Chapter x. Causes of Hearing Damage. 1. Introduction.

Size: px
Start display at page:

Download "Chapter x. Causes of Hearing Damage. 1. Introduction."

Transcription

1 Chapter x Causes of Hearing Damage 1. Introduction. 2. Noise induced hearing damage. 3. Other causes of hearing loss. 4. Tests and Exercises. 5. References. 1. Introduction. This chapter explains the main adverse health effects of noise: damage to the hearing mechanism, known as noise-induced hearing loss (NIHL); and tinnitus. Also covered are other agents that can damage hearing: ototoxic substances; diseases; and the ageing process. Causes of Hearing Damage 1

2 1.1 Agents of Hearing Damage Hearing damage may result from several agents - both occupational and nonoccupational: 1.2 Describing the Hearing Loss 2.1 Acoustic Trauma Noise - occupational (called occupational noise-induced hearing loss ONIHL) Noise - non-occupational (called sociocusis). Ageing - (called presbyacusis). Diseases and infections, ototoxic medications, trauma (blows) to the head (collectively called nosoacusis). Ototoxic hazardous substances in the workplace (eg organic solvents, lead). ('Ototoxic' means 'toxic to the ear'.) If the agent affects the function of the middle ear, eardrum or blocks the ear canal, the hearing loss is called conductive. If the agent damages the cochlea structures, nerve fibres, auditory nerve or auditory centres of the brain, the hearing loss is called sensorineural. 2. Noise-Induced Hearing Damage Noise can affect hearing in four main ways: Acoustic trauma Temporary threshold shift (TTS) Permanent threshold shift (PTS) Tinnitus Acoustic Trauma is defined as damage to the ear resulting from a single exposure or relatively few exposures to a very intense level of sound (peak levels greater than db), usually impulsive in nature, eg explosions. Acoustic trauma, from the effect of a single exposure or relatively few exposures to a very intense level of sound, may cause: damage to the ear drum; damage to the ossicles; and mechanical damage to the hair cells, supporting cells and tissues of the organ of Corti. 2 The Almond Tree Effect

3 2.2 Temporary Threshold Shift (TTS) Temporary Threshold Shift (TTS) is defined as a temporary change in hearing level that recovers between exposures, resulting from sound levels over about 70 to 75 db(a). A temporary threshold shift (TTS), which recovers between exposures, is commonly experienced. You may have noticed sound seeming muffled after exposure to loud noise or music. If you have to turn the car radio up after a day's noisy work, then find it too loud the next morning, you Plate 1: Growth and recovery of TTS. may be experiencing TTS. This may last, depending on the nature of the exposure and the individual, for minutes, hours, or days, after the sound has stopped. In general, for continuous noise, as the exposure time increases so does the TTS, until after 4 to 12 hours a plateau (or asymptotic level) is reached. For impact noises the asymptotic level of TTS appears after only 1 to 2 hours. The recovery after exposure ceases is at first rapid, but then slows down, with complete recovery taking at least as long as the original exposure time. This is shown in plate 1. Higher levels of noise exposure will produce more TTS, as shown in plate 2. As long as intervals between exposures are long enough for complete recovery, it is unlikely that permanent damage will occur. However, TTS is a warning sign that the hearing mechanism is being overloaded. It is thought that Plate 2: TTS for different noise exposures. Causes of Hearing Damage 3

4 TTS is due to reversible biochemical changes to the stereocilia of the hair cells. 2.3 Permanent Threshold Shift (PTS) Permanent Threshold Shift (PTS) is permanent damage to the ear as a result of continued or repeated exposure to excessive noise over a period of time. A permanent threshold shift (PTS) occurs gradually. Normally, it is the hair cells in the inner ear, which detect the 4-6 khz frequencies, which deteriorate first. As most of the speech frequencies are below this range, the loss may initially go unnoticed. With further excessive noise exposure, the hearing loss increases and extends down to lower frequencies as well and the person begins to have trouble understanding speech. Plate 3 shows how permanent hearing loss typically develops with years of exposure to noise. From this you can see that most of the hearing loss at the high frequencies occurs in the first 10 years of exposure. There have been many proposed mechanisms for permanent hearing damage to the inner ear structures. These have been studied by optical and electronmicroscopy: Stereocilia have been observed to lose their rigidity, probably due to destruction of their actin filaments. Damage to the rootlet anchoring them to the hair cell may also occur. Any damage to the stereocilia will lead to a Plate 3: Progression of NIPTS for 90 and 100dBA. 4 The Almond Tree Effect

5 reduction in ability to translate the vibration from the basilar membrane. The hair cell body itself may suffer "metabolic exhaustion", its internal structures swelling and leading to eventual death of the cell. Outer hair cells are more susceptible to damage than inner hair cells, probably due to their stereocilia being subject to shear forces from the tectorial membrane and the greater displacement they undergo, because of their position on the basilar membrane. The first db of hearing loss is probably caused by the loss of the cochlea amplifier function of the outer hair cells. It has been suggested that excessive noise can damage the vascular system (blood supply), impeding the supply of nutrients to the organ of Corti, hastening the metabolic exhaustion. The synapses (connections) of the nerve fibres to the hair cells may swell and degenerate. However, the relationship between cochlea damage and hearing loss is very complicated and still the subject of research. Numerous animal studies have reported substantial hair cell losses with normal thresholds of hearing. Conversely, a given amount of hearing loss may be attributable to one of several factors. This may account for the clinical observation that individuals, with essentially the same audiograms, can have markedly different successes with the use of hearing aids. 2.4 Biologic Variability Like other human characteristics, susceptibility to NIHL has a wide range of variability. The same exposure to noise can result in responses varying from no NIHL to large, debilitating losses. This has to be kept in mind when setting exposure standards for occupational noise. 2.5 Tinnitus Tinnitus is the term given to noises which are heard 'in the ears' or 'in the head' - ringing, buzzing, hissing, whistling, pulsing or other sounds which do not come from an external source. Plate x: Electron micrograms of stereocilia damaged by excessive noise. Plate x: Electron micrograms of hair cells damaged by excessive noise. Causes of Hearing Damage 5

6 Research into the causes of tinnitus is ongoing. The current theory is that damage to the hair cells of the inner ear (from noise or other agents) causes the generation of weak, abnormal nerve impulses, which are mistakenly perceived by the brain as real external sounds. In the 10% or so of people who are troubled by persistent tinnitus, it is thought that these weak signals are amplified to a disturbing level in the neural pathways that connect the cochlea to the different parts of the brain. This process seems to be made worse by stress or emotional events, which may explain why tinnitus is twice as common in hearing impaired people - straining to hear focuses the subconscious brain to pick up anything coming from the inner ear. 3. Other Causes of Hearing Loss 3.1 Ototoxic Agents Ototoxic means 'toxic to the ear'. Certain medications or chemical agents in the workplace can damage the hair cells in the inner ear. Over 200 agents have been reported as ototoxic. These include: antibiotics such as streptomycin; quinine; and salicylates such as aspirin. Workplace ototoxic agents include: solvents such as benzene, toluene, butanol, trichloroethylene; and arsenic, lead, cobalt, mercury, and lithium. Some agents are synergistic with noise exposure, ie, in circumstances where neither the agent nor the noise exposure alone will produce a hearing loss, the combined occurrence will. Such agents include: carbon disulfide carbon monoxide carbon tetrachloride styrene xylene methyl ethyl ketone methyl isobutyl ketone 6 The Almond Tree Effect

7 3.2 Diseases Nosoacusis is defined as hearing damage resulting from diseases and infections, ototoxic medications, or trauma (blows) to the head. Many systemic and hereditary diseases can cause hearing loss. Among these are: rubella, meningitis, diabetes, renal disease, rheumatoid arthritis and Meniere's disease. 3.3 Ageing Presbyacusis is defined as progressive loss in sensitivity at the high frequencies occurring with increasing age. A series of changes occurs in the auditory system as humans age. These include: Loss of hair cells - mostly those at the basal end of the cochlea - hence affecting high frequency perception. Degeneration of the stria vascularis (lateral walls of the scala media) - responsible for maintaining the ion composition of the fluids and hence the cochlea potential - most pronounced at low and mid frequencies. Loss of spiral ganglion cells in the auditory nerve - more severe in the high frequencies. Degenerative changes in the central auditory nervous system. Plate x: Median audiogram for males. The most common audiometric pattern for presbyacusis is a gently sloping audiogram, affecting the high frequencies more than the low. Plate x: Median audiogram for females. Causes of Hearing Damage 7

8 This shows that, on average, presbyacusis starts at about 30 years of age, but doesn't begin to become noticeable until about 55 years for men and 64years for women. Studies on the interaction between NIHL and presbyacusis are still progressing. 3.4 Sociocusis Sociocusis is defined as noise-induced hearing loss from non-occupational noise, for example high level music, recreational shooting, and other noisy hobbies such as carpentry and drag racing. 8 The Almond Tree Effect

THE MECHANICS OF HEARING

THE MECHANICS OF HEARING CONTENTS The mechanics of hearing Hearing loss and the Noise at Work Regulations Loudness and the A weighting network Octave band analysis Hearing protection calculations Worked examples and self assessed

More information

Occupational Noise Exposure 29 CFR

Occupational Noise Exposure 29 CFR Occupational Noise Exposure 29 CFR 1910.95 Is There a Problem? More than 30 million Americans are exposed to hazardous sound levels on a regular basis 10 million have suffered irreversible noise induced

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PRESBYACUSIS A REVIEW

PRESBYACUSIS A REVIEW From the SelectedWorks of Balasubramanian Thiagarajan March 24, 2014 PRESBYACUSIS A REVIEW Balasubramanian Thiagarajan Available at: https://works.bepress.com/drtbalu/82/ Presbyacusis A Review Balasubramanian

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

ACOUSTIC INFRASOUND AND LOW-FREQUENCY SOUND

ACOUSTIC INFRASOUND AND LOW-FREQUENCY SOUND 116 Acoustic ACOUSTIC INFRASOUND AND LOW-FREQUENCY SOUND These limits represent sound exposures to which it is believed nearly all workers may be repeatedly exposed without adverse effects that do not

More information

Hearing Conservation Program

Hearing Conservation Program Hearing Conservation Program 1.0 Scope and Application The following procedures describe procedures for assessing and controlling excessive occupational noise exposure as directed by University policy

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

NOISE - INDUCED HEARING DAMAGE

NOISE - INDUCED HEARING DAMAGE A TERM PAPER ON NOISE - INDUCED HEARING DAMAGE BY ARC 01 9208 AKOSILE Adetona Olaolu ARC 01 9225 IYAMORE Rotimi Godwin ARC 01 9242 OLUWAYOMI Seyi Tope SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, Auditory System & Speech Perception Chapter 11, pages 270-289 Corrections: None Announcements: CD is available outside Dr Achtman s office if you would like to see demonstrations

More information

Noise Induced Hearing loss Prevention, diagnosis and management

Noise Induced Hearing loss Prevention, diagnosis and management Noise Induced Hearing loss Prevention, diagnosis and management Mr. Eslam Osman, Consultant ENT Surgeon Mr. Tony Kay, Senior Chief Audiologist 29th Alexandria International Combined ORL Congress A Noisy

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

Auditory Physiology Richard M. Costanzo, Ph.D.

Auditory Physiology Richard M. Costanzo, Ph.D. Auditory Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Describe the morphology and function of the following structures:

More information

3 Ear. Ear is a very important organ of human body which has two important roles comprising our organ of hearing and organ of balance.

3 Ear. Ear is a very important organ of human body which has two important roles comprising our organ of hearing and organ of balance. 3 Ear Ear is a very important organ of human body which has two important roles comprising our organ of hearing and organ of balance. Common diseases of the ear In this chapter we will cover different

More information

Hearing. By: Jimmy, Dana, and Karissa

Hearing. By: Jimmy, Dana, and Karissa Hearing By: Jimmy, Dana, and Karissa Anatomy - The ear is divided up into three parts - Sound enters in through the outer ear and passes into the middle where the vibrations are received and sent to the

More information

Ear Disorders and Problems

Ear Disorders and Problems Ear Disorders and Problems Introduction Your ear has three main parts: outer, middle and inner. You use all of them to hear. There are many disorders and problems that can affect the ear. The symptoms

More information

HEARING. Structure and Function

HEARING. Structure and Function HEARING Structure and Function Rory Attwood MBChB,FRCS Division of Otorhinolaryngology Faculty of Health Sciences Tygerberg Campus, University of Stellenbosch Analyse Function of auditory system Discriminate

More information

noise induced Working Together to Prevent Hearing Loss

noise induced Working Together to Prevent Hearing Loss noise induced hearing loss (NIHL) Working Together to Prevent Hearing Loss NOISE INDUCED HEARING LOSS Noise and its Effects Noise is a serious and widespread problem in many New Brunswick workplaces. Over

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

Guide to Your Hearing Health

Guide to Your Hearing Health Guide to Your Hearing Health Hearing loss is the 3rd most common chronic physical condition in the U.S. X Don t suffer in silence we ve got solutions to help keep you connected! Table of Contents Hearing

More information

Hearing 101. Presented by: Hearing Neuro Health, Bridgett Wallace, PT, DPT. Brad Melancon, MS, FAAA

Hearing 101. Presented by: Hearing Neuro Health, Bridgett Wallace, PT, DPT. Brad Melancon, MS, FAAA Hearing 101 Brought to you by 360 Balance & Hearing Presented by: Bridgett Wallace, PT, DPT Physical Therapist and Educator Owner of 360 Balance & Hearing 20+ years specializing in dizziness & balance

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

Acquired Deafness Loss of hearing that occurs or develops sometime in the course of a lifetime, but is not present at birth.

Acquired Deafness Loss of hearing that occurs or develops sometime in the course of a lifetime, but is not present at birth. Page 1 of 5 URMC» Audiology Glossary of Terms A Acoustic Neuroma A tumor, usually benign, which develops on the hearing and balance nerves and can cause gradual hearing loss, tinnitus, and dizziness. Acquired

More information

Reference: Mark S. Sanders and Ernest J. McCormick. Human Factors Engineering and Design. McGRAW-HILL, 7 TH Edition. NOISE

Reference: Mark S. Sanders and Ernest J. McCormick. Human Factors Engineering and Design. McGRAW-HILL, 7 TH Edition. NOISE NOISE NOISE: It is considered in an information-theory context, as that auditory stimulus or stimuli bearing no informational relationship to the presence or completion of the immediate task. Human ear

More information

Hearing assessment is an essential part of hearing conservation.

Hearing assessment is an essential part of hearing conservation. Hearing assessment is an essential part of hearing conservation. Kevin Hedges Senior Principal Occupational Hygienist (Northern Region) 25 August 2009 Safety and Health is everyone s business. Helen Keller

More information

managing safely Noise at Work Course Notes Mark Mallen Group Health and Safety Manager December 2005 Noise at Work: Version 1 Page 1 of 23

managing safely Noise at Work Course Notes Mark Mallen Group Health and Safety Manager December 2005 Noise at Work: Version 1 Page 1 of 23 Noise at Work Course Notes Mark Mallen Group Health and Safety Manager December 2005 Noise at Work: Version 1 Page 1 of 23 Course Content 1. What is noise? 2. Sound - Sound Waves 3. How do we hear? - The

More information

Protect Your Hearing!

Protect Your Hearing! Protect Your Hearing! What is noise? Loud sounds if they are over 85 db can be damaging. How do I know if I am listening to levels above 85dB? It is invisible, tasteless, odorless, and IGNORED as a form

More information

Chapter 13 Physics of the Ear and Hearing

Chapter 13 Physics of the Ear and Hearing Hearing 100 times greater dynamic range than vision Wide frequency range (20 ~ 20,000 Hz) Sense of hearing Mechanical system that stimulates the hair cells in the cochlea Sensors that produce action potentials

More information

Assisting in Otolaryngology

Assisting in Otolaryngology Assisting in Otolaryngology Learning Objectives Identify the structures and explain the functions of the external, middle, and internal ear. Describe the conditions that can lead to hearing loss, including

More information

INTRODUCTION TO AUDIOLOGY Hearing Balance Tinnitus - Treatment

INTRODUCTION TO AUDIOLOGY Hearing Balance Tinnitus - Treatment INTRODUCTION TO AUDIOLOGY Hearing Balance Tinnitus - Treatment What is Audiology? Audiology refers to the SCIENCE OF HEARING AND THE STUDY OF THE AUDITORY PROCESS (Katz, 1986) Audiology is a health-care

More information

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, auditory system, & pitch perception Chapter 11, pages 268-288 Corrections: None needed Announcements: At the beginning of class, we went over some demos from the virtual

More information

Program Policy Background Paper: Noise Induced Hearing Loss

Program Policy Background Paper: Noise Induced Hearing Loss Program Policy Background Paper: Noise Induced Hearing Loss January, 2018 TABLE OF CONTENTS 1. PURPOSE... 2 2. PROPOSED PROGRAM POLICY APPROACH... 3 3. PROVIDING YOUR COMMENTS... 3 Appendix A Policy 1.2.5AR2...

More information

Synaptopathy Research Uwe Andreas Hermann

Synaptopathy Research Uwe Andreas Hermann Potential diagnose and basic understanding of hidden hearing loss Synaptopathy Research Uwe Andreas Hermann Motivation Synaptopathy is a current hot topic in the research field because it focuses on a

More information

Chapter Fourteen. The Hearing Mechanism. 1. Introduction.

Chapter Fourteen. The Hearing Mechanism. 1. Introduction. Chapter Fourteen The Hearing Mechanism 1. Introduction. 2. Hearing. 3. The Ear. 4. The External Ear. 5. The Inner Ear. 6. Frequency Discrimination. 7. The Organ of Corti. 8. Tests and Exrecises. 9. References.

More information

MECHANISM OF HEARING

MECHANISM OF HEARING MECHANISM OF HEARING Sound: Sound is a vibration that propagates as an audible wave of pressure, through a transmission medium such as gas, liquid or solid. Sound is produced from alternate compression

More information

An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss

An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss Sacred Heart University DigitalCommons@SHU Speech-Language Pathology Faculty Publications Speech-Language Pathology Spring 2017 An Introduction to Hearing Loss: Examining Conductive & Sensorineural Loss

More information

Learning about Tinnitus

Learning about Tinnitus Learning about Tinnitus Guide to help you understand and manage your tinnitus Content Your health and your goals 4 What is that sound in your ears? 5 What causes tinnitus? 6 Tinnitus and your brain 7 What

More information

San Diego State University Environmental Health and Safety

San Diego State University Environmental Health and Safety Occupational Hearing Conservation Program (HCP) Making Hearing Health a Workplace Wellness Priority Lake Health Walter Vieweg, DO, D.PM., M.A. Occupational Physician Certified NRCME, MRO, Civil Surgeon,

More information

Learning about Tinnitus

Learning about Tinnitus Learning about Tinnitus Guide to help you understand and manage your tinnitus Content Your health and your goals!........................................... 4 What s that ringing in my ears?........................................

More information

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light. Sound Audition Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light. Audition Sound Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

Occupational Noise Exposure

Occupational Noise Exposure Occupational Noise Exposure Hearing Conservation Training Program Presented by the Office of Environmental Health and Safety Did You Know? About 30 million workers are exposed to hazardous noise on the

More information

THE EAR Dr. Lily V. Hughes, Audiologist

THE EAR Dr. Lily V. Hughes, Audiologist WHY AM I HERE? HEARING & THE BRAIN THE EAR Dr. Lily V. Hughes, Audiologist Fairbanks Hearing & Balance Center at the ENT Clinic 1 out of every 5 adults has hearing loss. That s more than 48 million people

More information

Hearing Evaluation: Diagnostic Approach

Hearing Evaluation: Diagnostic Approach Hearing Evaluation: Diagnostic Approach Hearing Assessment Purpose - to quantify and qualify in terms of the degree of hearing loss, the type of hearing loss and configuration of the hearing loss - carried

More information

NC Employees Workplace Program Requirements for Safety and Health. Hearing Conservation

NC Employees Workplace Program Requirements for Safety and Health. Hearing Conservation Scope NC Employees Workplace Program Requirements for Hearing Conservation The employer shall administer a continuing, effective hearing conservation program, whenever employee noise exposures equal or

More information

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. Hearing Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. 19/11/2014 Sound A type of longitudinal mass wave that

More information

Vision Painting Inc. Safety Management System

Vision Painting Inc. Safety Management System HEARING / NOISE CONSERVATION 1. INTRODUCTION Written in 1983, the OSHA Hearing Conservation Standard (29CFR1910.95 Occupational Noise Exposure) requires that employers implement a hearing conservation

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct Rahaf Jreisat *You don t have to go back to the slides. Ear Inner Ear Membranous Labyrinth It is a reflection of bony labyrinth but inside. Membranous labyrinth = set of membranous tubes containing sensory

More information

Hearing. and other senses

Hearing. and other senses Hearing and other senses Sound Sound: sensed variations in air pressure Frequency: number of peaks that pass a point per second (Hz) Pitch 2 Some Sound and Hearing Links Useful (and moderately entertaining)

More information

Hearing Conservation and Noise Control

Hearing Conservation and Noise Control Hearing Conservation and Noise Control Objectives What is sound? How the ear works How to measure noise What the Regulations say about noise Reading hearing tests Hearing Protection What is Sound? Hertz

More information

ID# Exam 2 PS 325, Fall 2003

ID# Exam 2 PS 325, Fall 2003 ID# Exam 2 PS 325, Fall 2003 As always, the Honor Code is in effect and you ll need to write the code and sign it at the end of the exam. Read each question carefully and answer it completely. Although

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Occupational Noise & Hearing Loss Presented at CopperPoint SafetyWorks 2016 By Ms. Robyn Steiner, MSPH CIH CSP June 8 and 15, 2016

Occupational Noise & Hearing Loss Presented at CopperPoint SafetyWorks 2016 By Ms. Robyn Steiner, MSPH CIH CSP June 8 and 15, 2016 & Hearing Loss Presented at CopperPoint SafetyWorks 2016 By Ms. Robyn Steiner, MSPH CIH CSP June 8 and 15, 2016 www.atcgroupservices.com Can You Imagine? Not being able to Hear what the other person is

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Hearing Loss. Understanding hearing loss, its effects and available solutions.

Hearing Loss. Understanding hearing loss, its effects and available solutions. Hearing Loss Understanding hearing loss, its effects and available solutions. Hearing loss is a very common health condition in adults but it is often unrecognised and untreated. Introduction Hearing loss

More information

Noise and hearing - children and teenagers

Noise and hearing - children and teenagers Noise and hearing - children and teenagers http://www.cyh.com/healthtopics/healthtopicdetails.aspx?p=114&np=304&id=1584#2 The inner ear (cochlea) contains tiny cells that are sensitive to sound (hair cells).

More information

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment Acoustics, signals & systems for audiology Psychoacoustics of hearing impairment Three main types of hearing impairment Conductive Sound is not properly transmitted from the outer to the inner ear Sensorineural

More information

Protect Your Hearing

Protect Your Hearing S-76 Purdue University Cooperative Extension Service West Lafayette, IN 47907 Protect Your Hearing F. R. Willsey Professor Emeritus of Agricultural Engineering Most people think of farming as the quiet

More information

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University Cochlear anatomy, function and pathology I Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of these lectures Introduction to gross anatomy of the cochlea Focus (1) on

More information

HEARING GUIDE PREPARED FOR HEARING HEALTH PROFESSIONALS HEARING.HEALTH.MIL. HCE_HealthProvider-Flip_FINAL02.indb 1

HEARING GUIDE PREPARED FOR HEARING HEALTH PROFESSIONALS HEARING.HEALTH.MIL. HCE_HealthProvider-Flip_FINAL02.indb 1 HEARING GUIDE PREPARED FOR HEARING HEALTH PROFESSIONALS HCE_HealthProvider-Flip_FINAL02.indb 1 In both on- and off-duty settings, hearing is an important element of life. ON DUTY Situational awareness

More information

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium? CASE 44 A 53-year-old man presents to his primary care physician with complaints of feeling like the room is spinning, dizziness, decreased hearing, ringing in the ears, and fullness in both ears. He states

More information

Hearing and Balance 1

Hearing and Balance 1 Hearing and Balance 1 Slide 3 Sound is produced by vibration of an object which produces alternating waves of pressure and rarefaction, for example this tuning fork. Slide 4 Two characteristics of sound

More information

Audiology Lunch & Learn DR. BRANDI R. SHEPARD

Audiology Lunch & Learn DR. BRANDI R. SHEPARD Audiology Lunch & Learn DR. BRANDI R. SHEPARD Professionally Practicing for 17 years Masters degree in 2003 I managed 5 hearing aid clinics 2005 Started my own Audiology Clinic 2007 Earned my doctorate

More information

Hearing for life Facts about hearing. How hearing works, how hearing fades and how to assist your hearing

Hearing for life Facts about hearing. How hearing works, how hearing fades and how to assist your hearing Hearing for life Facts about hearing How hearing works, how hearing fades and how to assist your hearing 3 Our hearing develops fully while we are still in the womb Our hearing is the only one of our senses

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

Music and Hearing in the Older Population: an Audiologist's Perspective

Music and Hearing in the Older Population: an Audiologist's Perspective Music and Hearing in the Older Population: an Audiologist's Perspective Dwight Ough, M.A., CCC-A Audiologist Charlotte County Hearing Health Care Centre Inc. St. Stephen, New Brunswick Anatomy and Physiology

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

HEARING CONSERVATION PROGRAM

HEARING CONSERVATION PROGRAM HEARING CONSERVATION PROGRAM Section: Part: Pages: 13 Hazard Assessment and Control Date of Issue: 2007.04.02 Issued By: Environmental Health and Safety Review Date: 2016.06.15 Revision Date: 2016.06.15

More information

Hearing. By Jack & Tori

Hearing. By Jack & Tori Hearing By Jack & Tori 3 Main Components of the Human Ear. Outer Ear. Middle Ear. Inner Ear Outer Ear Pinna: >Visible part of ear and ear canal -Acts as a funnel to direct sound Eardrum: >Airtight membrane

More information

CMPE 80A: Universal Access: Disability, Technology, and Society

CMPE 80A: Universal Access: Disability, Technology, and Society CMPE 80A: Universal Access: Disability, Technology, and Society The Ear Hearing 1 Structure of the Ear sound waves enter the ear and strike the eardrum (tympanic membrane) ear drum vibrations move the

More information

How Do Our Ears Work? Quiz

How Do Our Ears Work? Quiz The Marvelous Ear How Do Our Ears Work? Quiz 1. How do humans hear sounds? 2. How does human hearing work? Sketch and label the system. 3. Do you know any sensors that detect sound and how they might do

More information

Hearing Screening, Diagnostics and Intervention

Hearing Screening, Diagnostics and Intervention JCIH Newborn Hearing Screening Guidelines 1-3-6 Model By 1 month Screenhearing Hearing Screening, Diagnostics and Intervention By 3 months: Evaluate hearing and complete diagnosticaudiology and otolaryngology

More information

The bloom guide to better hearing. Find out what you need to know about hearing loss and hearing aids with this helpful guide

The bloom guide to better hearing. Find out what you need to know about hearing loss and hearing aids with this helpful guide The bloom guide to better hearing Find out what you need to know about hearing loss and hearing aids with this helpful guide Let us help you find the best solution for your hearing Coming to terms with

More information

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s, and. Located in the of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular

More information

Chapter 6: Hearing Loss

Chapter 6: Hearing Loss The American Academy of Otolaryngology Head and Neck Surgery Foundation (AAO-HNSF) Presents... Chapter 6: Hearing Loss Daiichi Pharmaceutical Corporation, marketers and distributors of FLOXIN Otic (ofloxacin

More information

Hearing Aids. Bernycia Askew

Hearing Aids. Bernycia Askew Hearing Aids Bernycia Askew Who they re for Hearing Aids are usually best for people who have a mildmoderate hearing loss. They are often benefit those who have contracted noise induced hearing loss with

More information

Hearing Loss and Conservation in Industrial Settings

Hearing Loss and Conservation in Industrial Settings Hearing Loss and Conservation in Industrial Settings NICHOLAS PARMER, AuD Audiologist Munson Medical Center Central Michigan University B.S. in Communication Disorders 2010 Doctor of Audiology 2014 Interests

More information

Noise Induced Hearing Loss: Final Program Policy Decision and Supporting Rationale

Noise Induced Hearing Loss: Final Program Policy Decision and Supporting Rationale Noise Induced Hearing Loss: Final Program Policy Decision and Supporting Rationale March 2018 1 I Introduction: In January 2018 the WCB Board of Directors invited stakeholders to participate in a one stage

More information

HEARING CONSERVATION FACILITATOR S GUIDE

HEARING CONSERVATION FACILITATOR S GUIDE HEARING CONSERVATION FACILITATOR S GUIDE What s Inside 1 Facilitator s Guidelines 1-a Overview 1-b Getting Started 1-c Presentation Guidelines 1-d Lesson Plan 1-f Frequently Asked Questions 2 Why These

More information

Concurrent Exposure to Ototoxic Chemicals and Noise

Concurrent Exposure to Ototoxic Chemicals and Noise 1 Concurrent Exposure to Ototoxic Chemicals and Noise Many common industrial chemicals are ototoxic (poisonous to the ears) and as damaging to employees hearing as the industrial noise to which they are

More information

Guide to Your Hearing Health

Guide to Your Hearing Health X Guide to Your Hearing Health Hearing loss is the 3rd most common chronic physical condition in the U.S. Don t suffer in silence we ve got solutions to help keep you connected! Are you having difficulty

More information

ID# Final Exam PS325, Fall 1997

ID# Final Exam PS325, Fall 1997 ID# Final Exam PS325, Fall 1997 Good luck on this exam. Answer each question carefully and completely. Keep your eyes foveated on your own exam, as the Skidmore Honor Code is in effect (as always). Have

More information

Chapter 9 Hearing loss

Chapter 9 Hearing loss Chapter 9 Hearing loss 9.1 Estimation of noise induced hearing loss on the basis of the record of past noise exposure Noise-induced hearing loss is considered to become a detectable permanent hearing loss

More information

NOISE AND MILITARY SERVICE: IMPLICATIONS FOR HEARING LOSS AND TINNITUS

NOISE AND MILITARY SERVICE: IMPLICATIONS FOR HEARING LOSS AND TINNITUS HEARING CENTER OF ECELLENCE NOISE AND MILITARY SERVICE: IMPLICATIONS FOR HEARING LOSS AND TINNITUS INSTITUTE OF MEDICINE OF THE NATIONAL ACADEMIES 2005 Complete report available from the National Academies

More information

INFERNO ESTIMATION OF HEARING LOSS RISK. Summary by Lars Kjellström

INFERNO ESTIMATION OF HEARING LOSS RISK. Summary by Lars Kjellström INFERNO ESTIMATION OF HEARING LOSS RISK Summary by Lars Kjellström Royal Institute of Technology, Stockholm MWL Department of Technical Acoustics 1996 Page 1 Conclusion On the behalf of MultiSound Technology

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti

Auditory Physiology PSY 310 Greg Francis. Lecture 30. Organ of Corti Auditory Physiology PSY 310 Greg Francis Lecture 30 Waves, waves, waves. Organ of Corti Tectorial membrane Sits on top Inner hair cells Outer hair cells The microphone for the brain 1 Hearing Perceptually,

More information

Hearing Health Presentation

Hearing Health Presentation Hearing Health Presentation Communication around you Hearing connects us with: Family and friends Sounds in our environment Music we love When hearing loss is present it can put limits on your life. How

More information