Ganglioside GT1b Is a Putative Host Cell Receptor for the Merkel Cell Polyomavirus

Size: px
Start display at page:

Download "Ganglioside GT1b Is a Putative Host Cell Receptor for the Merkel Cell Polyomavirus"

Transcription

1 JOURNAL OF VIROLOGY, Oct. 2009, p Vol. 83, No X/09/$ doi: /jvi Copyright 2009, American Society for Microbiology. All Rights Reserved. Ganglioside GT1b Is a Putative Host Cell Receptor for the Merkel Cell Polyomavirus Kimberly D. Erickson, 1 Robert L. Garcea, 1 * and Billy Tsai 2 * Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 347 UCB, Boulder, Colorado 80309, 1 and Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, Michigan Received 13 May 2009/Accepted 9 July 2009 The Merkel cell polyomavirus (MCPyV) was identified recently in human Merkel cell carcinomas, an aggressive neuroendocrine skin cancer. Here, we identify a putative host cell receptor for MCPyV. We found that recombinant MCPyV VP1 pentameric capsomeres both hemagglutinated sheep red blood cells and interacted with ganglioside GT1b in a sucrose gradient flotation assay. Structural differences between the analyzed gangliosides suggest that MCPyV VP1 likely interacts with sialic acids on both branches of the GT1b carbohydrate chain. Identification of a potential host cell receptor for MCPyV will aid in the elucidation of its entry mechanism and pathophysiology. Members of the polyomavirus (PyV) family, including simian virus 40 (SV40), murine PyV (mpyv), and BK virus (BKV), bind cell surface gangliosides to initiate infection (2, 8, 11, 15). PyV capsids are assembled from 72 pentamers (capsomeres) of the major coat protein VP1, with the internal proteins VP2 and VP3 buried within the capsids (7, 12). The VP1 pentamer makes direct contact with the carbohydrate portion of the ganglioside (10, 12, 13) and dictates the specificity of virus interaction with the cell. Gangliosides are glycolipids that contain a ceramide domain inserted into the plasma membrane and a carbohydrate domain that directly binds the virus. Specifically, SV40 binds to ganglioside GM1 (2, 10, 15), mpyv binds to gangliosides GD1a and GT1b (11, 15), and BKV binds to gangliosides GD1b and GT1b (8). Recently, a new human PyV designated Merkel cell PyV (MCPyV) was identified in Merkel cell carcinomas, a rare but aggressive skin cancer of neuroendocrine origin (3). It is as yet unclear whether MCPyV is the causative agent of Merkel cell carcinomas (17). A key to understanding the infectious and transforming properties of MCPyV is the elucidation of its cellular entry pathway. In this study, we identify a putative host cell receptor for MCPyV. Because an intact infectious MCPyV has not yet been isolated, we generated recombinant MCPyV VP1 pentamers in order to characterize cellular factors that bind to MCPyV. VP1 capsomeres have been previously shown to be equivalent to virus with respect to hemagglutination properties (4, 16), and the atomic structure of VP1 bound to sialyllactose has demonstrated that the capsomere is sufficient for this interaction (12, 13). The MCPyV VP1 protein (strain w162) was expressed * Corresponding author. Mailing address for R. L. Garcea: Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 347 UCB, Boulder, CO Phone: (303) Fax: (303) robert.garcea@colorado.edu. Mailing address for B. Tsai: Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 3043, Ann Arbor, MI Phone: (734) Fax: (734) btsai@umich.edu. Published ahead of print on 15 July and purified as described previously (1, 6). Briefly, a glutathione S-transferase-MCPyV VP1 fusion protein was expressed in Escherichia coli and purified using glutathione-sepharose affinity chromatography. The fusion protein was eluted using glutathione and cleaved in solution with thrombin. The thrombin-cleaved sample was then rechromatographed on a second glutathione-sepharose column to remove glutathione transferase and any uncleaved protein. The unbound VP1 was then chromatographed on a P-11 phosphocellulose column, and peak fractions eluting between 400 and 450 mm NaCl were collected. The purified protein was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by Coomassie blue staining (Fig. 1A, left) and immunoblotting using an antibody (I58) that generally recognizes PyV VP1 proteins (Fig. 1A, right) (9). Transmission electron microscopy (Philips CM10) analysis confirmed that the purified recombinant MCPyV VP1 formed pentamers (capsomeres), which did not assemble further into virus-like particles (Fig. 1B). In an initial screening of its cell binding properties, we tested whether the MCPyV VP1 pentamers hemagglutinated red blood cells (RBCs). The MCPyV VP1 pentamers were incubated with sheep RBCs and assayed as previously described (5). SV40 and mpyv recombinant VP1 pentamers served as negative and positive controls, respectively. We found that MCPyV VP1 hemagglutinated the RBCs with the same efficiency as mpyv VP1 (protein concentration/hemagglutination unit) (Fig. 1C, compare rows B and C from wells 1 to 11), suggesting that MCPyV VP1 engages a plasma membrane receptor on the RBCs. The recombinant murine VP1 protein used for comparison was from the RA strain, a small plaque virus (4). Thus, MCPyV VP1 has the hemagglutination characteristics of a small plaque mpyv (12, 13). To characterize the chemical nature of the putative receptor for MCPyV, total membranes from RBCs were purified as described previously (15). The plasma membranes (30 g) were incubated with MCPyV VP1 (0.5 g) and floated on a discontinuous sucrose gradient (15). After fractionation, the samples were analyzed by SDS-PAGE, followed by immunoblotting with I58. VP1 was found in the bottom of the gradient 10275

2 10276 NOTES J. VIROL. FIG. 1. Characterization of MCPyV VP1. Recombinant MCPyV VP1 forms pentamers and hemagglutinates sheep RBCs. (A) Coomassie blue-stained SDS-PAGE and an immunoblot of the purified recombinant MCPyV VP1 protein are shown. Molecular mass markers are indicated. (B) Electron micrograph of the purified MCPyV VP1. MCPyV VP1 (shown in panel A) was diluted to 100 g/ml and absorbed onto Formvar/ carbon-coated copper grids. Samples were washed with phosphate-buffered saline, stained with 1% uranyl acetate, and visualized by transmission electron microscopy at 80 kv. Bar 20 nm. (C) Sheep RBCs (0.5%) were incubated with decreasing concentrations of purified recombinant SV40 VP1 (row A), mpyv VP1 (row B), and MCPyV VP1 (row C). Wells 1 to 11 contain twofold serial dilutions of protein, starting at 2 g/ml (well 1). Well 12 contains buffer only and serves as a negative control. Well 7 (rows B and C) corresponds to 128 hemagglutination units per 2 g/ml VP1 protein. in the absence of the plasma membranes (Fig. 2A, first panel). In the presence of plasma membranes, a fraction of the VP1 floated to the middle of the gradient (Fig. 2A, second panel), supporting the hemagglutination results that suggested that MCPyV VP1 binds to a receptor on the plasma membrane. To determine whether the receptor is a protein or a lipid, plasma membrane preparations (30 g) were incubated with proteinase K (Sigma), followed by analysis with SDS-PAGE and Coomassie blue staining. Under these conditions, the majority of the proteins in the plasma membranes were degraded by the protease (Fig. 2B, compare lanes 1 and 2). Despite the lack of proteins, the proteinase K-treated plasma membranes bound MCPyV VP1 as efficiently as control plasma membranes (Fig. 2A, compare the second and third panels), demonstrating that MCPyV VP1 interacts with a protease-resistant receptor. The absence of VP1 in the bottom fraction in Fig. 2A (third panel) is consistent with the fact that the buoyant density of the membranes is lowered by proteolysis. Of note, a similar result was seen with binding of the mpyv to the plasma membrane (15). Binding of MCPyV to the cell surface of two human tissue culture cells (i.e., HeLa and 293T) was also largely unaffected by pretreatment of the cells with proteinase K (Fig. 2C and D, compare lanes 1 and 2), further indicating that a nonproteinaceous molecule on the plasma membrane engages the virus. We next determined whether the protease-resistant receptor contains a sialic acid modification. Plasma membranes (10 g) were incubated with a neuraminidase ( 2-3,6,8 neuraminidase; Calbiochem) to remove the sialic acid groups. In contrast to the control plasma membranes, the neuraminidase-treated membranes did not bind MCPyV VP1 (Fig. 2E, compare first and second panels), indicating that the MCPyV receptor includes a sialic acid modification. Gangliosides are lipids that contain sialic acid modifications. We asked if MCPyV VP1 binds to gangliosides similar to other PyV family members. The structures of the gangliosides used in this analysis (gangliosides GM1, GD1a, GD1b, and GT1b) are depicted in Fig. 3A. To assess a possible ganglioside-vp1 interaction, we employed a liposome flotation assay established previously (15). When liposomes (consisting of phosphatidyl-choline [19 l of 10 mg/ml], -ethanolamine [5 l of10 mg/ml], -serine [1 l of 10 mg/ml], and -inositol [3 l of10 mg/ml]) were incubated with MCPyV VP1 and subjected to the sucrose flotation assay, the VP1 remained in the bottom fraction (Fig. 3B, first panel), indicating that VP1 does not interact with these phospholipids. However, when liposomes containing GT1b (1 l of 1 mm), but not GM1 (1 l of 1 mm) or GD1a (1 l of 1 mm), were incubated with MCPyV VP1, the vesicles bound this VP1 (Fig. 3B). A low level of virus floated partially when incubated with liposomes containing GD1b

3 VOL. 83, 2009 NOTES FIG. 2. MCPyV VP1 binds to a protease-resistant, sialic acid-containing receptor on the plasma membrane. (A) Purified recombinant MCPyV VP1 was incubated with or without the indicated plasma membranes. The samples were floated in a discontinuous sucrose gradient, and the fractions were collected from the top of the gradient, subjected to SDS-PAGE, and immunoblotted with the anti-vp1 antibody I58. (B) Control and proteinase K-treated plasma membranes were subjected to SDS-PAGE, followed by Coomassie blue staining. (C) HeLa cells treated with proteinase K (4 g/ml) were incubated with MCPyV at 4 C, and the resulting cell lysate was probed for the presence of MCPyV VP1. (D) As described in the legend to panel C, except 293T cells were used. (E) Purified MCPyV VP1 was incubated with plasma membranes pretreated with or without 2-3,6,8 neuraminidase and analyzed as described in the legend to panel A. (Fig. 3B), perhaps reflecting a weak affinity between MCPyV and GD1b. Importantly, MCPyV binds less efficiently to neuraminidase-treated GT1b-containing liposomes than to GT1bcontaining liposomes (Fig. 3B, sixth panel), suggesting that the GT1b sialic acids are involved in virus binding. This finding is consistent with the ability of neuraminidase to block MCPyV binding to the plasma membrane (Fig. 2E). The level of virus flotation observed in the neuraminidase-treated GT1b-containing liposomes is likely due to the inefficiency of the neuraminidase reaction with a high concentration of GT1b used to prepare the vesicles. As controls, GM1-containing liposomes bound SV40 (Fig. 3C), GD1a-containing liposomes bound mpyv (Fig. 3D), and GD1b-containing liposomes bound BKV (Fig. 3E), demonstrating that the liposomes were functionally intact. We note that, while all of the MCPyV VP1 floated when incubated with liposomes containing GT1b (Fig. 3B, sixth panel), a significant fraction of SV40, mpyv, and BKV VP1 remained in the bottom fraction despite being incubated with liposomes containing their respective ganglioside receptors (Fig. 3C to E, second panels). This result is likely due to the fact that in contrast to MCPyV, which are assembled as pentamers (Fig. 1B), the SV40, mpyv, and BKV used in these experiments are fully assembled particles: their larger and denser nature prevents efficient flotation. Nonetheless, we conclude that MCPyV VP1 binds to ganglioside GT1b efficiently. The observation that GD1a does not bind to MCPyV VP1 suggests that the monosialic acid modification on the right branch of GT1b (Fig. 3A) is insufficient for binding. Similarly, the failure of GD1b to bind MCPyV VP1 suggests that the sialic acid on the left arm of GT1b is necessary for binding. Together, these observations suggest that MCPyV VP1 interacts with sialic acids on both branches of GT1b (Fig. 4). A recent structure of SV40 VP1 in complex with the sugar portion of GM1 (10) demonstrated that although SV40 VP1 binds both branches of GM1 (Fig. 4), only a single sialic acid in GM1 is involved in this interaction. In the case of mpyv, structures of mpyv VP1 in complex with different carbohydrates (12, 13) revealed that the sialic acid-galactose moiety on the left branch of GD1a (and GT1b) is sufficient for mpyv VP1 binding (Fig.

4 10278 NOTES J. VIROL. FIG. 3. MCPyV VP1 binds to ganglioside GT1b. (A) Structures of gangliosides GM1, GD1a, GD1b, and GT1b. The nature of the glycosidic linkages is indicated. (B) Purified MCPyV VP1 protein was incubated with liposomes only or with liposomes containing the indicated gangliosides. The samples were analyzed as described in the legend to Fig. 2A. Where indicated, GT1b-containing liposomes were pretreated with 2-3,6,8 neuraminidase and analyzed subsequently for virus binding. (C to E) The indicated viruses were incubated with liposomes and analyzed as described in the legend to panel B.

5 VOL. 83, 2009 NOTES FIG. 4. A potential model of the different VP1-ganglioside interactions (see the text for discussion). 4). Although no structure of BKV in complex with the sugar portion of GD1b (or GT1b) is available, in vitro binding studies (8) have suggested that the disialic acid modification on the right branch of GD1b (and GT1b) is responsible for binding BKV VP1 (Fig. 4). Thus, it appears that the unique feature of the MCPyV VP1-GT1b interaction is that the sialic acids on both branches of this ganglioside are likely involved in capsid binding. The identification of a potential cellular receptor for MCPyV will facilitate the study of its entry mechanism. An important issue for further study is to determine whether MCPyV targets Merkel cells preferentially, and if so, whether GT1b is found in higher levels in these cells to increase susceptibility. We acknowledge support from NIH grants AI (to B.T.) and CA37667 (to R.L.G.). REFERENCES 1. Bird, G., M. O Donnell, J. Moroianu, and R. L. Garcea Possible role for cellular karyopherins in regulating polyomavirus and papillomavirus capsid assembly. J. Virol. 82: Campanero-Rhodes, M. A., A. Smith, W. Chai, S. Sonnino, L. Mauri, R. A. Childs, Y. Zhang, H. Ewers, A. Helenius, A. Imberty, and T. Feizi N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol. 81: Feng, H., M. Shuda, Y. Chang, and P. S. Moore Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319: Freund, R., R. L. Garcea, R. Sahli, and T. L. Benjamin A single amino acid substitution in polyomavirus VP1 correlates with plaque size and hemagglutination behavior. J. Virol. 65: Garcea, R. L., and T. L. Benjamin Isolation and characterization of polyoma nucleoprotein complexes. Virology 130: Kean, J. M., S. Rao, M. Wang, and R. L. Garcea Seroepidemiology of human polyomaviruses. PLoS Pathog. 5(3):e Liddington, R. C., Y. Yan, J. Moulai, R. Sahli, T. L. Benjamin, and S. C. Harrison Structure of simian virus 40 at 3.8-A resolution. Nature 354: Low, J. A., B. Magnuson, B. Tsai, and M. J. Imperiale Identification of gangliosides GD1b and GT1b as receptors for BK virus. J. Virol. 80: Montross, L., S. Watkins, R. B. Moreland, H. Mamon, D. L. D. Caspar, and R. L. Garcea Nuclear assembly of polyomavirus capsids in insect cells expressing the major capsid protein VP1. J. Virol. 65: Neu, U., K. Woellner, G. Gauglitz, and T. Stehle Structural basis of GM1 ganglioside recognition by simian virus 40. Proc. Natl. Acad. Sci. USA 105: Smith, A. E., H. Lilie, and A. Helenius Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett. 555: Stehle, T., Y. Yan, T. L. Benjamin, and S. C. Harrison Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369: Stehle, T., and S. C. Harrison Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4: Reference deleted. 15. Tsai, B., J. M. Gilbert, T. Stehle, W. Lencer, T. L. Benjamin, and T. A. Rapoport Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22: Zullo, J. N., C. D. Stiles, and R. L. Garcea Induction of c-myc and c-fos by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins. Proc. Natl. Acad. Sci. USA. 84: zur Hausen, H Novel human polyomaviruses re-emergence of a well known virus family as possible human carcinogens. Int. J. Cancer 123:

The protein stoichiometry of viral capsids via tiling theory

The protein stoichiometry of viral capsids via tiling theory The protein stoichiometry of viral capsids via tiling theory REIDUN TWAROCK Centre for Mathematical Science City University Northampton Square, London EC1V 0HB UNITED KINGDOM Abstract: - A vital part of

More information

Polyomavirus Interactions with Host Cell Surface Receptors Mediate Important Steps in Virus Infection: from Signaling to Pathogenesis

Polyomavirus Interactions with Host Cell Surface Receptors Mediate Important Steps in Virus Infection: from Signaling to Pathogenesis University of Colorado, Boulder CU Scholar Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations Molecular, Cellular, and Developmental Biology Spring 1-1-2016 Polyomavirus Interactions

More information

Ultrastructure of Mycoplasmatales Virus laidlawii x

Ultrastructure of Mycoplasmatales Virus laidlawii x J. gen. Virol. (1972), I6, 215-22I Printed in Great Britain 2I 5 Ultrastructure of Mycoplasmatales Virus laidlawii x By JUDY BRUCE, R. N. GOURLAY, AND D. J. GARWES R. HULL* Agricultural Research Council,

More information

Structural vs. nonstructural proteins

Structural vs. nonstructural proteins Why would you want to study proteins associated with viruses or virus infection? Receptors Mechanism of uncoating How is gene expression carried out, exclusively by viral enzymes? Gene expression phases?

More information

Polyomaviridae. Spring

Polyomaviridae. Spring Polyomaviridae Spring 2002 331 Antibody Prevalence for BK & JC Viruses Spring 2002 332 Polyoma Viruses General characteristics Papovaviridae: PA - papilloma; PO - polyoma; VA - vacuolating agent a. 45nm

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Nair S, Branagan AR, Liu J, Boddupalli CS, Mistry PK, Dhodapkar

More information

Recombinant Protein Expression Retroviral system

Recombinant Protein Expression Retroviral system Recombinant Protein Expression Retroviral system Viruses Contains genome DNA or RNA Genome encased in a protein coat or capsid. Some viruses have membrane covering protein coat enveloped virus Ø Essential

More information

Section 6. Junaid Malek, M.D.

Section 6. Junaid Malek, M.D. Section 6 Junaid Malek, M.D. The Golgi and gp160 gp160 transported from ER to the Golgi in coated vesicles These coated vesicles fuse to the cis portion of the Golgi and deposit their cargo in the cisternae

More information

Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles

Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles Quantifying Lipid Contents in Enveloped Virus Particles with Plasmonic Nanoparticles Amin Feizpour Reinhard Lab Department of Chemistry and the Photonics Center, Boston University, Boston, MA May 2014

More information

Attachment and Entry. Lecture 5 Biology W3310/4310 Virology Spring Who hath deceived thee so o-en as thyself? --BENJAMIN FRANKLIN

Attachment and Entry. Lecture 5 Biology W3310/4310 Virology Spring Who hath deceived thee so o-en as thyself? --BENJAMIN FRANKLIN Attachment and Entry Lecture 5 Biology W3310/4310 Virology Spring 2016 Who hath deceived thee so o-en as thyself? --BENJAMIN FRANKLIN Viruses are obligate intracellular parasites Virus particles are too

More information

HIV-1 Virus-like Particle Budding Assay Nathan H Vande Burgt, Luis J Cocka * and Paul Bates

HIV-1 Virus-like Particle Budding Assay Nathan H Vande Burgt, Luis J Cocka * and Paul Bates HIV-1 Virus-like Particle Budding Assay Nathan H Vande Burgt, Luis J Cocka * and Paul Bates Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA

More information

A Chaperone-Activated Nonenveloped Virus Perforates the Physiologically Relevant Endoplasmic Reticulum Membrane

A Chaperone-Activated Nonenveloped Virus Perforates the Physiologically Relevant Endoplasmic Reticulum Membrane JOURNAL OF VIROLOGY, Dec. 2007, p. 12996 13004 Vol. 81, No. 23 0022-538X/07/$08.00 0 doi:10.1128/jvi.01037-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. A Chaperone-Activated

More information

Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich Ascites Tumor Cells

Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich Ascites Tumor Cells Journal of Supramolecular Structure 7:481-487 (1977) Molecular Aspects of Membrane Transport 5 1 1-5 17 Reconstitution of Neutral Amino Acid Transport From Partially Purified Membrane Components From Ehrlich

More information

Received 5 March 1998/Accepted 29 April 1998

Received 5 March 1998/Accepted 29 April 1998 JOURNAL OF VIROLOGY, Aug. 1998, p. 6665 6670 Vol. 72, No. 8 0022-538X/98/$04.00 0 Copyright 1998, American Society for Microbiology. All Rights Reserved. T-Cell-Independent Immunoglobulin G Responses In

More information

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors Translation Questions? 1) How does poliovirus shutoff eukaryotic translation? 2) If eukaryotic messages are not translated how can poliovirus get its message translated? Host Cell Shutoff 1) Initiation

More information

Materials and Methods , The two-hybrid principle.

Materials and Methods , The two-hybrid principle. The enzymatic activity of an unknown protein which cleaves the phosphodiester bond between the tyrosine residue of a viral protein and the 5 terminus of the picornavirus RNA Introduction Every day there

More information

Week 5 Section. Junaid Malek, M.D.

Week 5 Section. Junaid Malek, M.D. Week 5 Section Junaid Malek, M.D. HIV: Anatomy Membrane (partiallystolen from host cell) 2 Glycoproteins (proteins modified by added sugar) 2 copies of RNA Capsid HIV Genome Encodes: Structural Proteins

More information

Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles

Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles Journal of General Virology (5),, 0-. Printed in Great Britain 0 Organization of the major and minor capsid proteins in human papillomavirus type virus-like particles Martin Sapp, l* Christoph Volpers,

More information

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells Journal of Supramolecular Structure 4:441 (401)-447 (407) (1976) TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

More information

Supplementary material: Materials and suppliers

Supplementary material: Materials and suppliers Supplementary material: Materials and suppliers Electrophoresis consumables including tris-glycine, acrylamide, SDS buffer and Coomassie Brilliant Blue G-2 dye (CBB) were purchased from Ameresco (Solon,

More information

hemagglutinin and the neuraminidase genes (RNA/recombinant viruses/polyacrylamide gel electrophoresis/genetics)

hemagglutinin and the neuraminidase genes (RNA/recombinant viruses/polyacrylamide gel electrophoresis/genetics) Proc. Natl. Acad. Sci. USA Vol. 73, No. 6, pp. 242-246, June 976 Microbiology Mapping of the influenza virus genome: Identification of the hemagglutinin and the neuraminidase genes (RNA/recombinant viruses/polyacrylamide

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/4/e1500980/dc1 Supplementary Materials for The crystal structure of human dopamine -hydroxylase at 2.9 Å resolution Trine V. Vendelboe, Pernille Harris, Yuguang

More information

Structural Biology of Membrane Proteins: Are There Any Rules? D.C. Rees Caltech/HHMI NIH Roadmap Meeting

Structural Biology of Membrane Proteins: Are There Any Rules? D.C. Rees Caltech/HHMI NIH Roadmap Meeting Structural Biology of Membrane Proteins: Are There Any Rules? D.C. Rees Caltech/HHMI NIH Roadmap Meeting Are there any rules? no magic bullets (shots on goal) proteins that are polydisperse crystallize

More information

Disul de bonds stabilize JC virus capsid-like structure by protecting calcium ions from chelation

Disul de bonds stabilize JC virus capsid-like structure by protecting calcium ions from chelation FEBS 25012 FEBS Letters 500 (2001) 109^113 Disul de bonds stabilize JC virus capsid-like structure by protecting calcium ions from chelation Pei-Lain Chen a;b, Meilin Wang c, Wei-Chih Ou a, Chong-Kuei

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/6/e1700338/dc1 Supplementary Materials for HIV virions sense plasma membrane heterogeneity for cell entry Sung-Tae Yang, Alex J. B. Kreutzberger, Volker Kiessling,

More information

Figure S1. (A) SDS-PAGE separation of GST-fusion proteins purified from E.coli BL21 strain is shown. An equal amount of GST-tag control, LRRK2 LRR

Figure S1. (A) SDS-PAGE separation of GST-fusion proteins purified from E.coli BL21 strain is shown. An equal amount of GST-tag control, LRRK2 LRR Figure S1. (A) SDS-PAGE separation of GST-fusion proteins purified from E.coli BL21 strain is shown. An equal amount of GST-tag control, LRRK2 LRR and LRRK2 WD40 GST fusion proteins (5 µg) were loaded

More information

Virus Entry/Uncoating

Virus Entry/Uncoating Virus Entry/Uncoating Delivery of genome to inside of a cell Genome must be available for first step of replication The Problem--barriers to infection Virion Barriers: Non-enveloped viruses capsid Enveloped

More information

Supporting Information

Supporting Information Supporting Information Dauvillée et al. 10.1073/pnas.0907424106 Fig. S1. Iodine screening of the C. cohnii mutant bank. Each single colony was grown on rich-medium agar plates then vaporized with iodine.

More information

Table S1. Sequence of human and mouse primers used for RT-qPCR measurements.

Table S1. Sequence of human and mouse primers used for RT-qPCR measurements. Table S1. Sequence of human and mouse primers used for RT-qPCR measurements. Ca9, carbonic anhydrase IX; Ndrg1, N-myc downstream regulated gene 1; L28, ribosomal protein L28; Hif1a, hypoxia inducible factor

More information

Metal Chelate Affinity Chromatography

Metal Chelate Affinity Chromatography Metal Chelate Affinity Chromatography Experimental The following steps can be performed as standard conditions for metal chelate affinity chromatography. Fractogel EMD chelate is packed into a column with

More information

University of Groningen

University of Groningen University of Groningen Mechanisms of Hemagglutinin Targeted Influenza Virus Neutralization Brandenburg, Boerries; Koudstaal, Wouter; Goudsmit, Jaap; Klaren, Vincent; Tang, Chan; Bujny, Miriam V.; Korse,

More information

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates Lecture 31 (12/8/17) Reading: Ch7; 258-267 Ch10; 371-373 Problems: Ch7 (text); 26,27,28 Ch7 (study-guide: applying); 2,5 Ch7 (study-guide: facts); 6 NEXT (LAST!) Reading: Chs4,6,8,10,14,16,17,18; 128-129,

More information

Conflict of interest

Conflict of interest Helsinki 2012 HPV vaccines for developing countries Lutz Gissmann l.gissmann@dkfz.de Conflict of interest LG is a consultant to GSK and Sanofi Pasteur MSD and, due to existing IP, receives royalties from

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

RAPID COMMUNICATION. Integrin 2 1 Mediates the Cell Attachment of the Rotavirus Neuraminidase-Resistant Variant nar3

RAPID COMMUNICATION. Integrin 2 1 Mediates the Cell Attachment of the Rotavirus Neuraminidase-Resistant Variant nar3 Virology 278, 50 54 (2000) doi:10.1006/viro.2000.0660, available online at http://www.idealibrary.com on RAPID COMMUNICATION Integrin 2 1 Mediates the Cell Attachment of the Rotavirus Neuraminidase-Resistant

More information

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins.

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins. Chapter 11 Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins. Carbohydrates Fuels Structural components Coating of cells Part of extracellular matrix

More information

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology Cell Membranes Dr. Diala Abu-Hassan School of Medicine Dr.abuhassand@gmail.com Cell and Molecular Biology Organelles 2Dr. Diala Abu-Hassan Membrane proteins Major components of cells Nucleic acids DNA

More information

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein 1 Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein by Coralie Di Scala, Nouara Yahi, Sonia Boutemeur, Alessandra Flores, Léa

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 10 Carbohydrates 2013 W. H. Freeman and Company Chapter 10 Outline Monosaccharides are aldehydes or ketones that contain two or

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

Astrovirus-associated gastroenteritis in children

Astrovirus-associated gastroenteritis in children Journal of Clinical Pathology, 1978, 31, 939-943 Astrovirus-associated gastroenteritis in children C. R. ASHLEY, E. 0. CAUL, AND W. K. PAVER1 From the Public Health Laboratory, Myrtle Road, Bristol BS2

More information

Lipid raft-a gateway for passing through the cell membrane for pathogens

Lipid raft-a gateway for passing through the cell membrane for pathogens 16 3 2004 6 Chinese Bulletin of Life Sciences Vol. 16, No. 3 Jun., 2004 10040374(2004)03014404 200031 / GPI (GPI) Q241 Q257 R37 A Lipid rafta gateway for passing through the cell membrane for pathogens

More information

Supplementary Material

Supplementary Material Supplementary Material Nuclear import of purified HIV-1 Integrase. Integrase remains associated to the RTC throughout the infection process until provirus integration occurs and is therefore one likely

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION SUPPLEMENTAL INFORMATION EXPERIMENTAL PROCEDURES Tryptic digestion protection experiments - PCSK9 with Ab-3D5 (1:1 molar ratio) in 50 mm Tris, ph 8.0, 150 mm NaCl was incubated overnight at 4 o C. The

More information

SV40 Detection and Transmission: Does SV40 Circulate in Human Communities?

SV40 Detection and Transmission: Does SV40 Circulate in Human Communities? SV40 Detection and Transmission: Does SV40 Circulate in Human Communities? Keerti Shah, Dana Rollison and Raphael Viscidi Johns Hopkins Medical Institutions Baltimore, MD Background A large number of cancer

More information

Murine Polyomavirus Virus-like Particles (VLPs) as Vectors for Gene and Immune Therapy and Vaccines against Viral Infections and Cancer

Murine Polyomavirus Virus-like Particles (VLPs) as Vectors for Gene and Immune Therapy and Vaccines against Viral Infections and Cancer Review Murine Polyomavirus Virus-like Particles (VLPs) as Vectors for Gene and Immune Therapy and Vaccines against Viral Infections and Cancer KARIN TEGERSTEDT 1, ANDREA VLASTOS FRANZÉN 1, KALLE ANDREASSON

More information

CYCLOSERINI CAPSULAE - CYCLOSERINE CAPSULES (AUGUST 2015)

CYCLOSERINI CAPSULAE - CYCLOSERINE CAPSULES (AUGUST 2015) August 2015 Document for comment 1 2 3 4 5 CYCLOSERINI CAPSULAE - CYCLOSERINE CAPSULES DRAFT PROPOSAL FOR THE INTERNATIONAL PHARMACOPOEIA (AUGUST 2015) DRAFT FOR COMMENT 6 Should you have any comments

More information

Supplementary Table 1. Properties of lysates of E. coli strains expressing CcLpxI point mutants

Supplementary Table 1. Properties of lysates of E. coli strains expressing CcLpxI point mutants Supplementary Table 1. Properties of lysates of E. coli strains expressing CcLpxI point mutants Species UDP-2,3- diacylglucosamine hydrolase specific activity (nmol min -1 mg -1 ) Fold vectorcontrol specific

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus Colocynthis Muhammad Bashir Khan, 1,3 Hidayatullah khan, 2 Muhammad

More information

The Discovery of the Cell

The Discovery of the Cell The Discovery of the Cell 7-1 Life Is Cellular Review the cell in relation to: - Its definition - The origin of life - The characteristics of life - The hierarchy of biological organization - The science

More information

Shin-Hee Kim, Yongqi Yan, and Siba K. Samal*

Shin-Hee Kim, Yongqi Yan, and Siba K. Samal* JOURNAL OF VIROLOGY, Oct. 2009, p. 10250 10255 Vol. 83, No. 19 0022-538X/09/$08.00 0 doi:10.1128/jvi.01038-09 Copyright 2009, American Society for Microbiology. All Rights Reserved. Role of the Cytoplasmic

More information

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Reoviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Naked icosahedral capsid (T=13), diameter 60-85 nm Capsid consists of two or three concentric protein

More information

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS HAPTER 28 LIPIDS SLUTINS T REVIEW QUESTINS 1. The lipids, which are dissimilar substances, are arbitrarily classified as a group on the basis of their solubility in fat solvents and their insolubility

More information

MEK1 Assay Kit 1 Catalog # Lot # 16875

MEK1 Assay Kit 1 Catalog # Lot # 16875 MEK1 Assay Kit 1 Kit Components Assay Dilution Buffer (ADB), Catalog # 20-108. Three vials, each containing 1.0ml of assay dilution buffer (20mM MOPS, ph 7.2, 25mM ß-glycerol phosphate, 5mM EGTA, 1mM sodium

More information

Virus Entry. Steps in virus entry. Penetration through cellular membranes. Intracellular transport John Wiley & Sons, Inc. All rights reserved.

Virus Entry. Steps in virus entry. Penetration through cellular membranes. Intracellular transport John Wiley & Sons, Inc. All rights reserved. Virus Entry Steps in virus entry Penetration through cellular membranes Intracellular transport Steps in virus entry How do virions get into cells? Viruses of bacteria, archaea, algae and plants use different

More information

Supplemental Data. Septin-Mediated Uniform Bracing. of Phospholipid Membranes. Supplemental Experimental Procedures. Preparation of giant liposomes

Supplemental Data. Septin-Mediated Uniform Bracing. of Phospholipid Membranes. Supplemental Experimental Procedures. Preparation of giant liposomes Supplemental Data Septin-Mediated Uniform Bracing of Phospholipid Membranes Yohko Tanaka-Takiguchi, Makato Kinoshita, and Kingo Takiguchi Supplemental Experimental Procedures Preparation of giant liposomes

More information

Structural Characterization of Prion-like Conformational Changes of the Neuronal Isoform of Aplysia CPEB

Structural Characterization of Prion-like Conformational Changes of the Neuronal Isoform of Aplysia CPEB Structural Characterization of Prion-like Conformational Changes of the Neuronal Isoform of Aplysia CPEB Bindu L. Raveendra, 1,5 Ansgar B. Siemer, 2,6 Sathyanarayanan V. Puthanveettil, 1,3,7 Wayne A. Hendrickson,

More information

Identification of Microbes Lecture: 12

Identification of Microbes Lecture: 12 Diagnostic Microbiology Identification of Microbes Lecture: 12 Electron Microscopy 106 virus particles per ml required for visualization, 50,000-60,000 magnification normally used. Viruses may be detected

More information

psittaci by Silver-Methenamine Staining and

psittaci by Silver-Methenamine Staining and JOURNAL OF BACTERIOLOGY, July 1972, p. 267-271 Copyright 1972 American Society for Microbiology Vol. 111, No. 1 Printed in U.S.A. Location of Polysaccharide on Chlamydia psittaci by Silver-Methenamine

More information

ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd

ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd I. Classes of membrane lipids A. Glycerolipids (quantitatively the most important of the three membrane lipids) B. Shingolipids

More information

Abdullah zurayqat. Bahaa Najjar. Mamoun Ahram

Abdullah zurayqat. Bahaa Najjar. Mamoun Ahram 9 Abdullah zurayqat Bahaa Najjar Mamoun Ahram Polysaccharides Polysaccharides Definition and Structure [Greek poly = many; sacchar = sugar] are complex carbohydrates, composed of 10 to up to several thousand

More information

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS Onderstepoort]. vet. Res. 40 (2), 53-58 (1973) ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS G. LECATSAS, B. J. ERASMUS and H. J. ELS, Veterinary Research Institute, Onderstepoort ABSTRACT

More information

Abdallah Q& Razi. Faisal

Abdallah Q& Razi. Faisal 27 & Ahmad Attari م ح م د ي وس ف Abdallah Q& Razi Faisal Sphingophospolipids - The backbone of sphingophospholipids is sphingosine, unlike glycerophospholipids with a glycerol as the backbone. Which contains

More information

Infectious Process of the Parvovirus H-1: Correlation of Protein Content, Particle Density, and Viral Infectivity

Infectious Process of the Parvovirus H-1: Correlation of Protein Content, Particle Density, and Viral Infectivity JOURNAL OF VIROLOGY, Sept. 1981, P. 800-807 Vol. 39, No. 3 0022-538X/81/090800-08$02.00/0 Infectious Process of the Parvovirus H-1: Correlation of Protein Content, Particle Density, and Viral Infectivity

More information

IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS

IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS 22 IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS Michael P. Lerner*, J. H. Anglin, Peggy L. Munson, Peggy J. Riggs, Nancy E. Manning, and Robert E. Nordquist Departments

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 26 Done by حسام أبو عوض Corrected by Zaid Emad Doctor فيصل الخطيب 1 P a g e A small note about phosphatidyl inositol-4,5-bisphosphate (PIP2) before moving on: This molecule is found in the membrane

More information

Tivadar Orban, Beata Jastrzebska, Sayan Gupta, Benlian Wang, Masaru Miyagi, Mark R. Chance, and Krzysztof Palczewski

Tivadar Orban, Beata Jastrzebska, Sayan Gupta, Benlian Wang, Masaru Miyagi, Mark R. Chance, and Krzysztof Palczewski Structure, Volume Supplemental Information Conformational Dynamics of Activation for the Pentameric Complex of Dimeric G Protein-Coupled Receptor and Heterotrimeric G Protein Tivadar Orban, Beata Jastrzebska,

More information

Methods of studying membrane structure

Methods of studying membrane structure King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 2 Methods of studying membrane structure Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya

More information

(9) 2. Explain the role of each of the following reagents in sequencing a protein:

(9) 2. Explain the role of each of the following reagents in sequencing a protein: BCH 4053 June 29, 2001 HOUR TEST 2 NAME (4) 1. In the Edman degradation of a protein, phenyl isothiocyanate is reacted with a peptide in (acid or alkaline?) conditions, and the (amino or carboxyl?) terminal

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

An aldose contains an aldehyde functionality A ketose contains a ketone functionality

An aldose contains an aldehyde functionality A ketose contains a ketone functionality RCT Chapter 7 Aldoses and Ketoses; Representative monosaccharides. (a)two trioses, an aldose and a ketose. The carbonyl group in each is shaded. An aldose contains an aldehyde functionality A ketose contains

More information

TITLE: Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important?

TITLE: Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important? TITLE: Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important? AUTHORS: Joshua G. Petrie 1, Adam S. Lauring 2,3 AFFILIATIONS: 1 Department of Epidemiology, University of

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

MEMBRANE LIPIDS I and II: GLYCEROPHOSPHOLIPIDS AND SPHINGOLIPIDS

MEMBRANE LIPIDS I and II: GLYCEROPHOSPHOLIPIDS AND SPHINGOLIPIDS December 6, 2011 Lecturer: Eileen M. Lafer MEMBRANE LIPIDS I and II: GLYCEROPHOSPHOLIPIDS AND SPHINGOLIPIDS Reading: Stryer Edition 6: Chapter 26 Images: All images in these notes were taken from Lehninger,

More information

The Annexin V Apoptosis Assay

The Annexin V Apoptosis Assay The Annexin V Apoptosis Assay Development of the Annexin V Apoptosis Assay: 1990 Andree at al. found that a protein, Vascular Anticoagulant α, bound to phospholipid bilayers in a calcium dependent manner.

More information

Use of double- stranded DNA mini- circles to characterize the covalent topoisomerase- DNA complex

Use of double- stranded DNA mini- circles to characterize the covalent topoisomerase- DNA complex SUPPLEMENTARY DATA Use of double- stranded DNA mini- circles to characterize the covalent topoisomerase- DNA complex Armêl Millet 1, François Strauss 1 and Emmanuelle Delagoutte 1 1 Structure et Instabilité

More information

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES Introduction Viruses are noncellular genetic elements that use a living cell for their replication and have an extracellular state. Viruses

More information

N-Glycosidase F Deglycosylation Kit

N-Glycosidase F Deglycosylation Kit For life science research only. Not for use in diagnostic procedures. FOR IN VITRO USE ONLY. N-Glycosidase F Deglycosylation Kit Kit for the deglycosylation of asparagine-linked glycan chains on glycoproteins.

More information

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS 28 09/16/2013 17:44:40 Page 415 APTER 28 LIPIDS SLUTINS T REVIEW QUESTINS 1. The lipids, which are dissimilar substances, are arbitrarily classified as a group on the basis of their solubility in fat solvents

More information

An Introduction to Carbohydrates

An Introduction to Carbohydrates An Introduction to Carbohydrates Carbohydrates are a large class of naturally occurring polyhydroxy aldehydes and ketones. Monosaccharides also known as simple sugars, are the simplest carbohydrates containing

More information

Lecture 3 6/28/10. Membrane Lipids. Importance of Membranes. Categories of Lipids. Lipids: Chapter 20 Sections 4-7. ! Membranes are important in

Lecture 3 6/28/10. Membrane Lipids. Importance of Membranes. Categories of Lipids. Lipids: Chapter 20 Sections 4-7. ! Membranes are important in Lecture 3 Lipids: Chapter 20 Sections 4-7! The most polar lipids are found in the membranes of cells and organelles! Why?! These lipids are amphipathic! Membranes are complex and have many components Membrane

More information

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan 5 Rama Abbady Odai Bani-Monia Diala Abu-Hassan Lipid Rafts Lipid rafts are aggregates (accumulations) of sphingolipids. They re semisolid clusters (10-200 nm) of cholesterol and sphingolipids (sphingomyelin

More information

STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA

STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA STUDIES OF THE HEMAGGLUTININ OF HAEMOPHILUS PERTUSSIS HIDEO FUKUMI, HISASHI SHIMAZAKI, SADAO KOBAYASHI AND TATSUJI UCHIDA The National Institute of Health, Tokyo, Japan (Received: August 3rd, 1953) INTRODUCTION

More information

Antiviral Chemotherapy

Antiviral Chemotherapy 12 Antiviral Chemotherapy Why antiviral drugs? Vaccines have provided considerable success in preventing viral diseases; However, they have modest or often no therapeutic effect for individuals who are

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4 Eukaryotes organisms that contain a membrane bound nucleus and organelles. Prokaryotes organisms that lack a nucleus or other membrane-bound organelles. Viruses small, non-cellular (lacking a cell), infectious

More information

Supporting Information. Post translational Modifications of Serotonin Type 4 Receptor Heterologously Expressed in. Mouse Rod Cells

Supporting Information. Post translational Modifications of Serotonin Type 4 Receptor Heterologously Expressed in. Mouse Rod Cells Supporting Information Post translational Modifications of Serotonin Type 4 Receptor Heterologously Expressed in Mouse Rod Cells David Salom,, Benlian Wang,, Zhiqian Dong, Wenyu Sun, Pius Padayatti, Steven

More information

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units

Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units Glycosaminoglycans: Anionic polysaccharide chains made of repeating disaccharide units Glycosaminoglycans present on the animal cell surface and in the extracellular matrix. Glycoseaminoglycans (mucopolysaccharides)

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

Fig. S1. Schematic representation of the two RBC membrane:cytoskeleton anchorage

Fig. S1. Schematic representation of the two RBC membrane:cytoskeleton anchorage Supplemental data Fig. S1. Schematic representation of the two RBC membrane:cytoskeleton anchorage complexes. Left, 4.1R complex; right, ankyrin-based complex. Adapted from (1) where abbreviations are

More information

Jyotika Sharma, Feng Dong, Mustak Pirbhai, and Guangming Zhong*

Jyotika Sharma, Feng Dong, Mustak Pirbhai, and Guangming Zhong* INFECTION AND IMMUNITY, July 2005, p. 4414 4419 Vol. 73, No. 7 0019-9567/05/$08.00 0 doi:10.1128/iai.73.7.4414 4419.2005 Copyright 2005, American Society for Microbiology. All Rights Reserved. Inhibition

More information

Prediagnostic Circulating Polyomavirus Antibody Levels and Risk of non-hodgkin

Prediagnostic Circulating Polyomavirus Antibody Levels and Risk of non-hodgkin Prediagnostic Circulating Polyomavirus Antibody Levels and Risk of non-hodgkin Lymphoma Lauren R. Teras 1, Dana E. Rollison 2, Michael Pawlita 3, Angelika Michel 3, Jennifer L. Blase 1, Martina Willhauck-Fleckenstein

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature9814 a A SHARPIN FL B SHARPIN ΔNZF C SHARPIN T38L, F39V b His-SHARPIN FL -1xUb -2xUb -4xUb α-his c Linear 4xUb -SHARPIN FL -SHARPIN TF_LV -SHARPINΔNZF -SHARPIN

More information

An Investigation of Endoplasmic Reticulum- Associated Proteins Implicated in Efficient Murine Polyomavirus Infection

An Investigation of Endoplasmic Reticulum- Associated Proteins Implicated in Efficient Murine Polyomavirus Infection University of Colorado, Boulder CU Scholar Undergraduate Honors Theses Honors Program Spring 2012 An Investigation of Endoplasmic Reticulum- Associated Proteins Implicated in Efficient Murine Polyomavirus

More information

Supplementary Figure 1. Chemical structures of activity-based probes (ABPs) and of click reagents used in this study.

Supplementary Figure 1. Chemical structures of activity-based probes (ABPs) and of click reagents used in this study. Supplementary Figure 1. Chemical structures of activity-based probes (ABPs) and of click reagents used in this study. In this study, one fluorophosphonate (FP, 1), three nitrophenol phosphonate probes

More information

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules Name: Bio AP Lab Organic Molecules BACKGROUND: A cell is a living chemistry laboratory in which most functions take the form of interactions between organic molecules. Most organic molecules found in living

More information

BabyBio IMAC columns DATA SHEET DS

BabyBio IMAC columns DATA SHEET DS BabyBio IMAC columns DATA SHEET DS 45 655 010 BabyBio columns for Immobilized Metal Ion Affinity Chromatography (IMAC) are ready-to-use for quick and easy purification of polyhistidine-tagged (His-tagged)

More information

BSII Lectin: A Second Hemagglutinin Isolated from Bandeiraea Simplicifolia Seeds with Afiinity for type I11 Polyagglutinable Red Cells

BSII Lectin: A Second Hemagglutinin Isolated from Bandeiraea Simplicifolia Seeds with Afiinity for type I11 Polyagglutinable Red Cells Vox Sang. 33: 46-51 (1977) BSII Lectin: A Second Hemagglutinin Isolated from Bandeiraea Simplicifolia Seeds with Afiinity for type I11 Polyagglutinable Red Cells W. J. Judd, M. L. Beck, B. L. Hicklin,

More information

Isolation and Structural Characterization of Cap-Binding Proteins from Poliovirus-Infected HeLa Cells

Isolation and Structural Characterization of Cap-Binding Proteins from Poliovirus-Infected HeLa Cells JOURNAL OF VIROLOGY, May 1985. p. 515-524 0022-538X/85/050515-10$02.00/0 Copyright C 1985, American Society for Microbiology Vol. 54, No. 2 Isolation and Structural Characterization of Cap-Binding Proteins

More information

This is a published version of a paper published in PLoS Pathogens. Access to the published version may require subscription.

This is a published version of a paper published in PLoS Pathogens. Access to the published version may require subscription. Umeå University This is a published version of a paper published in PLoS Pathogens. Citation for the published paper: Neu, U., Hengel, H., Blaum, B., Schowalter, R., Macejak, D. et al. (2012) "Structures

More information