Tinnitus Signs and symptoms

Size: px
Start display at page:

Download "Tinnitus Signs and symptoms"

Transcription

1 Tinnitus Tinnitus is the hearing of sound when no external sound is present.[1] While often described as a ringing, it may also sound like a clicking, hiss or roaring.[2] Rarely, unclear voices or music are heard.[3] The sound may be soft or loud, low pitched or high pitched and appear to be coming from one ear or both.[2] Most of the time, it comes on gradually.[3] In some people, the sound causes depression, anxiety or interferes with concentration.[2] Tinnitus is not a disease but a symptom that can result from a number of underlying causes. One of the most common causes is noise induced hearing loss. Other causes include: ear infections, disease of the heart or blood vessels, Ménière's disease, brain tumors, emotional stress, exposure to certain medications, a previous head injury, and earwax.[2][4] It is more common in those with depression.[3] The diagnosis of tinnitus is usually based on the person's description, A number of questionnaires exist that assess how much tinnitus is interfering with a person's life.[3] The diagnosis is commonly assisted with an audiogram and neurological exam.[1][3] If certain problems are found, medical imaging, such as with MRI, may be performed. Other tests are suitable when tinnitus occurs with the same rhythm as the heartbeat. Occasionally, the sound may be heard by someone else using a stethoscope, in which case it is known as objective tinnitus.[3] Prevention involves avoiding loud noise.[2] If there is an underlying cause, treating it may lead to improvements.[3] Otherwise, typically, management involves talk therapy.[5] Sound generators or hearing aids may help some.[2] As of 2013, there are no effective medications.[3] It is common, affecting about 10 15% of people. Most, however, tolerate it well with its being a significant problem in only 1 2% of people.[5] The word tinnitus is from the Latin tinnīre which means "to ring".[3] Signs and symptoms Tinnitus can be perceived in one or both ears or in the head. Tinnitus is the description of a noise inside a person s head in the absence of auditory stimulation. The noise can be described in many different ways but the most common description of the tinnitus is a pure tone sound. It is usually described as a ringing noise but, in some patients, it takes the form of a high pitched whining, electric buzzing, hissing, humming, tinging or whistling sound or as ticking, clicking, roaring, "crickets" or "tree frogs" or "locusts (cicadas)", tunes, songs, beeping, sizzling, sounds that slightly resemble human voices or even a pure steady tone like that heard during a hearing test and, in some cases, pressure changes from the interior ear.[6] It has also been described as a "whooshing" sound because of acute muscle spasms, as of wind or waves.[7] Tinnitus can be intermittent or it can be continuous: in the latter case, it can be the cause of great distress. In some individuals, the intensity can be changed by shoulder, head, tongue, jaw or eye movements.[8]

2 Most people with tinnitus have some degree of hearing loss:[9] they are often unable to clearly hear external sounds that occur within the same range of frequencies as their "phantom sounds".[10] This has led to the suggestion that one cause of tinnitus might be a homeostatic response of central dorsal cochlear nucleus auditory neurons that makes them hyperactive in compensation to auditory input loss.[11] The sound perceived may range from a quiet background noise to one that can be heard even over loud external sounds. The specific type of tinnitus called pulsatile tinnitus is characterized by hearing the sounds of one's own pulse or muscle contractions, which is typically a result of sounds that have been created from the movement of muscles near to one's ear, changes within the canal of one's ear or issues related to blood flow of the neck or face.[12] Course There has been little research on the course of tinnitus and most research has been retrospective. An Australian study of participants aged years found that 35% of participants reported that their tinnitus was present all the time and 4% rated their tinnitus as annoying. Findings from a retrospective National Study of Hearing found that, for 25% of people surveyed, the perceived volume of their tinnitus increased over time while, for 75%, it did not. The rate of annoyance decreased for 31% of people from onset of tinnitus to the middle time. A study of the natural history of tinnitus in older adults found that, for women, tinnitus increased for 25%, decreased in 58%, leaving 17% unchanged. The study found that, for men, tinnitus increased in 8%, decreased in 39%, leaving 53% unchanged. Information about the course of tinnitus would benefit from prospective studies investigating change over time as these studies may potentially be more accurate.[13] Psychological Persistent tinnitus may cause irritability, fatigue and, on occasions, clinical depression[14][15] and musical hallucinations.[16] Tinnitus annoyance is more strongly associated with psychological condition than loudness or frequency range.[17][18][19] Other psychological problems such as depression, anxiety, sleep disturbances and concentration difficulties are common in those with worse tinnitus.[20][21][22] In clinical settings, 45% of people seen for tinnitus are found to have had an anxiety disorder in their lifetime.[23] As part of the idea that the central auditory system may be implicated into the tinnitus development, serotonin has also been implicated. Indeed, serotonin has been postulated to be involved in plastic changes in the brain. Serotonin re uptake inhibitors (such as some anti depressant drugs) have often been used for this reason.[24] However those medications do not benefit in a consistent fashion on non depressant people.[25] Psychological research has looked at the tinnitus distress reaction (TDR) to account for

3 differences in tinnitus severity.[20] Research has stigmatized people with severe tinnitus by implying they have personality disorders, such as neuroticism, anxiety sensitivity, and catastrophic thinking, which all predispose increased TDR.[26][27][28] These findings suggest that at the initial perception of tinnitus, conditioning links tinnitus with negative emotions, such as fear and anxiety from unpleasant stimuli at the time. This enhances activity in the limbic system and autonomic nervous system, thus increasing tinnitus awareness and annoyance.[29] Causes There are two types of tinnitus: subjective tinnitus and objective tinnitus.[3] Tinnitus is usually subjective, meaning that others cannot hear it.[3] Subjective tinnitus has been also called "tinnitus aurium" "nonauditory" and "nonvibratory" tinnitus. Occasionally, tinnitus may be heard by someone else using a stethoscope: in which case, it is objective tinnitus.[3] Objective tinnitus has been called "pseudo tinnitus" or "vibratory" tinnitus. Subjective tinnitus Subjective tinnitus is the most frequent type of tinnitus. It can have many possible causes but, most commonly, results from hearing loss. A frequent cause of subjective tinnitus is noise exposure which damages hair cells in the inner ear causing tinnitus. Subjective tinnitus can only be heard by the affected person and is caused by otology, neurology, infection or drugs.[30] There is a growing body of evidence suggesting that tinnitus is a consequence of neuroplastic alterations in the central auditory pathway. These alterations are assumed to result from a disturbed sensory input, caused by hearing loss.[31] Hearing loss could indeed cause a homeostatic response of neurons in the central auditory system, and therefore cause tinnitus.[32] Despite the opinion amongst researchers that tinnitus is primarily a central nervous system pathology, there certainly exists a class of people whose tinnitus is peripherally based.[33] Hearing loss The most common cause of tinnitus is noise induced hearing loss. Hearing loss may be implicated even for people with normal audiograms.[32] Hearing loss may have many different causes; but among tinnitus subjects, the major cause is cochlear damage.[31] Ototoxic drugs (such as aspirin) can also cause subjective tinnitus, as they may cause hearing loss, or increase the damage done by exposure to loud noise. Those damages can occur even at doses that are not considered ototoxic.[34] Tinnitus is also a classical side effect of quinidine, a Class IA anti arrhythmic. Over 260 medications have been reported to cause tinnitus as a side effect.[35] In many cases, however, no underlying cause can be identified.[2] Tinnitus can also occur due to the discontinuation of therapeutic doses of benzodiazepines. It can sometimes be a protracted symptom of benzodiazepine withdrawal and may persist for

4 many months.[36][37] Associated Factors Factors associated with tinnitus include:[38] ear problems and hearing loss: conductive hearing loss external ear infection acoustic shock loud noise or music[39] cerumen (earwax) impaction middle ear effusion superior canal dehiscence sensorineural hearing loss excessive or loud noise presbycusis (age associated hearing loss) Ménière's disease endolymphatic hydrops acoustic neuroma mercury or lead poisoning ototoxic medications neurologic disorders: Arnold Chiari malformation multiple sclerosis head injury skull fracture closed head injury whiplash injury temporomandibular joint dysfunction giant cell arteritis metabolic disorders: thyroid disease hyperlipidemia vitamin B12 deficiency iron deficiency anemia psychiatric disorders depression anxiety other factors: tension myositis syndrome fibromyalgia vasculitis hypertonia (muscle tension)

5 thoracic outlet syndrome Lyme disease hypnagogia migraine sleep paralysis glomus tympanicum tumor anthrax vaccines which contain the anthrax protective antigen Some psychedelic drugs can produce temporary tinnitus like symptoms as a side effect 5 MeO DET[40] diisopropyltryptamine (DiPT)[41] benzodiazepine withdrawal[36][37] nasal congestion intracranial hyper or hypotension caused by, for example, encephalitis or a cerebrospinal fluid leak Objective tinnitus Objective tinnitus can be detected by other people and is usually caused by myoclonus or a vascular condition. In some cases, tinnitus is generated by a self sustained oscillation within the ear. This is called objective tinnitus which can arise from muscle spasms around the middle ear.[42] Homeostatic control mechanisms exist to correct the problem within a minute after onset and is normally accompanied by a slight reduction in hearing sensitivity followed by a feeling of fullness in the ear.[43] Objective tinnitus can most often can be heard as a sound outside the ear, as spontaneous otoacoustic emissions (SOAEs) that can form beats with and lock into external tones.[44] The majority of the people are unaware of their SOAEs; whereas portions of 1 9% perceive a SOAE as an annoying tinnitus.[45] Pulsatile tinnitus Pulsatile tinnitus can be a symptom of intracranial vascular abnormalities and should be evaluated for bruits. Some people experience a sound that beats in time with their pulse (pulsatile tinnitus, or vascular tinnitus).[46] Pulsatile tinnitus is usually objective in nature, resulting from altered blood flow, increased blood turbulence near the ear (such as from atherosclerosis, venous hum,[47] but it can also arise as a subjective phenomenon from an increased awareness of blood flow in the ear.[46] Rarely, pulsatile tinnitus may be a symptom of potentially life threatening conditions such as carotid artery aneurysm[48] or carotid artery dissection.[49] Pulsatile tinnitus may also indicate vasculitis, or more specifically, giant cell arteritis. Pulsatile tinnitus may also be an indication of idiopathic intracranial hypertension.[50] Pathophysiology One of the possible mechanisms relies on otoacoustic emissions. The inner ear contains tens of thousands of minute inner hair cells with stereocilia which vibrate in response to sound waves and outer hair cells which convert neural signals into tension on the vibrating basement

6 membrane. The sensing cells are connected with the vibratory cells through a neural feedback loop, whose gain is regulated by the brain. This loop is normally adjusted just below onset of self oscillation, which gives the ear spectacular sensitivity and selectivity. If something changes, it is easy for the delicate adjustment to cross the barrier of oscillation and, then, tinnitus results. Exposure to excessive sound kills hair cells and studies have shown that, as hair cells are lost, different neurons are activated, activating auditory parts of the brain and giving the perception of sound.[citation needed] Another possible mechanism underlying tinnitus is damage to the receptor cells. Although receptor cells can be regenerated from the adjacent supporting Deiters cells after injury in birds, reptiles and amphibians, it is believed that, in mammals, they can be produced only during embryogenesis. Although mammalian Deiters cells reproduce and position themselves appropriately for regeneration, they have not been observed to transdifferentiate into receptor cells except in tissue culture experiments.[51][52] Therefore, if these hairs become damaged, through prolonged exposure to excessive sound levels, for instance, then deafness to certain frequencies results. In tinnitus, they may relay information that an externally audible sound is present at a certain frequency when it is not. The mechanisms of subjective tinnitus are often obscure. While it is not surprising that direct trauma to the inner ear can cause tinnitus, other apparent causes (e.g., temporomandibular joint dysfunction and dental disorders) are difficult to explain. Research has proposed there are two distinct categories of subjective tinnitus: otic tinnitus, caused by disorders of the inner ear or the acoustic nerve, and somatic tinnitus, caused by disorders outside the ear and nerve, but still within the head or neck. It is further hypothesized somatic tinnitus may be due to "central crosstalk" within the brain, as certain head and neck nerves enter the brain near regions known to be involved in hearing.[53] It may be caused by increased neural activity in the auditory brainstem where the brain processes sounds, causing some auditory nerve cells to become over excited. The basis of this theory is most people with tinnitus also have hearing loss,[9] and the frequencies they cannot hear are similar to the subjective frequencies of their tinnitus.[10] Models of hearing loss and the brain support the idea a homeostatic response of central dorsal cochlear nucleus neurons could result in them being hyperactive in a compensation process to the loss of hearing input.[11] Diagnosis Even when tinnitus is the primary complaint, audiological evaluation is usually preceded by examination by an ENT to diagnose treatable conditions like middle ear infection, acoustic neuroma, concussion, otosclerosis, etc.[54] Evaluation of tinnitus will include a hearing test (audiogram), measurement of acoustic

7 parameters of the tinnitus like pitch and loudness, and psychological assessment of comorbid conditions like depression, anxiety, and stress that are associated with severity of the tinnitus. The accepted definition of chronic tinnitus, as compared to normal ear noise experience, is five minutes of ear noise occurring at least twice a week.[55] However, people with chronic tinnitus often experience the noise more frequently than this and can experience it continuously or regularly, such as during the night when there is less environmental noise to mask the sound. Audiology Since most persons with tinnitus also have hearing loss, a pure tone hearing test resulting in an audiogram may help diagnose a cause, though some persons with tinnitus do not have hearing loss. An audiogram may also facilitate fitting of a hearing aid in those cases where hearing loss is significant. The pitch of tinnitus is often in the range of the hearing loss. A hearing aid boosting the attenuated frequencies may at least partly mask tinnitus by raising the background level of sound in the tuned frequency range. Psychoacoustics Acoustic qualification of tinnitus will include measurement of several acoustic parameters like pitch, or frequency in cases of monotone tinnitus, or frequency range and bandwidth in cases of narrow band noise tinnitus, loudness in db above hearing threshold at the indicated frequency, mixing point, and minimum masking level.[56] In most cases, tinnitus pitch or frequency range is between 5000 Hz and 8000 Hz, and loudness less than 10 db above the hearing threshold.[medical citation needed] Another relevant parameter of tinnitus is residual inhibition, the temporary suppression and/or disappearance of tinnitus following a period of masking. The degree of residual inhibition may indicate how effective tinnitus maskers would be as a treatment modality.[57] An assessment of hyperacusis, a frequent accompaniment of tinnitus, may also be made. The measured parameter is Loudness Discomfort Level in db, the subjective level of acute discomfort at specified frequencies over the frequency range of hearing. This defines a dynamic range between the hearing threshold at that frequency and the loudness discomfort level. A compressed dynamic range over a particular frequency range is associated with subjective hyperacusis.[58] Normal hearing threshold is generally defined as 0 20 decibels (db). Normal loudness discomfort levels are db, with some authorities citing 100 db. A dynamic range of 55 db or less is indicative of hyperacusis. Severity The condition is often rated on a scale from "slight" to "catastrophic" according to the effects it has, such as interference with sleep, quiet activities and normal daily activities.[59] In an extreme case a man committed suicide after being told there was no cure.[60]

8 Assessment of psychological processes related to tinnitus involves measurement of tinnitus severity and distress (i.e. nature and extent of tinnitus related problems), measured subjectively by validated self report tinnitus questionnaires.[20] These questionnaires measure the degree of psychological distress and handicap associated with tinnitus, including effects on hearing, lifestyle, health and emotional functioning.[61][62][63][64] A broader assessment of general functioning, such as levels of anxiety, depression, stress, life stressors and sleep difficulties, is also important in the assessment of tinnitus due to higher risk of negative well being across these areas, which may be affected by and/or exacerbate the tinnitus symptoms for the individual.[65] Overall, current assessment measures are aimed to identify individual levels of distress and interference, coping responses and perceptions of tinnitus in order to inform treatment and monitor progress. However, wide variability, inconsistencies and lack of consensus regarding assessment methodology are evidenced in the literature, limiting comparison of treatment effectiveness.[66] Developed to guide diagnosis or classify severity, most tinnitus questionnaires have also been shown to be treatment sensitive outcome measures.[67] Pulsatile tinnitus If the examination reveals a bruit (sound due to turbulent blood flow), imaging studies such as transcranial doppler (TCD) or magnetic resonance angiography (MRA) should be performed.[68] Auditory evoked response Tinnitus can be evaluated with most auditory evoked potentials: however, results may be inconsistent. Results must be compared to age and hearing matched control subjects to be reliable. This inconsistent reporting may be due to many reasons: differences in the origin of the tinnitus, ABR recording methods and selection criteria of control groups. Since research shows conflicting evidence, more research on the relationship between tinnitus and auditory evoked potentials should be carried out before these measurements are used clinically. Differential diagnosis Other potential sources of the sounds normally associated with tinnitus should be ruled out. For instance, two recognized sources of high pitched sounds might be electromagnetic fields common in modern wiring and various sound signal transmissions. A common and often misdiagnosed condition that mimics tinnitus is radio frequency (RF) hearing, in which subjects have been tested and found to hear high pitched transmission frequencies that sound similar to tinnitus.[69] Prevention Prolonged exposure to loud sound or noise levels can lead to tinnitus.[70] Earplugs or other measures can help with prevention. Several medicines have ototoxic effects, and can have a cumulative effect that can increase the damage done by noise. If ototoxic medications must be administered, close attention by the

9 physician to prescription details, such as dose and dosage interval, can reduce the damage done.[71] Management If there is an underlying cause, treating it may lead to improvements.[3] Otherwise, the primary treatment for tinnitus is talk therapy[5] and sound therapy; there are no effective medications.[3] Psychological The best supported treatment for tinnitus is a type of counseling called cognitive behavioral therapy (CBT) which can be delivered via the internet or in person.[5][72] It decreases the amount of stress those with tinnitus feel.[73] These benefits appear to be independent of any effect on depression or anxiety in an individual.[72] Acceptance and commitment therapy (ACT) also shows promise in the treatment of tinnitus.[74] Relaxation techniques may also be useful.[3] A clinical protocol called Progressive Tinnitus Management for treatment of tinnitus has been developed by the United States Department of Veterans Affairs.[75] Medications As of 2014 there were no medications effective for tinnitus.[3][70] There is not enough evidence to determine if antidepressants[76] or acamprosate is useful.[77] While there is tentative evidence for benzodiazepines, it is insufficient to support usage.[3] Anticonvulsants have not been found to be useful.[3] Botulinum toxin injection has been tried with some success in cases of objective tinnitus (palatal tremor).[78] Other The use of sound therapy by either hearing aids or tinnitus maskers helps the brain ignore the specific tinnitus frequency. Although these methods are poorly supported by evidence, there are no negative effects.[3][79] There is some tentative evidence supporting tinnitus retraining therapy.[3] There is little evidence supporting the use of transcranial magnetic stimulation.[3][80] It is thus not recommended.[70] Alternative medicine Ginkgo biloba does not appear to be effective.[81] Tentative evidence supports zinc supplementation[82] and in those with sleep problems, melatonin.[83] The American Academy of Otolaryngology, however, recommends against melatonin and zinc.[70] Prognosis While there is no cure, most people with tinnitus get used to it over time; for a minority, it remains a significant problem.[5]

Audiology (Clinical Applications)

Audiology (Clinical Applications) (Clinical Applications) Sasan Dabiri, M.D. Assistant Professor Department of Otorhinolaryngology Head & Neck Surgery Amir A lam hospital Tehran University of Medical Sciences Last Updated in February 2015

More information

Ms Shantelle Chandra. Ms Chatu Nelumdeniya. Audiologist Dilworth Hearing. Clinic Manager - Takapuna Dilworth Hearing

Ms Shantelle Chandra. Ms Chatu Nelumdeniya. Audiologist Dilworth Hearing. Clinic Manager - Takapuna Dilworth Hearing Ms Chatu Nelumdeniya Audiologist Dilworth Hearing Ms Shantelle Chandra Clinic Manager - Takapuna Dilworth Hearing 14:00-14:55 WS #138: Tinnitus and Hearing Loss 15:05-16:00 WS #150: Tinnitus and Hearing

More information

THE EAR Dr. Lily V. Hughes, Audiologist

THE EAR Dr. Lily V. Hughes, Audiologist WHY AM I HERE? HEARING & THE BRAIN THE EAR Dr. Lily V. Hughes, Audiologist Fairbanks Hearing & Balance Center at the ENT Clinic 1 out of every 5 adults has hearing loss. That s more than 48 million people

More information

Doctor, what causes the noise in my ear?

Doctor, what causes the noise in my ear? Doctor, what causes the noise in my ear? What causes tinnitus? The noise in the ears that only you can hear is called tinnitus, a most common disorder. Some people hear a hissing in the ear, others a ringing

More information

X-Plain Tinnitus Reference Summary

X-Plain Tinnitus Reference Summary X-Plain Tinnitus Reference Summary Introduction Tinnitus causes a person to hear a persistent sound in the ear when no sound exists. According to the American Tinnitus Association, at least 12 million

More information

Learning about Tinnitus

Learning about Tinnitus Learning about Tinnitus Guide to help you understand and manage your tinnitus Content Your health and your goals 4 What is that sound in your ears? 5 What causes tinnitus? 6 Tinnitus and your brain 7 What

More information

CLASSIFICATION. 2 main systems:

CLASSIFICATION. 2 main systems: DEFINITION Sound sensation that originates in the head and is not attributable to any perceivable external sound. (popping, clicking, pulsing & pure or multiple tones) Sounds of differing quality Mild

More information

Learning about Tinnitus

Learning about Tinnitus Learning about Tinnitus Guide to help you understand and manage your tinnitus Content Your health and your goals!........................................... 4 What s that ringing in my ears?........................................

More information

Michigan Ear Institute. Head Noise or Tinnitus.

Michigan Ear Institute. Head Noise or Tinnitus. Michigan Ear Institute Head Noise or Tinnitus www.michiganear.com DOCTORS Jack M. Kartush, MD Dennis I. Bojrab, MD Michael J. LaRouere, MD John J. Zappia, MD, FACS Eric W. Sargent, MD, FACS Seilesh C.

More information

Guide to Your Hearing Health

Guide to Your Hearing Health Guide to Your Hearing Health Hearing loss is the 3rd most common chronic physical condition in the U.S. X Don t suffer in silence we ve got solutions to help keep you connected! Table of Contents Hearing

More information

THE MECHANICS OF HEARING

THE MECHANICS OF HEARING CONTENTS The mechanics of hearing Hearing loss and the Noise at Work Regulations Loudness and the A weighting network Octave band analysis Hearing protection calculations Worked examples and self assessed

More information

What is tinnitus and how can we best manage it?

What is tinnitus and how can we best manage it? What is tinnitus and how can we best manage it? Deborah Hall Nottingham Hearing Biomedical Research Unit Nottingham: The UK s interdisciplinary hub for hearing research Basic Translational Clinical Advancing

More information

INTRODUCTION TO AUDIOLOGY Hearing Balance Tinnitus - Treatment

INTRODUCTION TO AUDIOLOGY Hearing Balance Tinnitus - Treatment INTRODUCTION TO AUDIOLOGY Hearing Balance Tinnitus - Treatment What is Audiology? Audiology refers to the SCIENCE OF HEARING AND THE STUDY OF THE AUDITORY PROCESS (Katz, 1986) Audiology is a health-care

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

PERIPHERAL AND CENTRAL AUDITORY ASSESSMENT

PERIPHERAL AND CENTRAL AUDITORY ASSESSMENT PERIPHERAL AND CENTRAL AUDITORY ASSESSMENT Ravi Pachigolla, MD Faculty Advisor: Jeffery T. Vrabec, MD The University of Texas Medical Branch At Galveston Department of Otolaryngology Grand Rounds Presentation

More information

Brad May, PhD Johns Hopkins University

Brad May, PhD Johns Hopkins University Brad May, PhD Johns Hopkins University When the ear cannot function normally, the brain changes. Brain deafness contributes to poor speech comprehension, problems listening in noise, abnormal loudness

More information

Acquired Deafness Loss of hearing that occurs or develops sometime in the course of a lifetime, but is not present at birth.

Acquired Deafness Loss of hearing that occurs or develops sometime in the course of a lifetime, but is not present at birth. Page 1 of 5 URMC» Audiology Glossary of Terms A Acoustic Neuroma A tumor, usually benign, which develops on the hearing and balance nerves and can cause gradual hearing loss, tinnitus, and dizziness. Acquired

More information

TINNITUS is commonly referred to as "ringing

TINNITUS is commonly referred to as ringing Tinnitus Guide TINNITUS is commonly referred to as "ringing in the ears." Tinnitus can create many unique perceptions of sound, including humming, hissing, whistling, swooshing, and clicking. In some rare

More information

Subjective Hearing Problems in Normal-Hearing Tinnitus Subjects. Background

Subjective Hearing Problems in Normal-Hearing Tinnitus Subjects. Background Subjective Hearing Problems in Normal-Hearing Tinnitus Subjects Background Most experts agree that the tinnitus signal is generated at least in part by discordant damage of outer hair cells (OHCs). Discordant

More information

Audiology Lunch & Learn DR. BRANDI R. SHEPARD

Audiology Lunch & Learn DR. BRANDI R. SHEPARD Audiology Lunch & Learn DR. BRANDI R. SHEPARD Professionally Practicing for 17 years Masters degree in 2003 I managed 5 hearing aid clinics 2005 Started my own Audiology Clinic 2007 Earned my doctorate

More information

Occupational Noise Exposure 29 CFR

Occupational Noise Exposure 29 CFR Occupational Noise Exposure 29 CFR 1910.95 Is There a Problem? More than 30 million Americans are exposed to hazardous sound levels on a regular basis 10 million have suffered irreversible noise induced

More information

RCMP and VETERANS AFFAIRS CANADA Kingston, NS October 18th, 2016 Hearing Loss, Tinnitus, Hyperacusis & PTSD

RCMP and VETERANS AFFAIRS CANADA Kingston, NS October 18th, 2016 Hearing Loss, Tinnitus, Hyperacusis & PTSD RCMP and VETERANS AFFAIRS CANADA Kingston, NS October 18th, 2016 Hearing Loss, Tinnitus, Hyperacusis & PTSD Dr. David Lyon TOP REASONS FOR DISABILITY PENSIONS/CLAIMS FOM CURRENT/FORMER MOUNTIES TO VETERANS

More information

Guide to Your Hearing Health

Guide to Your Hearing Health X Guide to Your Hearing Health Hearing loss is the 3rd most common chronic physical condition in the U.S. Don t suffer in silence we ve got solutions to help keep you connected! Are you having difficulty

More information

Hearing Evaluation: Diagnostic Approach

Hearing Evaluation: Diagnostic Approach Hearing Evaluation: Diagnostic Approach Hearing Assessment Purpose - to quantify and qualify in terms of the degree of hearing loss, the type of hearing loss and configuration of the hearing loss - carried

More information

ﺎﻨﺘﻤﻠﻋ ﺎﻣ ﻻا ﺎﻨﻟ ﻢﻠﻋ ﻻ ﻚﻧﺎﺤﺒﺳ اﻮﻟﺎﻗ ﻢﻴﻜﺤﻟا ﻢﻴﻠﻌﻟا ﺖﻧأ ﻚﻧا ﻢﻴﻈﻌﻟا ﷲا قﺪﺻ HEARING LOSS

ﺎﻨﺘﻤﻠﻋ ﺎﻣ ﻻا ﺎﻨﻟ ﻢﻠﻋ ﻻ ﻚﻧﺎﺤﺒﺳ اﻮﻟﺎﻗ ﻢﻴﻜﺤﻟا ﻢﻴﻠﻌﻟا ﺖﻧأ ﻚﻧا ﻢﻴﻈﻌﻟا ﷲا قﺪﺻ HEARING LOSS قالوا سبحانك لا علم لنا الا ما علمتنا انك أنت العليم الحكيم صدق االله العظيم HEARING LOSS 1 Hearing loss: Deviation from normal hearing in one or both ears. Hearing handicap: This term refers to total

More information

09/07/2015. Chear Ltd: independent audiology centre Hyperacusis: Assessment and Management in Children MULTIPLE CHOICE QUESTION 1

09/07/2015. Chear Ltd: independent audiology centre   Hyperacusis: Assessment and Management in Children MULTIPLE CHOICE QUESTION 1 Hyperacusis: Assessment and Management in Children Josephine Marriage PhD BAA Student Conference 3rd July 2015 Chear Ltd: independent audiology centre www.chears.co.uk Independent centre for second opinion

More information

Ear Exam and Hearing Tests

Ear Exam and Hearing Tests Ear Exam and Hearing Tests Test Overview A thorough evaluation of a person's hearing requires an ear exam and hearing tests. In children, normal hearing is important for language to develop correctly.

More information

Glossary For Parents. Atresia: closure of the ear canal or absence of an ear opening.

Glossary For Parents. Atresia: closure of the ear canal or absence of an ear opening. Glossary For Parents This is not a complete or comprehensive glossary of audiologic and medical terms. It does include many technical and often unfamiliar terms that parents may hear used in connection

More information

Issues faced by people with a Sensorineural Hearing Loss

Issues faced by people with a Sensorineural Hearing Loss Issues faced by people with a Sensorineural Hearing Loss Issues faced by people with a Sensorineural Hearing Loss 1. Decreased Audibility 2. Decreased Dynamic Range 3. Decreased Frequency Resolution 4.

More information

Hearing 101. Presented by: Hearing Neuro Health, Bridgett Wallace, PT, DPT. Brad Melancon, MS, FAAA

Hearing 101. Presented by: Hearing Neuro Health, Bridgett Wallace, PT, DPT. Brad Melancon, MS, FAAA Hearing 101 Brought to you by 360 Balance & Hearing Presented by: Bridgett Wallace, PT, DPT Physical Therapist and Educator Owner of 360 Balance & Hearing 20+ years specializing in dizziness & balance

More information

Diagnosing and Treating Adults with Hearing Loss

Diagnosing and Treating Adults with Hearing Loss Diagnosing and Treating Adults with Hearing Loss Diana Callesano, Au.D., CCC-A Eric Nelson, Au.D., CCC-A Clinical Audiologists Department of Otolaryngology Head and Neck Surgery Hearing and Speech Services

More information

Hearing Loss: From Audiogram to RFC Learn How to Effectively Represent Deaf and Hard of Hearing Claimants

Hearing Loss: From Audiogram to RFC Learn How to Effectively Represent Deaf and Hard of Hearing Claimants V Hearing Loss: From Audiogram to RFC Learn How to Effectively Represent Deaf and Hard of Hearing Claimants Michael Liner, Esq. Mark Mehle, MD Andrew November, Esq. Hearing Loss: From Audiogram to RFC

More information

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment Acoustics, signals & systems for audiology Psychoacoustics of hearing impairment Three main types of hearing impairment Conductive Sound is not properly transmitted from the outer to the inner ear Sensorineural

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

Chapter x. Causes of Hearing Damage. 1. Introduction.

Chapter x. Causes of Hearing Damage. 1. Introduction. Chapter x Causes of Hearing Damage 1. Introduction. 2. Noise induced hearing damage. 3. Other causes of hearing loss. 4. Tests and Exercises. 5. References. 1. Introduction. This chapter explains the main

More information

Audiometric Techniques Program in Audiology and Communication Sciences Pediatric Audiology Specialization

Audiometric Techniques Program in Audiology and Communication Sciences Pediatric Audiology Specialization Audiometric Techniques Program in Audiology and Communication Sciences Pediatric Audiology Specialization The contents of this presentation were developed under a grant from the US Department of Education,

More information

Audiology Curriculum Foundation Course Linkages

Audiology Curriculum Foundation Course Linkages Audiology Curriculum Foundation Course Linkages Phonetics (HUCD 5020) a. Vowels b. Consonants c. Suprasegmentals d. Clinical transcription e. Dialectal variation HUCD 5140 HUCD 6360 HUCD 6560 HUCD 6640

More information

Tinnitus, Hypo-Hyperacusis Questionnaire

Tinnitus, Hypo-Hyperacusis Questionnaire 40, 1 er boulevard Terrasse-Vaudreuil (Québec) J7V 5S5 Phone.: (514) 425-1554 Fax: (514) 425-4964 E-Mail: centredacouphene@bellnet.ca Name: Address: Date of birth: Phone number: Tinnitus, Hypo-Hyperacusis

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

photo courtesy of Oticon Glossary

photo courtesy of Oticon Glossary photo courtesy of Oticon Glossary 404.591.1884 www.childrensent.com American Sign Language (ASL): a manual language with its own word order and grammar, used primarily by people who are Deaf. Atresia (aural):

More information

Ear Disorders and Problems

Ear Disorders and Problems Ear Disorders and Problems Introduction Your ear has three main parts: outer, middle and inner. You use all of them to hear. There are many disorders and problems that can affect the ear. The symptoms

More information

An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss

An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss Sacred Heart University DigitalCommons@SHU Speech-Language Pathology Faculty Publications Speech-Language Pathology Spring 2017 An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

Audiology Curriculum Post-Foundation Course Topic Summaries

Audiology Curriculum Post-Foundation Course Topic Summaries Audiology Curriculum Post-Foundation Course Topic Summaries Speech and Language Speech and Language Acquisition HUCD 5150 This course acquaints students with current theories of language development, the

More information

The bloom guide to better hearing. Find out what you need to know about hearing loss and hearing aids with this helpful guide

The bloom guide to better hearing. Find out what you need to know about hearing loss and hearing aids with this helpful guide The bloom guide to better hearing Find out what you need to know about hearing loss and hearing aids with this helpful guide Let us help you find the best solution for your hearing Coming to terms with

More information

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979)

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979) Hearing The nervous system s cognitive response to sound stimuli is known as psychoacoustics: it is partly acoustics and partly psychology. Hearing is a feature resulting from our physiology that we tend

More information

Inner Ear Disorders. Information for patients and families

Inner Ear Disorders. Information for patients and families Inner Ear Disorders Information for patients and families Read this booklet to learn about: What are inner ear disorders Symptoms Tests you may need Treatment options Please visit the UHN Patient Education

More information

Introduction to Audiology: Global Edition

Introduction to Audiology: Global Edition Introduction to Audiology For these Global Editions, the editorial team at Pearson has collaborated with educators across the world to address a wide range of subjects and requirements, equipping students

More information

Emissions are low-intensity sounds that may be detected in the external ear canal by a microphone

Emissions are low-intensity sounds that may be detected in the external ear canal by a microphone OAEs Emissions are low-intensity sounds that may be detected in the external ear canal by a microphone OAE is a pre-neural phenomenon They can be measured even when the 8 th cranial nerve is severely damaged

More information

Cochlear Implant The only hope for severely Deaf

Cochlear Implant The only hope for severely Deaf Cochlear Implant The only hope for severely Deaf By: Dr. M. Sohail Awan, FCPS (ENT) Aga Khan University Hospital, Karachi - Pakistan For centuries, people believed that only a miracle could restore hearing

More information

What is Meniere's disease? What causes Meniere's disease?

What is Meniere's disease? What causes Meniere's disease? NIH Publication No 95-3403 November 1994 What is Meniere's disease? Meniere's disease is an abnormality of the inner ear causing a host of symptoms, including vertigo or severe dizziness, tinnitus or a

More information

Hearing Screening, Diagnostics and Intervention

Hearing Screening, Diagnostics and Intervention JCIH Newborn Hearing Screening Guidelines 1-3-6 Model By 1 month Screenhearing Hearing Screening, Diagnostics and Intervention By 3 months: Evaluate hearing and complete diagnosticaudiology and otolaryngology

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

Frequency refers to how often something happens. Period refers to the time it takes something to happen.

Frequency refers to how often something happens. Period refers to the time it takes something to happen. Lecture 2 Properties of Waves Frequency and period are distinctly different, yet related, quantities. Frequency refers to how often something happens. Period refers to the time it takes something to happen.

More information

Hearing: Physiology and Psychoacoustics

Hearing: Physiology and Psychoacoustics 9 Hearing: Physiology and Psychoacoustics Click Chapter to edit 9 Hearing: Master title Physiology style and Psychoacoustics The Function of Hearing What Is Sound? Basic Structure of the Mammalian Auditory

More information

Reference: Mark S. Sanders and Ernest J. McCormick. Human Factors Engineering and Design. McGRAW-HILL, 7 TH Edition. NOISE

Reference: Mark S. Sanders and Ernest J. McCormick. Human Factors Engineering and Design. McGRAW-HILL, 7 TH Edition. NOISE NOISE NOISE: It is considered in an information-theory context, as that auditory stimulus or stimuli bearing no informational relationship to the presence or completion of the immediate task. Human ear

More information

17.4 Sound and Hearing

17.4 Sound and Hearing You can identify sounds without seeing them because sound waves carry information to your ears. People who work in places where sound is very loud need to protect their hearing. Properties of Sound Waves

More information

HEARING IMPAIRMENT LEARNING OBJECTIVES: Divisions of the Ear. Inner Ear. The inner ear consists of: Cochlea Vestibular

HEARING IMPAIRMENT LEARNING OBJECTIVES: Divisions of the Ear. Inner Ear. The inner ear consists of: Cochlea Vestibular HEARING IMPAIRMENT LEARNING OBJECTIVES: STUDENTS SHOULD BE ABLE TO: Recognize the clinical manifestation and to be able to request appropriate investigations Interpret lab investigations for basic management.

More information

FINALLY, YOU CAN GET RELIEF FROM TINNI TUS. By Dr. Keith Darrow, PhD Harvard and MIT Trained NeuroScientist.

FINALLY, YOU CAN GET RELIEF FROM TINNI TUS. By Dr. Keith Darrow, PhD Harvard and MIT Trained NeuroScientist. FINALLY, YOU CAN GET RELIEF FROM TINNI TUS By Dr. Keith Darrow, PhD Harvard and MIT Trained NeuroScientist www.havebetterhearing.com INTRODUCTORY LETTER FROM DR. DARROW ABOUT THIS NEW AND IMPROVED SPECIAL

More information

Guidance on Identifying Non-Routine Cases of Hearing Loss

Guidance on Identifying Non-Routine Cases of Hearing Loss Guidance on Identifying Non-Routine Cases of Hearing Loss Introduction: The routine adult care pathways in the UK specifically fund hearing aid fitting, but provide no financial support for supplementary

More information

Silencing. tinnitus. 28 BPJ Issue 47

Silencing. tinnitus. 28 BPJ Issue 47 Silencing tinnitus 28 BPJ Issue 47 Tinnitus is a common, but frustrating problem for both patients and clinicians. In the majority of people tinnitus is a subjective, neurophysiological problem. However,

More information

Assisting in Otolaryngology

Assisting in Otolaryngology Assisting in Otolaryngology Learning Objectives Identify the structures and explain the functions of the external, middle, and internal ear. Describe the conditions that can lead to hearing loss, including

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

ID# Exam 2 PS 325, Fall 2009

ID# Exam 2 PS 325, Fall 2009 ID# Exam 2 PS 325, Fall 2009 As always, the Skidmore Honor Code is in effect. At the end of the exam, I ll have you write and sign something to attest to that fact. The exam should contain no surprises,

More information

Diagnostic Approach to Tinnitus

Diagnostic Approach to Tinnitus Diagnostic Approach to Tinnitus RICHARD W. CRUMMER, M.D., and GHINWA A. HASSAN, M.D. State University of New York-Downstate, Brooklyn, New York Tinnitus is a common disorder with many possible causes.

More information

Management of Ear, Hearing and Balance Disorders: Fact, Fiction, and Future

Management of Ear, Hearing and Balance Disorders: Fact, Fiction, and Future Management of Ear, Hearing and Balance Disorders: Fact, Fiction, and Future George W. Hicks, M,D. 7440 N. Shadeland Avenue, Suite 150 Indianapolis, IN 46250 904 N. Samuel Moore Parkway Mooresville, IN

More information

UNDERSTANDING HEARING LOSS

UNDERSTANDING HEARING LOSS Helping Babies and Toddlers get a Strong Start UNDERSTANDING HEARING LOSS You have recently been told that your child has a hearing loss. You may feel emotional and overwhelmed as you begin to learn more

More information

UNDERSTANDING HEARING LOSS

UNDERSTANDING HEARING LOSS Helping Babies and Toddlers get a Strong Start UNDERSTANDING HEARING LOSS You have recently been told that your child has a hearing loss. You may feel emotional and overwhelmed as you begin to learn more

More information

Auditory Physiology Richard M. Costanzo, Ph.D.

Auditory Physiology Richard M. Costanzo, Ph.D. Auditory Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Describe the morphology and function of the following structures:

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

Bone Anchored Hearing Aids

Bone Anchored Hearing Aids Bone Anchored Hearing Aids Dr. Amir Soltani Clinical Audiologist UBC Resident Otology Lecture Series BC Children Hospital Sep 13, 2013 www.dramirsoltani.com/links/baha What is the BAHA system A well recognized

More information

The Handbook of Hearing and the Effects of Noise

The Handbook of Hearing and the Effects of Noise The Handbook of Hearing and the Effects of Noise Physiology, Psychology, and Public Health Karl D. Kryter San Diego State University San Diego, California Academic Press San Diego New York Boston London

More information

SAN LUIS VALLEY HEALTH AUDIOLOGY CLINIC

SAN LUIS VALLEY HEALTH AUDIOLOGY CLINIC SAN LUIS VALLEY HEALTH AUDIOLOGY CLINIC January 2019 Editor s corner It s hard to believe that a new year is upon us and I am just now getting around to completing the new year edition of the HEAR NOW

More information

Ms Melissa Babbage. Senior Audiologist Clinic Manager Dilworth Hearing

Ms Melissa Babbage. Senior Audiologist Clinic Manager Dilworth Hearing Ms Melissa Babbage Senior Audiologist Clinic Manager Dilworth Hearing 14:00-14:55 WS #30: Sudden Sensorineural Hearing Loss and Management of Single Sided Deafness 15:05-16:00 WS #40: Sudden Sensorineural

More information

HEARING CONSERVATION & NOISE EXPOSURE. 10/1/99 Created By: C. Miterko 1

HEARING CONSERVATION & NOISE EXPOSURE. 10/1/99 Created By: C. Miterko 1 HEARING CONSERVATION & NOISE EXPOSURE 10/1/99 Created By: C. Miterko 1 Objectives What is sound? How the ear works How to measure noise What does OSHA says about noise? Reading hearing tests Hearing Protection

More information

3 Ear. Ear is a very important organ of human body which has two important roles comprising our organ of hearing and organ of balance.

3 Ear. Ear is a very important organ of human body which has two important roles comprising our organ of hearing and organ of balance. 3 Ear Ear is a very important organ of human body which has two important roles comprising our organ of hearing and organ of balance. Common diseases of the ear In this chapter we will cover different

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti Auditory Physiology PSY 310 Greg Francis Lecture 30 Waves, waves, waves. Organ of Corti Tectorial membrane Sits on top Inner hair cells Outer hair cells The microphone for the brain 1 Hearing Perceptually,

More information

Unilateral Tinnitus Caused by Cerumen Impaction and Stochastic Resonance

Unilateral Tinnitus Caused by Cerumen Impaction and Stochastic Resonance ISPUB.COM The Internet Journal of Otorhinolaryngology Volume 7 Number 1 Unilateral Tinnitus Caused by Cerumen Impaction and Stochastic Resonance O Vysata, M Kucera, A Prochazka, J Kukal, L Pazdera Citation

More information

REFERRAL AND DIAGNOSTIC EVALUATION OF HEARING ACUITY. Better Hearing Philippines Inc.

REFERRAL AND DIAGNOSTIC EVALUATION OF HEARING ACUITY. Better Hearing Philippines Inc. REFERRAL AND DIAGNOSTIC EVALUATION OF HEARING ACUITY Better Hearing Philippines Inc. How To Get Started? 1. Testing must be done in an acoustically treated environment far from all the environmental noises

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

Vision Painting Inc. Safety Management System

Vision Painting Inc. Safety Management System HEARING / NOISE CONSERVATION 1. INTRODUCTION Written in 1983, the OSHA Hearing Conservation Standard (29CFR1910.95 Occupational Noise Exposure) requires that employers implement a hearing conservation

More information

A patient with endolymphatic hydrops may experience any combination of the below described symptoms:

A patient with endolymphatic hydrops may experience any combination of the below described symptoms: MENIERE S DISEASE Endolymphatic hydrops and Meniere s disease are disorders of the inner ear. Although the cause is unknown, it probably results from an abnormality of the fluids of the inner ear. In most

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

PRESBYACUSIS A REVIEW

PRESBYACUSIS A REVIEW From the SelectedWorks of Balasubramanian Thiagarajan March 24, 2014 PRESBYACUSIS A REVIEW Balasubramanian Thiagarajan Available at: https://works.bepress.com/drtbalu/82/ Presbyacusis A Review Balasubramanian

More information

(Thomas Lenarz) Ok, thank you, thank you very much for inviting me to be here and speak to you, on cochlear implant technology.

(Thomas Lenarz) Ok, thank you, thank you very much for inviting me to be here and speak to you, on cochlear implant technology. (Thomas Lenarz) Ok, thank you, thank you very much for inviting me to be here and speak to you, on cochlear implant technology. I want to briefly mention what hearing loss is. And what a cochlear implant

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Chapter 6: Hearing Loss

Chapter 6: Hearing Loss The American Academy of Otolaryngology Head and Neck Surgery Foundation (AAO-HNSF) Presents... Chapter 6: Hearing Loss Daiichi Pharmaceutical Corporation, marketers and distributors of FLOXIN Otic (ofloxacin

More information

(OAEs) for. Physicians. Steven D. Smith, Au.D.

(OAEs) for. Physicians. Steven D. Smith, Au.D. A Guide to Otoacoustic Emissions (OAEs) for Physicians Steven D. Smith, Au.D. Director of Audiology, Director of Physicians Hearing & Balance Center Drs. Kitchens, Chapman, & Anderson, PA, Montgomery,

More information

Basic Environmental Noise and Noise Perception. 4-Feb-16

Basic Environmental Noise and Noise Perception. 4-Feb-16 Basic Environmental Noise and Noise Perception Topics Covered What is Noise? Acoustic Terminology Physics of Sound Sound Level Measurement Physiological and Psychological Effects How we perceive sound

More information

ID# Exam 2 PS 325, Fall 2003

ID# Exam 2 PS 325, Fall 2003 ID# Exam 2 PS 325, Fall 2003 As always, the Honor Code is in effect and you ll need to write the code and sign it at the end of the exam. Read each question carefully and answer it completely. Although

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

A Brief Introduction to Stacked ABR and Cochlear Hydrops Analysis Masking Procedure (CHAMP)

A Brief Introduction to Stacked ABR and Cochlear Hydrops Analysis Masking Procedure (CHAMP) A Brief Introduction to Stacked ABR and Cochlear Hydrops Analysis Masking Procedure (CHAMP) Prepared for Bio-logic Systems Corp. by Manuel Don, Ph.D. / Betty Kwong, M.S. Electrophysiology Department House

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 part II Lecture 16 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2019 1 Phase locking: Firing locked to period of a sound wave example of a temporal

More information

Scrub In. What is the function of cerumen? Which part of the ear collects sound waves and directs them into the auditory canal?

Scrub In. What is the function of cerumen? Which part of the ear collects sound waves and directs them into the auditory canal? Scrub In What is the function of cerumen? a. Keeps the ear canal from collapsing b. Helps transmit sound waves c. Protection d. Lubrication Which part of the ear collects sound waves and directs them into

More information

ICD10 CODES CODE DESCRIPTION R Abnormal auditory function study H Abnormal auditory perception, bilateral H Abnormal auditory

ICD10 CODES CODE DESCRIPTION R Abnormal auditory function study H Abnormal auditory perception, bilateral H Abnormal auditory ICD10 CODES CODE DESCRIPTION R94.120 Abnormal auditory function study H93.293 Abnormal auditory perception, bilateral H93.292 Abnormal auditory perception, left ear H93.291 Abnormal auditory perception,

More information

Masker-signal relationships and sound level

Masker-signal relationships and sound level Chapter 6: Masking Masking Masking: a process in which the threshold of one sound (signal) is raised by the presentation of another sound (masker). Masking represents the difference in decibels (db) between

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

Hyperacusis Alliance

Hyperacusis Alliance Innovating the Future for Hyperacusis Research Building on the formed in 2017, a team of expert researchers met at the 2018 ARO midwinter meeting with the primary objective of an ideation working session

More information