Outer Hair Cells in the Cochlea

Size: px
Start display at page:

Download "Outer Hair Cells in the Cochlea"

Transcription

1 Discrete Dynamics in Nature and Society, Vol. 2, pp Reprints available directly from the publisher Photocopying permitted by license only (C) 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint. Printed in India. Thermal Noise and the Incessant Vibration of the Outer Hair Cells in the Cochlea W. FRITZE* and M. STEURER ENT Department, University of Vienna Medical School, Vienna, Austria (Received in finalform 5 December 1997) The continual exposure of outer hair cells (OHCs) to thermal noise causes vibrations in resonant frequency. As these vibrations are backprojected, they should be recordable as audiofrequencies in the outer ear canal. But even though they are likely to be amplified in some areas by clustering in terms of the chaos theory, they cannot be picked up in the outer ear canal by currently available recording technologies. Conditions change in the presence of pathology, e.g. loss of OHCs and fibrous replacement: Clusters grow in size and amplitudes become larger so that the vibrations can be picked up as spontaneous otoacoustic emissions (SOAEs) in the outer ear canal. Efforts are needed to demonstrate the presence of physiological OHC vibrations (emission by incessant vibration, EIV) by processing auditory recordings with statistical methods. Keywords." Inner ear function, Oto-acoustic emissions, Outer hair cells, Resonant vibration, Chaos theory, Emission by incessant vibration THERMAL NOISE AND RESONANCE There is evidence suggesting that events such as those recorded in quantum physics are bound to affect hearing (Bialek, 1985; Peat, 1987), because the amplitude of noise perceivable to the human ear is less than the diameter of a hydrogen atom. But as molecular motion is indeterminate, its action on the OHCs is likely to vary continually. Any object capable of vibrating has its own resonant frequency. It is made to vibrate at the resonant frequency by random stimuli including thermal noise. It would be logical to assume that the resonant frequency is identical with the audiofrequencies corresponding to a given site along the basilar membrane. This would imply that it would have to change by 3 decimal points along the length of the basilar membrane. But as the anatomy does not change to such an extent along the basilar membrane, this is very unlikely. In addition, a vibration of no more than 20 Hz would also be quite unlikely for so small a structure. Corresponding author. Allgemeines Krankenhaus, Wihringer Gtirtel 18, A- 1090, Vienna, Austria. Tel.: Fax: hno@uniw.ac.at. 161

2 162 W. FRITZE AND M. STEURER What is much more likely is that the resonant frequency is substantially higher than the audiofrequencies (Ohyama et al., 1985; Fritze, 1996). (In bats resonant frequencies are known to be very high; K6ssl, 1994; Henson et al., 1990). THRESHOLD MICROSTRUCTURE If this were so, audiofrequencies and resonant frequencies should interact, i.e. there should be mathematical ratios of these 2 frequencies at which vibrations are either dampened or escalated. Take the example of a vibrating metal plate steadily pounded by a hammer. By choosing an appropriate pounding pattern the vibrations of the plate can either be intensified or almost stopped. Assuming that the threshold microstructure (Elliot, 1958; Cohen, 1982; Long and Tubis, 1988) reflects this process, the resonant frequency at the site of the basilar membrane to which a khz tone is projected would be roughly 25 khz, as simulations indicate. For a 2kHz tone the resonant frequency at the appropriate site of the basilar membrane would be roughly 40 khz. SPONTANEOUS OTO-ACOUSTIC EMISSIONS Another point is that it is difficult to understand without postulating incessant OHC vibrations how known SOAEs are generated. By their current definition SOAEs are sequences of sinus bursts (Fritze et al., 1992) which depending on the sensitivity of the microphone used are found in up to 74% of normals (Fritze et al., 1989). It is to be assumed that the detection rate of just 74% is dictated by the inadequacies of the equipment used (audiograms may be normal even if a larger proportion of the OHCs is lost. Lost OHCs are replaced by fibrous tissue. This tissue has different vibrating characteristics so that incessant vibrations may be intensified to the point of being recordable as SOAEs; Fritze et al., 1996). In many recordings processed by joint timefrequency analysis chaotic distributed wavelets such as those shown in Fig. are seen side by side with the sinus bursts. Like the currently known SOAEs (Ohyama et al., 1991; Ruggero et al., 1983; Hilger, 1995), these (up to now recordable) wavelets presumably reflect minor cochlear pathology. (They cannot be identified in all subjects.) THE INCESSANT VIBRATION OF OHCS As their vibratory frequencies suggest, OHCs are likely to vibrate passively (Fig. 2). Active vibrations are ruled out by the high frequencies involved +. In keeping with the chaos theory (Teich, 1995) they are bound to cluster, as already mentioned. On account of the differential resonant frequencies, energy is transported apically, i.e. towards lower resonant frequencies (Fritze, 1996). The result is a frequency difference between the vibrating and the resonant frequencies at a given site. The resultant frequency difference consumes energy so that the amplified vibration is of limited duration. This vibration is projected into the outer ear canal. There, its frequency is equivalent to the audiofrequency of the vibrating site along the basilar membrane. Thus, incessant vibrations in terms of a chaotic sequence of wavelets of variable frequency should be expected to be present in the outer ear canal (EIV). But even the most sensitive recording equipment (one-inch condenser microphone Bruel & Kjaer) fails to demonstrate them when the data were processed by joint time-frequency analysis. They will presumably become detectable with the help of special algorithms for wavelet detection. The slow motions of the OHCs probably serve as regulatory mechanisms. They may well modify the resonant frequency to the point of almost stopping vibrations (Wit et al., 1989).

3 INCESSANT VIBRATION IN THE COCHLEA 163 FIGURE An example of oto-acoustic emissions, i.e. spontaneous emissions without any stimulus. Method: In a camera silens the microphone Bruel & Kjaer (Naerum, Denmark) 4179 is acoustically coupled to the left ear of a 19-year-old normal. After high-pass filtering and digitalization of the signals, joint time-frequency analysis is done (adaptive spectrogram, LabVIEW). The illustration shows the spectrogram (brightness-coded amplitude on the left; below it the original signal; FFT on the right). (a) The wavelets do not show any recognizable order (chaotic distribution). The vertical lines are artifacts. (b) In addition to the wavelets the first half of the trace shows a spontaneous emission.

4 164 W. FRITZE AND M. STEURER FIGURE 2 Computer simulation of likely OHC vibrations. Horizontal assumed series of 640 units (OHCs), left =apical; vertical time course (from the top down); 2 runs of the algorithm from one line to the next. The algorithm describes the reciprocal effects of coupled and randomly excited pendulums (amplitudes, phases and velocities) with the resonant frequencies rising from left to right. In the image the amplitude is shown (black highest amplitude). Note the clustering of OHCs with a higher vibrating amplitude in terms of the chaos theory. The clusters alternate in a chaotic pattern. This should be reflected in the outer ear canal by a sequence of sinus bursts of different frequencies. The less abnormal a cochlea, the smaller these wavelets. If they were detected in all normals, even in ears so normal that they do not produce any evoked oto-acoustic emissions recordable with standard equipment, they might well serve as a novel type of hearing test. References Bialek, W. (1985). Physical limits to sensation and perception. Physical Review Letters 54, Cohen, M. (1982). Detection threshold microstructure and its effect on temporal integration data. the Acoustic Society of America 71, Elliot, E. (1958). A ripple effect in the audiogram. Nature 181, Fritze, W., Gedlicka, W. and K6hler, W. (1989). On the shape of spontaneous cochlear emissions. I1 Valsalva 54, stppl. 1, Fritze, W., Fritze, P. and Gedlicka, W. (1992). The time course of spontaneous otoacoustic emissions. European Archiv. of Otorhinolaryngology 249, Fritze, W. (1996). On mechanical preprocessing in the cochlea: the three great hearing theories combined. Biochemical and Biophysical Research Communications, 223, Fritze, W., Steurer, M. and Fritze, P. (1996). Some ideas on the origin of otoacoustic emissions. Biochemical and Biophysical Research Communications 227, Henson, O.W., Koplas, P.A., Keating, A.W., Huffmann, R.F. and Henson, M.M. (1990). Cochlear resonance in the mustached bat: Behavioral adaptations. Hearing Research 50,

5 INCESSANT VIBRATION IN THE COCHLEA 165 Hilger, A.W. (1995). The possible relationship between transient evoked otoacoustic emissions and organ of Corti irregularities in the gunea pig. Hearing Research 84, K6ssl, M. (1994). Otoacoustic emissions from the cochleas of the constant frequency bats, Pteronotus parnellii and Rhinolophus rouxi. Hearing Research 72, Long, R. and Tubis, A. (1988). Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. the Acoustic Society of America 84, Ohyama, K. et al. (1985). Ultrasonic electr)cochleography in guinea pig. Hearing Research 17, Ohyama, K. et al. (1991). Spontaneous otoacoustic emissions in the guinea pig. Hearing Research 56, Peat, F.D. (1987). Synchronicity, Bantam, New York. Ruggero, M.A. et al. (1983). Spontaneous and impulsively evoked otoacoustic emissions: indicators of cochlear pathology? Hearing Research 10, Teich, M.C. (1995). Investigation routes to chaos in the guineapig cochlea using the continuous wavelet transform and the short-time Fourier transform. Annals of Biomedical Engineering 23, Wit, H.P. et al. (1989). DC injection alters spontaneous otoacoustic emission frequency in the frog. Hearing Research 41,

6 Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 6.2 THE INFLUENCE OF

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti Auditory Physiology PSY 310 Greg Francis Lecture 30 Waves, waves, waves. Organ of Corti Tectorial membrane Sits on top Inner hair cells Outer hair cells The microphone for the brain 1 Hearing Perceptually,

More information

Improving the diagnostic power of otoacoustic emissions. Arturo Moleti Physics Department University of Roma Tor Vergata

Improving the diagnostic power of otoacoustic emissions. Arturo Moleti Physics Department University of Roma Tor Vergata Improving the diagnostic power of otoacoustic emissions Arturo Moleti Physics Department University of Roma Tor Vergata The human ear Ear canal: resonant cavity Middle ear: impedance adapter and pressure

More information

Advanced otoacoustic emission detection techniques and clinical diagnostics applications

Advanced otoacoustic emission detection techniques and clinical diagnostics applications Advanced otoacoustic emission detection techniques and clinical diagnostics applications Arturo Moleti Physics Department, University of Roma Tor Vergata, Roma, ITALY Towards objective diagnostics of human

More information

Emissions are low-intensity sounds that may be detected in the external ear canal by a microphone

Emissions are low-intensity sounds that may be detected in the external ear canal by a microphone OAEs Emissions are low-intensity sounds that may be detected in the external ear canal by a microphone OAE is a pre-neural phenomenon They can be measured even when the 8 th cranial nerve is severely damaged

More information

Discrete Signal Processing

Discrete Signal Processing 1 Discrete Signal Processing C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University http://www.cs.nctu.edu.tw/~cmliu/courses/dsp/ ( Office: EC538 (03)5731877 cmliu@cs.nctu.edu.tw

More information

Clinical applications of otoacoustic emissions in Industry. Prof. Dr. B. Vinck, MSc, PhD University of Ghent, Belgium

Clinical applications of otoacoustic emissions in Industry. Prof. Dr. B. Vinck, MSc, PhD University of Ghent, Belgium Clinical applications of otoacoustic emissions in Industry Prof. Dr. B. Vinck, MSc, PhD University of Ghent, Belgium The 25th anniversary of the discovery of otoacoustic emissions (OAEs) [sounds that can

More information

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor Signals, systems, acoustics and the ear Week 5 The peripheral auditory system: The ear as a signal processor Think of this set of organs 2 as a collection of systems, transforming sounds to be sent to

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

Topic 4. Pitch & Frequency

Topic 4. Pitch & Frequency Topic 4 Pitch & Frequency A musical interlude KOMBU This solo by Kaigal-ool of Huun-Huur-Tu (accompanying himself on doshpuluur) demonstrates perfectly the characteristic sound of the Xorekteer voice An

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment Acoustics, signals & systems for audiology Psychoacoustics of hearing impairment Three main types of hearing impairment Conductive Sound is not properly transmitted from the outer to the inner ear Sensorineural

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

Neuro-Audio Version 2010

Neuro-Audio Version 2010 ABR PTA ASSR Multi-ASSR OAE TEOAE DPOAE SOAE ECochG MLR P300 Neuro-Audio Version 2010 one device for all audiological tests Auditory brainstem response (ABR)/Brainstem evoked response audiometry (BERA)

More information

EMANATIONS FROM RESIDUUM OSCILLATIONS IN HUMAN AUDITORY SYSTEM

EMANATIONS FROM RESIDUUM OSCILLATIONS IN HUMAN AUDITORY SYSTEM EMANATIONS FROM RESIDUUM OSCILLATIONS IN HUMAN AUDITORY SYSTEM V.S. Balaji, N.R.Raajan, S. Rakesh Kumar, Har Narayan Upadhyay School of Electrical & Electronics Engineering, SASTRA University Thanjavur,

More information

Prescribe hearing aids to:

Prescribe hearing aids to: Harvey Dillon Audiology NOW! Prescribing hearing aids for adults and children Prescribing hearing aids for adults and children Adult Measure hearing thresholds (db HL) Child Measure hearing thresholds

More information

OAE Test System. Screener PLUS. Diagnostic PLUS. with 4 frequency DPOAE testing Protocols

OAE Test System. Screener PLUS. Diagnostic PLUS. with 4 frequency DPOAE testing Protocols Screener PLUS with 4 frequency DPOAE testing Protocols Diagnostic PLUS with 4, 6 and 12 frequency DPOAE testing Protocols *TEOAE upgrade OAE Test System Physicians Otoacoustic emissions testing is an ideal

More information

ERO SCAN. OAE Test System. Screener. Diagnostic. with 4 frequency DPOAE testing Protocols

ERO SCAN. OAE Test System. Screener. Diagnostic. with 4 frequency DPOAE testing Protocols ERO SCAN Screener with 4 frequency DPOAE testing Protocols Diagnostic with 4, 6 and 12 frequency DPOAE testing Protocols *TEOAE upgrade OAE Test System ERO SCAN - OAE Test System Physicians Otoacoustic

More information

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds Hearing Lectures Acoustics of Speech and Hearing Week 2-10 Hearing 3: Auditory Filtering 1. Loudness of sinusoids mainly (see Web tutorial for more) 2. Pitch of sinusoids mainly (see Web tutorial for more)

More information

Abstract. 1 Introduction

Abstract. 1 Introduction An optimal high-passfilteringtechnique to improve the detectability of evoked otoacoustic emissions G. Tognola, P. Ravazzani, F. Grandori System Theory Centre - CNR, Polytechnic of Milan, Abstract Evoked

More information

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: 12-13 DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing The Physics Of Hearing On completion of this section, you should be able to:

More information

Chapter 13 Physics of the Ear and Hearing

Chapter 13 Physics of the Ear and Hearing Hearing 100 times greater dynamic range than vision Wide frequency range (20 ~ 20,000 Hz) Sense of hearing Mechanical system that stimulates the hair cells in the cochlea Sensors that produce action potentials

More information

Physiological basis of sound design. Prof. Dr. med. Eckhard Hoffmann Dipl.-Ing. (FH) Steffen Kreikemeier Aalen University of Applied Sciences

Physiological basis of sound design. Prof. Dr. med. Eckhard Hoffmann Dipl.-Ing. (FH) Steffen Kreikemeier Aalen University of Applied Sciences Physiological basis of sound design Prof. Dr. med. Eckhard Hoffmann Dipl.-Ing. (FH) Steffen Kreikemeier Aalen University of Applied Sciences Index of contents Physiological basis of the inner ear Organ

More information

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction The ear and perception of sound (Psychoacoustics) 1 Outline A. Structure of the Ear B. Perception of Pitch C. Perception of Loudness D. Timbre (quality of sound) E. References Updated 01Aug0 Introduction

More information

The Structure and Function of the Auditory Nerve

The Structure and Function of the Auditory Nerve The Structure and Function of the Auditory Nerve Brad May Structure and Function of the Auditory and Vestibular Systems (BME 580.626) September 21, 2010 1 Objectives Anatomy Basic response patterns Frequency

More information

AUDL GS08 and GAV1: 2013 Final exam page 1/13. You must complete all sections. Label all graphs. Show your work!

AUDL GS08 and GAV1: 2013 Final exam page 1/13. You must complete all sections. Label all graphs. Show your work! AUDL GS08 and GAV1: 2013 Final exam page 1/13 You must complete all sections. Label all graphs. Show your work! Section A: Short questions concerning Signals & Systems A1. Give the sound pressure levels

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information

Overview of ISVR CAV Workshop 2011

Overview of ISVR CAV Workshop 2011 Overview of ISVR CAV Workshop 2011 New Faculty Structure FACULTY ST UDENT S (FTE) ACADEMIC STAFF (FT E) NON- ACADEMIC ST A FF (FT E) TURNOVER ( M) Hum anities 2721 199 72 18 Business & Law 1726 96 41 11

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

Study the Effect of the Quality Factor of the Transient Evoked Oto-acoustic Emissions (TEOAE)

Study the Effect of the Quality Factor of the Transient Evoked Oto-acoustic Emissions (TEOAE) Research in Otolaryngology 217, 6(4): 47-4 DOI:.923/j.otolaryn.21764.1 Study the Effect of the Quality Factor of the Transient Evoked Oto-acoustic Emissions (TEOAE) Adnan AL-Maamury *, Dhifaf Ahmed Al-Mustansiriyah

More information

THE EAR Dr. Lily V. Hughes, Audiologist

THE EAR Dr. Lily V. Hughes, Audiologist WHY AM I HERE? HEARING & THE BRAIN THE EAR Dr. Lily V. Hughes, Audiologist Fairbanks Hearing & Balance Center at the ENT Clinic 1 out of every 5 adults has hearing loss. That s more than 48 million people

More information

PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized

PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized PHYS 1240 Sound and Music Professor John Price Cell Phones off Laptops closed Clickers on Transporter energized The Ear and Hearing Thanks to Jed Whittaker for many of these slides Ear anatomy substructures

More information

Human Acoustic Processing

Human Acoustic Processing Human Acoustic Processing Sound and Light The Ear Cochlea Auditory Pathway Speech Spectrogram Vocal Cords Formant Frequencies Time Warping Hidden Markov Models Signal, Time and Brain Process of temporal

More information

On the physiological location of otoacoustic emissions

On the physiological location of otoacoustic emissions On the physiological location of otoacoustic emissions Brännström, Jonas; Lantz, Johannes Published: 2001-01-01 Link to publication Citation for published version (APA): Brännström, J., & Lantz, J. (2001).

More information

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics 2/14/18 Can hear whistle? Lecture 5 Psychoacoustics Based on slides 2009--2018 DeHon, Koditschek Additional Material 2014 Farmer 1 2 There are sounds we cannot hear Depends on frequency Where are we on

More information

Hearing and Balance 1

Hearing and Balance 1 Hearing and Balance 1 Slide 3 Sound is produced by vibration of an object which produces alternating waves of pressure and rarefaction, for example this tuning fork. Slide 4 Two characteristics of sound

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

Educational Module Tympanometry. Germany D Germering

Educational Module Tympanometry. Germany D Germering Educational Module anometry PATH medical Germany D-82110 Germering Our educational modules 1 are made for providing information on how the hearing organ works and which test procedures are used to test

More information

HEARING AND PSYCHOACOUSTICS

HEARING AND PSYCHOACOUSTICS CHAPTER 2 HEARING AND PSYCHOACOUSTICS WITH LIDIA LEE I would like to lead off the specific audio discussions with a description of the audio receptor the ear. I believe it is always a good idea to understand

More information

Can components in distortion-product otoacoustic emissions be separated?

Can components in distortion-product otoacoustic emissions be separated? Can components in distortion-product otoacoustic emissions be separated? Anders Tornvig Section of Acoustics, Aalborg University, Fredrik Bajers Vej 7 B5, DK-922 Aalborg Ø, Denmark, tornvig@es.aau.dk David

More information

Representation of sound in the auditory nerve

Representation of sound in the auditory nerve Representation of sound in the auditory nerve Eric D. Young Department of Biomedical Engineering Johns Hopkins University Young, ED. Neural representation of spectral and temporal information in speech.

More information

Mechanical Properties of the Cochlea. Reading: Yost Ch. 7

Mechanical Properties of the Cochlea. Reading: Yost Ch. 7 Mechanical Properties of the Cochlea CF Reading: Yost Ch. 7 The Cochlea Inner ear contains auditory and vestibular sensory organs. Cochlea is a coiled tri-partite tube about 35 mm long. Basilar membrane,

More information

ABR PTA ASSR Multi-ASSR OAE TEOAE DPOAE SOAE VEMP ECochG MLR P300

ABR PTA ASSR Multi-ASSR OAE TEOAE DPOAE SOAE VEMP ECochG MLR P300 ABR PTA ASSR Multi-ASSR OAE TEOAE DPOAE SOAE VEMP ECochG MLR P300 Neuro-Audio one device for all audiological tests Auditory brainstem response (ABR)/Brainstem evoked response audiometry (BERA) (air and

More information

Processing of sounds in the inner ear

Processing of sounds in the inner ear Processing of sounds in the inner ear Sripriya Ramamoorthy Associate Professor, IIT Bombay WiSSAP 2018 Cochlea converts sound into electrical signals [Picture courtesy of Northwestern University] von Bekesy

More information

Binaural Hearing for Robots Introduction to Robot Hearing

Binaural Hearing for Robots Introduction to Robot Hearing Binaural Hearing for Robots Introduction to Robot Hearing 1Radu Horaud Binaural Hearing for Robots 1. Introduction to Robot Hearing 2. Methodological Foundations 3. Sound-Source Localization 4. Machine

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Linguistic Phonetics. Basic Audition. Diagram of the inner ear removed due to copyright restrictions.

Linguistic Phonetics. Basic Audition. Diagram of the inner ear removed due to copyright restrictions. 24.963 Linguistic Phonetics Basic Audition Diagram of the inner ear removed due to copyright restrictions. 1 Reading: Keating 1985 24.963 also read Flemming 2001 Assignment 1 - basic acoustics. Due 9/22.

More information

Hearing. Juan P Bello

Hearing. Juan P Bello Hearing Juan P Bello The human ear The human ear Outer Ear The human ear Middle Ear The human ear Inner Ear The cochlea (1) It separates sound into its various components If uncoiled it becomes a tapering

More information

Linguistic Phonetics Fall 2005

Linguistic Phonetics Fall 2005 MIT OpenCourseWare http://ocw.mit.edu 24.963 Linguistic Phonetics Fall 2005 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 24.963 Linguistic Phonetics

More information

(OAEs) for. Steven D. Smith, Au.D.

(OAEs) for. Steven D. Smith, Au.D. A Guide to Otoacoustic Emissions (OAEs) for School Nurses Steven D. Smith, Au.D. Director of Audiology, Director of Physicians Hearing & Balance Center Drs. Kitchens, Chapman, & Anderson, PA, Montgomery,

More information

An Auditory-Model-Based Electrical Stimulation Strategy Incorporating Tonal Information for Cochlear Implant

An Auditory-Model-Based Electrical Stimulation Strategy Incorporating Tonal Information for Cochlear Implant Annual Progress Report An Auditory-Model-Based Electrical Stimulation Strategy Incorporating Tonal Information for Cochlear Implant Joint Research Centre for Biomedical Engineering Mar.7, 26 Types of Hearing

More information

Audiological Diagnosis after Newborn Screening

Audiological Diagnosis after Newborn Screening Audiological Diagnosis after Newborn Screening Pr Hung THAI-VAN, M.D., Ph.D. President of the French Society of Audiology Department of Audiology & Otoneurological Evaluation (Head) Lyon University Hospital

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

Introduction to Audiology: Global Edition

Introduction to Audiology: Global Edition Introduction to Audiology For these Global Editions, the editorial team at Pearson has collaborated with educators across the world to address a wide range of subjects and requirements, equipping students

More information

Topic 4. Pitch & Frequency. (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music)

Topic 4. Pitch & Frequency. (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music) Topic 4 Pitch & Frequency (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music) A musical interlude KOMBU This solo by Kaigal-ool of Huun-Huur-Tu

More information

ClaroTM Digital Perception ProcessingTM

ClaroTM Digital Perception ProcessingTM ClaroTM Digital Perception ProcessingTM Sound processing with a human perspective Introduction Signal processing in hearing aids has always been directed towards amplifying signals according to physical

More information

Understanding Otoacoustic Emissions Generation

Understanding Otoacoustic Emissions Generation Understanding Otoacoustic Emissions Generation Andrew Binder Dr. Christopher Bergevin, Supervisor March 20, 2008 1 Introduction The primary function of the ear is to convert acoustic stimuli to neural

More information

Comparison of Distortion Product Otoacoustic Emission Amplitude between Normal Hearing Male and Female Subjects

Comparison of Distortion Product Otoacoustic Emission Amplitude between Normal Hearing Male and Female Subjects Comparison of Distortion Product Otoacoustic Emission Amplitude between Normal Hearing Male and Female Subjects Shawkt Al-Tamimi MD*, Mefleh Alsarhan MD*, Hussein Alqasem PhD*, Mohammed Rawashdeh MD*,

More information

HST 721 Efferent Control Lecture October 2004

HST 721 Efferent Control Lecture October 2004 HST 721 Efferent Control Lecture October 2004 1 Stapedius Muscle Central Circuitry 2 Hypotheses for MEM Function A. Stapedius 1. Extend Dynamic Range - a gain control system 2. Protect the Inner Ear from

More information

Base of Audiology Anatomy and Physiology of the organ of hearing. Examinations of hearing losses with different origin.

Base of Audiology Anatomy and Physiology of the organ of hearing. Examinations of hearing losses with different origin. UNIVERSITY of SZEGED Department of Oto-Rhino- Laryngology and Head- Neck Surgery Base of Audiology Anatomy and Physiology of the organ of hearing. Examinations of hearing losses with different origin.

More information

Swept - Tone Evoked Otoacoustic Emissions: Stimulus Calibration and Equalization

Swept - Tone Evoked Otoacoustic Emissions: Stimulus Calibration and Equalization University of Miami Scholarly Repository Open Access Theses Electronic Theses and Dissertations 2011-12-19 Swept - Tone Evoked Otoacoustic Emissions: Stimulus Calibration and Equalization Todor Mihajloski

More information

Music and Hearing in the Older Population: an Audiologist's Perspective

Music and Hearing in the Older Population: an Audiologist's Perspective Music and Hearing in the Older Population: an Audiologist's Perspective Dwight Ough, M.A., CCC-A Audiologist Charlotte County Hearing Health Care Centre Inc. St. Stephen, New Brunswick Anatomy and Physiology

More information

Hearing Aids. Bernycia Askew

Hearing Aids. Bernycia Askew Hearing Aids Bernycia Askew Who they re for Hearing Aids are usually best for people who have a mildmoderate hearing loss. They are often benefit those who have contracted noise induced hearing loss with

More information

OtoAcoustic Emissions (OAE s)

OtoAcoustic Emissions (OAE s) OtoAcoustic Emissions (OAE s) Phenomenon and applications in audiological diagnostics Measurement procedures TEOAE and DPOAE Physiological backgound, functional models Acknowledgment: several illustrations

More information

COM3502/4502/6502 SPEECH PROCESSING

COM3502/4502/6502 SPEECH PROCESSING COM3502/4502/6502 SPEECH PROCESSING Lecture 4 Hearing COM3502/4502/6502 Speech Processing: Lecture 4, slide 1 The Speech Chain SPEAKER Ear LISTENER Feedback Link Vocal Muscles Ear Sound Waves Taken from:

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979)

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979) Hearing The nervous system s cognitive response to sound stimuli is known as psychoacoustics: it is partly acoustics and partly psychology. Hearing is a feature resulting from our physiology that we tend

More information

FAST MOTILITY OF ISOLATED MAMMALIAN AUDITORY SENSORY CELLS. Hans P. Zenner, Ulrike Zimmermann and Alfred H. Gitter

FAST MOTILITY OF ISOLATED MAMMALIAN AUDITORY SENSORY CELLS. Hans P. Zenner, Ulrike Zimmermann and Alfred H. Gitter Vol. 149,No. 1, 1987 November 30, 1987 BlOCHEMlCALANDBlOPHYSlCALRESEARCHCOMMUNlCATlONS Pages 304-308 FAST MOTILITY OF ISOLATED MAMMALIAN AUDITORY SENSORY CELLS Hans P. Zenner, Ulrike Zimmermann and Alfred

More information

Issues faced by people with a Sensorineural Hearing Loss

Issues faced by people with a Sensorineural Hearing Loss Issues faced by people with a Sensorineural Hearing Loss Issues faced by people with a Sensorineural Hearing Loss 1. Decreased Audibility 2. Decreased Dynamic Range 3. Decreased Frequency Resolution 4.

More information

EPIC-PLUS System for auditory evoked potentials and neuro-otology. PEA - VEMPs ASSR - E-ABR FACIAL NERVE

EPIC-PLUS System for auditory evoked potentials and neuro-otology. PEA - VEMPs ASSR - E-ABR FACIAL NERVE EPIC-PLUS System for auditory evoked potentials and neuro-otology PEA - VEMPs ASSR - E-ABR FACIAL NERVE EPIC-PLUS System for auditory evoked potentials and neuro-otology Epic-plus, a unique solution. With

More information

Frequency refers to how often something happens. Period refers to the time it takes something to happen.

Frequency refers to how often something happens. Period refers to the time it takes something to happen. Lecture 2 Properties of Waves Frequency and period are distinctly different, yet related, quantities. Frequency refers to how often something happens. Period refers to the time it takes something to happen.

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

Otoacoustic Emissions

Otoacoustic Emissions Understanding and Using Otoacoustic Emissions by David T. Kemp The incredible turned out to be true! Dr. David T. Kemp Professor of Auditory Biophysics University College London Otoacoustic emission is

More information

Chapter 1: Introduction to digital audio

Chapter 1: Introduction to digital audio Chapter 1: Introduction to digital audio Applications: audio players (e.g. MP3), DVD-audio, digital audio broadcast, music synthesizer, digital amplifier and equalizer, 3D sound synthesis 1 Properties

More information

Effects of Medial Olivocochlear Auditory Reflex Activation on Cochlear Vibration

Effects of Medial Olivocochlear Auditory Reflex Activation on Cochlear Vibration University of Iowa Honors Theses University of Iowa Honors Program Spring 2017 Effects of Medial Olivocochlear Auditory Reflex Activation on Cochlear Vibration Alexandra Redfern Shawn Goodman University

More information

A Bidirectional Analog VLSI Cochlear Model

A Bidirectional Analog VLSI Cochlear Model A Bidirectional Analog VLSI Cochlear Model Lloyd Watts Richard F. Lyon 1 Carver Mead Department of Computer Science California Institute of Technology Pasadena, CA USA 91125 Abstract A novel circuit is

More information

Chapter 3: Anatomy and physiology of the sensory auditory mechanism

Chapter 3: Anatomy and physiology of the sensory auditory mechanism Chapter 3: Anatomy and physiology of the sensory auditory mechanism Objectives (1) Anatomy of the inner ear Functions of the cochlear and vestibular systems Three compartments within the cochlea and membranes

More information

The clinical Link. Distortion Product Otoacoustic Emission

The clinical Link. Distortion Product Otoacoustic Emission Distortion product otoacoustic emissions: Introduction Michael P. Gorga, Ph.D. Boys Town National Research Hospital Work supported by the NIH Collaborators on BTNRH OAE Projects Stephen Neely Kathy Beauchaine

More information

Acoustics Research Institute

Acoustics Research Institute Austrian Academy of Sciences Acoustics Research Institute Modeling Modelingof ofauditory AuditoryPerception Perception Bernhard BernhardLaback Labackand andpiotr PiotrMajdak Majdak http://www.kfs.oeaw.ac.at

More information

Sources and Mechanisms of DPOAE Generation: Implications for the Prediction of Auditory Sensitivity

Sources and Mechanisms of DPOAE Generation: Implications for the Prediction of Auditory Sensitivity Sources and Mechanisms of DPOAE Generation: Implications for the Prediction of Auditory Sensitivity Lauren A. Shaffer, Robert H. Withnell, Sumit Dhar, David J. Lilly, Shawn S. Goodman, and Kelley M. Harmon

More information

Estimating auditory filter bandwidth using distortion product otoacoustic emissions

Estimating auditory filter bandwidth using distortion product otoacoustic emissions Downloaded from vbn.aau.dk on: januar 27, 219 Aalborg Universitet Estimating auditory filter bandwidth using distortion product otoacoustic emissions Rukjær, Andreas Harbo; Hauen, Sigurd van; Ordoñez Pizarro,

More information

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear.

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear There are three components of the outer ear: Pinna: the fleshy outer part of the ear which

More information

More robust estimates for DPOAE level at audiometric frequencies

More robust estimates for DPOAE level at audiometric frequencies Psychological and Physiological Acoustics (others): Paper ICA216-88 More robust estimates for DPOAE level at audiometric frequencies Dorte Hammershøi (a), Rodrigo Ordoñez (b), Anders Tornvig Christensen

More information

Otoacoustic Emissions As A Test Of Noise-Induced Hearing Loss. Brenda L Lonsbury-Martin PhD

Otoacoustic Emissions As A Test Of Noise-Induced Hearing Loss. Brenda L Lonsbury-Martin PhD Otoacoustic Emissions As A Test Of Noise-Induced Hearing Loss Brenda L Lonsbury-Martin PhD Department of Otolaryngology--Head & Neck Surgery Loma Linda University Medical Center blonsbury-martin@llu.edu

More information

Introduction. IAPA: June 04 1

Introduction. IAPA: June 04 1 Introduction Conflicting views on the prevalence and nature of otoacoustic emission [OAE] abnormalities in ARNSHL families (Morell et al, 1998; Cohn & Kelley, 1999). Detailed study of OAEs in greater number

More information

Healthy Organ of Corti. Loss of OHCs. How to use and interpret the TEN(HL) test for diagnosis of Dead Regions in the cochlea

Healthy Organ of Corti. Loss of OHCs. How to use and interpret the TEN(HL) test for diagnosis of Dead Regions in the cochlea 'How we do it' Healthy Organ of Corti How to use and interpret the TEN(HL) test for diagnosis of s in the cochlea Karolina Kluk¹ Brian C.J. Moore² Mouse IHCs OHCs ¹ Audiology and Deafness Research Group,

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

by Maico Diagnostics

by Maico Diagnostics Diagnostic OAE-Tympanometry Combination System by Maico Diagnostics ERO SCAN Pro 3 tests with one probe fit Electronic medical records (EMR), ready Link results to patient's electronic chart with EroScan

More information

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, auditory system, & pitch perception Chapter 11, pages 268-288 Corrections: None needed Announcements: At the beginning of class, we went over some demos from the virtual

More information

ID# Final Exam PS325, Fall 1997

ID# Final Exam PS325, Fall 1997 ID# Final Exam PS325, Fall 1997 Good luck on this exam. Answer each question carefully and completely. Keep your eyes foveated on your own exam, as the Skidmore Honor Code is in effect (as always). Have

More information

Auditory nerve model for predicting performance limits of normal and impaired listeners

Auditory nerve model for predicting performance limits of normal and impaired listeners Heinz et al.: Acoustics Research Letters Online [DOI 1.1121/1.1387155] Published Online 12 June 21 Auditory nerve model for predicting performance limits of normal and impaired listeners Michael G. Heinz

More information

Hearing Evaluation: Diagnostic Approach

Hearing Evaluation: Diagnostic Approach Hearing Evaluation: Diagnostic Approach Hearing Assessment Purpose - to quantify and qualify in terms of the degree of hearing loss, the type of hearing loss and configuration of the hearing loss - carried

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

HEARING. Structure and Function

HEARING. Structure and Function HEARING Structure and Function Rory Attwood MBChB,FRCS Division of Otorhinolaryngology Faculty of Health Sciences Tygerberg Campus, University of Stellenbosch Analyse Function of auditory system Discriminate

More information