State Levels Tarrant

More information

HPS Monthly National Seasonal Respiratory Report

HPS Monthly National Seasonal Respiratory Report HPS Monthly National Seasonal Respiratory Report Week ending 18 March 218 week 11 1 Overall assessment In week 11, the overall assessment remains green (below baseline activity). GP consultation rate for

More information

URIs and Pneumonia. Elena Bissell, MD 10/16/2013

URIs and Pneumonia. Elena Bissell, MD 10/16/2013 URIs and Pneumonia Elena Bissell, MD 10/16/2013 Objectives Recognize and treat community acquired PNA in children/adults Discern between inpatient and outpatient treatment of PNA Recognize special populations/cases

More information

Seasonal Influenza. Provider Information Sheet. Infectious Disease Epidemiology Program

Seasonal Influenza. Provider Information Sheet. Infectious Disease Epidemiology Program August 2007 te: This sheet contains information on seasonal influenza. For information on avian or pandemic influenza, contact the (800-423-1271 or 304-558-5358). What is influenza-like illness (ILI)?

More information

Screening (and Diagnosis) of 15 Respiratory Viruses Using NAAT

Screening (and Diagnosis) of 15 Respiratory Viruses Using NAAT Screening (and Diagnosis) of 15 Respiratory Viruses Using NAAT April 2013 DISCLAIMER: This document was originally drafted in French by the Institut national d'excellence en santé et en services sociaux

More information

Of Camels, Bats and Coronaviruses: the (beginning of the) story of MERS-CoV

Of Camels, Bats and Coronaviruses: the (beginning of the) story of MERS-CoV Of Camels, Bats and Coronaviruses: the (beginning of the) story of MERS-CoV Allison McGeer, MSc, MD, FRCPC Mount Sinai Hospital University of Toronto Objectives Discuss the epidemiology, clinical presentation,

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 02: January 08 14, 2012

Tarrant County Influenza Surveillance Weekly Report CDC Week 02: January 08 14, 2012 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report CDC Week 02: January 08 14, 2012 Influenza Activity Code, County and State

More information

Polymicrobial respiratory tract infections in a hospital-based pediatric population, with particular emphasis on the role of human rhinoviruses

Polymicrobial respiratory tract infections in a hospital-based pediatric population, with particular emphasis on the role of human rhinoviruses University of Iowa Iowa Research Online Theses and Dissertations Fall 2010 Polymicrobial respiratory tract infections in a hospital-based pediatric population, with particular emphasis on the role of human

More information

SARS and the Clinical Laboratory

SARS and the Clinical Laboratory SARS and the Clinical Laboratory Susan M. Poutanen, MD, MPH, FRCPC Microbiologist, Toronto Medical Labs & Mount Sinai Hosp. Infect. Dis. Clinician, University Health Network & Mount Sinai Hosp. Assistant

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 4: Jan 21-27, 2018

Tarrant County Influenza Surveillance Weekly Report CDC Week 4: Jan 21-27, 2018 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 4: Jan 21-27, 2018 Influenza Activity Code: County and State Levels Tarrant

More information

Pneumococcal Vaccine in Children: current situation

Pneumococcal Vaccine in Children: current situation Pneumococcal Vaccine in Children: current situation LAU Yu Lung Chair Professor of Paediatrics Doris Zimmern Professor in Community Child Health LKS Faculty of Medicine, The University of Hong Kong Chairman

More information

NCCID RAPID REVIEW. 1. What are the case definitions and guidelines for surveillance and reporting purposes?

NCCID RAPID REVIEW. 1. What are the case definitions and guidelines for surveillance and reporting purposes? NCCID RAPID REVIEW 1. What are the case definitions and guidelines for surveillance and reporting purposes? Middle East Respiratory Syndrome Coronavirus: Ten Questions and Answers for Canadian Public Health

More information

Respiratory Multiplex Array. Rapid, simultaneous detection of 22 bacterial and viral pathogens of the upper and lower respiratory tract

Respiratory Multiplex Array. Rapid, simultaneous detection of 22 bacterial and viral pathogens of the upper and lower respiratory tract Rapid, simultaneous detection of 22 bacterial and viral pathogens of the upper and lower respiratory tract Rapid, simultaneous detection of 22 bacterial and viral pathogens within the upper and lower respiratory

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2018

Tarrant County Influenza Surveillance Weekly Report CDC Week 17: April 22-28, 2018 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report 17: April 22-28, 2018 Influenza Activity Code: County and State Levels Tarrant

More information

Laboratory Diagnosis of Viral Infections affect the Lower Respiratory Tract. M Parsania, Ph.D. Tehran Medical Branch, Islamic Azad University

Laboratory Diagnosis of Viral Infections affect the Lower Respiratory Tract. M Parsania, Ph.D. Tehran Medical Branch, Islamic Azad University Laboratory Diagnosis of Viral Infections affect the Lower Respiratory Tract M Parsania, Ph.D. Tehran Medical Branch, Islamic Azad University Overview of viral infections affect the lower respiratory tract

More information

TRENDS IN PNEUMONIA AND INFLUENZA MORBIDITY AND MORTALITY

TRENDS IN PNEUMONIA AND INFLUENZA MORBIDITY AND MORTALITY TRENDS IN PNEUMONIA AND INFLUENZA MORBIDITY AND MORTALITY AMERICAN LUNG ASSOCIATION RESEARCH AND PROGRAM SERVICES EPIDEMIOLOGY AND STATISTICS UNIT February 2006 TABLE OF CONTENTS Trends in Pneumonia and

More information

Next report date: May 27 (May 8 21)

Next report date: May 27 (May 8 21) Manitoba Health, Healthy Living and Seniors (MHHLS) Influenza Surveillance `Week 215 216 53: Dec 28, 214 Jan 3, 215 Week 17 & 18 (Apr.24 May 7, 216) Data extracted May 13, 216 at 11: am Next report date:

More information

Human Coronavirus in the 2014 Winter Season as a Cause of Lower Respiratory Tract Infection

Human Coronavirus in the 2014 Winter Season as a Cause of Lower Respiratory Tract Infection Original Article Yonsei Med J 2017 Jan;58(1):174-179 pissn: 0513-5796 eissn: 1976-2437 Human Coronavirus in the 2014 Winter Season as a Cause of Lower Respiratory Tract Infection Kyu Yeun Kim 1, Song Yi

More information

Upper...and Lower Respiratory Tract Infections

Upper...and Lower Respiratory Tract Infections Upper...and Lower Respiratory Tract Infections Robin Jump, MD, PhD Cleveland Geriatric Research Education and Clinical Center (GRECC) Louis Stokes Cleveland VA Medical Center Case Western Reserve University

More information

Manitoba Health, Healthy Living and Seniors (MHHLS) Week 9 (Feb.28 Mar.5, 2016) == Severe outcomes associated with. == Cases and cumulative incidence

Manitoba Health, Healthy Living and Seniors (MHHLS) Week 9 (Feb.28 Mar.5, 2016) == Severe outcomes associated with. == Cases and cumulative incidence Manitoba Health, Healthy Living and Seniors (MHHLS) Influenza Surveillance `Week 215 216 53: Dec 28, 214 Jan 3, 215 Week 9 (Feb.28 Mar.5, 216) Data extracted Mar. 11, 216 at 11: am Laboratory-confirmed

More information

Oregon s Weekly Surveillance Report for Influenza and other Respiratory Viruses

Oregon s Weekly Surveillance Report for Influenza and other Respiratory Viruses FLU BITES Oregon s Weekly Surveillance Report for Influenza and other Respiratory Viruses Summary Published May 6, 2011 The level of influenza-like illness (ILI) detected by Oregon s outpatient ILI network

More information

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 05 11, 2012

Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 05 11, 2012 Tarrant County Public Health Division of Epidemiology and Health Information Tarrant County Influenza Surveillance Weekly Report CDC Week 06: February 05 11, 2012 Influenza Activity Code, County and State

More information

Influenza A (H1N1)pdm09 in Minnesota Epidemiology

Influenza A (H1N1)pdm09 in Minnesota Epidemiology Influenza A (H1N1)pdm09 in Minnesota Epidemiology Infectious Disease Epidemiology, Prevention and Control Division PO Box 64975 St. Paul, MN 55164-0975 Number of Influenza Hospitalizations by Influenza

More information

Influenza 2009: Not Yet The Perfect Storm

Influenza 2009: Not Yet The Perfect Storm Influenza 2009: Not Yet The Perfect Storm What s needed for a pandemic strain? Novel virus (little to no immunity) Capable of causing disease in humans Highly pathogenic / virulent Capable of sustained

More information

NVRL. Summary Report of Influenza Season 2003/2004. Report produced: 28 th September 2004

NVRL. Summary Report of Influenza Season 2003/2004. Report produced: 28 th September 2004 Summary Report of Influenza Season 23/24 NVRL Report produced: 28 th September 24 This report is produced in collaboration with the Departments of Public Health Summary Report of Influenza Season 23/24

More information

Respiratory System. Respiratory System Overview. Component 3/Unit 11. Health IT Workforce Curriculum Version 2.0/Spring 2011

Respiratory System. Respiratory System Overview. Component 3/Unit 11. Health IT Workforce Curriculum Version 2.0/Spring 2011 Component 3-Terminology in Healthcare and Public Health Settings Unit 11-Respiratory System This material was developed by The University of Alabama at Birmingham, funded by the Department of Health and

More information

Upper Respiratory Tract Infections

Upper Respiratory Tract Infections Upper Respiratory Tract Infections OTITIS MEDIA Otitis media is an inflammation of the middle ear. There are more than 709 million cases of otitis media worldwide each year; half of these cases occur in

More information