ORIGINAL INVESTIGATION. Indications, Complications, and Management of Inferior Vena Cava Filters

Size: px
Start display at page:

Download "ORIGINAL INVESTIGATION. Indications, Complications, and Management of Inferior Vena Cava Filters"

Transcription

1 LESS IS MORE ORIGINAL INVESTIGATION Indications, Complications, and Management of Inferior Vena Cava Filters The Experience in 952 Patients at an Academic Hospital With a Level I Trauma Center Shayna Sarosiek, MD; Mark Crowther, MD; J. Mark Sloan, MD Importance: Retrievable inferior vena cava (IVC) filters were designed to provide temporary protection from pulmonary embolism, sparing patients from long-term complications of permanent filters. However, many retrievable IVC filters are left in place indefinitely. Objectives: To review the medical records of patients with IVC filters to determine patient demographics and date of and indication for IVC filter placement, as well as complications, follow-up data, date of IVC filter retrieval, and use of anticoagulant therapy. Design and Setting: A retrospective review of IVC filter use between August 1, 2003, and February 28, 2011, was conducted at Boston Medical Center, a tertiary referral center with the largest trauma center in New England. Participants: In total, 978 patients. Twenty six patients were excluded from the study because of incomplete medical records. Intervention: Placement of retrievable IVC filter. Main Outcome Measures: In total, 952 medical records were included in the analysis. Results: Of 679 retrievable IVC filters that were placed, 58 (8.5%) were successfully removed. Unsuccessful retrieval attempts were made in 13 patients (18.3% of attempts). Seventy-four venous thrombotic events (7.8% of 952 patients included in the study) occurred after IVC filter placement, including 25 pulmonary emboli, all of which occurred with the IVC filter in place. Forty-eight percent of venous thrombotic events were in patients without venous thromboembolism at the time of IVC filter placement, and 89.4% occurred in patients not receiving anticoagulants. Many IVC filters placed after trauma were inserted when the highest bleeding risk had subsided, and anticoagulant therapy may have been appropriate. While many of these filters were placed because of a perceived contraindication to anticoagulants, 237 patients (24.9%) were discharged on a regimen of anticoagulant therapy. Conclusion and Relevance: Our research suggests that the use of IVC filters for prophylaxis and treatment of venous thrombotic events, combined with a low retrieval rate and inconsistent use of anticoagulant therapy, results in suboptimal outcomes due to high rates of venous thromboembolism. JAMA Intern Med. 2013;173(7): Published online March 18, doi: /jamainternmed Author Affiliations: Section of Hematology and Oncology, Department of Medicine, Boston University and Boston Medical Center, Boston, Massachusetts (Drs Sarosiek and Sloan); and Departments of Medicine and Pathology and Molecular Medicine, McMaster University and St Joseph s Hospital, Hamilton, Ontario, Canada (Dr Crowther). PULMONARY EMBOLISM (PE) represents a serious cause of morbidity and mortality, particularly in hospitalized patients. It is estimated that PE leads to more than deaths annually in the United States. 1 For these patients and those at risk for PE, anticoagulant therapy remains the standard of care. 2 If the patient has a contraindication to anticoagulants, an inferior vena cava (IVC) filter is often considered. The concept of surgical vena cava interruption was first introduced in 1865 by Trousseau. 3 Surgical insertion of IVC filters was pioneered in the 1960s but was used infrequently until the development of the percutaneous IVC filter insertion technique in 1973 by Greenfield. 4 The arrival of retrievable devices in the 1990s facilitated potential removal of IVC filters. 5 See also pages 493 and 506 The Prévention du Risque d Embolie Pulmonaire par Interruption Cave study 6 was the first randomized controlled trial to assess filter placement. Patients with proximal deep vein thrombosis (DVT) were randomized to receive therapeutic anticoagulant therapy with unfractionated heparin, Author Affil Hematology Department Boston Univ Medical Cen Massachuset and Sloan); Medicine an Molecular M University a Hospital, Ha Canada (Dr 513

2 transitioned to war farin, or similar therapy with insertion of an IVC filter. The study found a significant decrease in pulmonary emboli in the first 12 days after IVC filter placement. However, patients with filters had a significantly increased rate of recurrent DVT at 2 years. Despite a lack of randomized controlled trials demonstrating long-term safety and efficacy, IVC filter insertion continues to increase each year. It was estimated that more than filters would be placed in 2012, and most would be retrievable filters. 7 Many professional groups have guidelines regarding filter insertion; these guidelines vary widely and often conflict. The American College of Radiology and Society of Interventional Radiology guidelines state that a filter can be placed as prophylaxis for any patient at high risk of developing a DVT or PE, while the American College of Chest Physicians guidelines recommend against an IVC filter unless the patient has an acute proximal lower extremity DVT and cannot tolerate anticoagulants These conflicting guidelines reflect the absence of good-quality data to guide clinical practice. Follow-up data reporting longitudinal outcomes of filter placement are necessary because unretrieved removable IVC filters may carry significant long-term risks. Recent data from a systematic review of 37 studies confirm the increased rate of complications when filters are left in place for longer than 30 days and indicate a retrieval rate of approximately 34%. 11 Risks of unretrieved filters include recurrent DVT, vena cava thrombosis, organ penetration, and mechanical filter complications, such as migration and strut fracture. Multiple investigations have documented high rates of filter fracture, with some showing a fracture risk of up to 40% at 5.5 years. 12 These risks seem to increase with the length of time that the filter is in place. 13 Following the publication of a series of IVC filter related complications, 14 the US Food and Drug Administration 15 issued a statement in 2010 reporting that retrievable IVC filters that are left in place are prone to filter fracture, filter migration, filter embolization, and IVC perforation, as well as increased risk of lower limb DVT. The Food and Drug Administration recommends that IVC filters should be removed as soon as the risk of PE has subsided. Boston Medical Center is a large academic hospital with a level I trauma center, the busiest trauma institution in New England. Like most hospitals throughout the United States, Boston Medical Center has increased its use of IVC filters in the last decade. Given the scarcity of literature on the indications for placement, retrieval, or complications of these filters, we conducted a retrospective review to determine how IVC filters are used at our institution, as well as to review the complications related to their use. METHODS Institutional review board approval was obtained to perform a retrospective review of hospital medical records from all the patients who had an IVC filter placed between August 1, 2003, and February 28, 2011, at Boston Medical Center. A search was performed using Current Procedural Technology codes to determine which patients were billed for the placement of an IVC filter. Once identified, medical records were manually reviewed. Data extracted included patient demographics and indication for IVC filter placement, as well as filter types, filter retrieval, complications, use of anticoagulant therapy, and postdischarge follow-up data. Data were imported to a secure database that was kept separately from patient identifying information. RESULTS Filters were placed in 978 patients. Of these, 26 patients were excluded because of incomplete medical records. The remaining 952 medical records were included in this analysis. The median age of patients was 56 years (age range, 1-98 years). In total, 599 of 978 patients (61.2%) were male. Thirty-nine patients died during the index hospitalization, and 14 patients were discharged to hospice. FILTER PLACEMENT Permanent filters (TRAPEASE [Cordis] or Bird s Nest [Cook]) were placed in 273 of 952 patients (28.7%). Most of the permanent filters were placed before The first retrievable filters were used in September In total, 679 of 952 filters (71.3%) were retrievable (Option [Angiotech], Tulip [Günther-Cook], Optease [Cordis], Eclipse [Bard], or G2/G2X [Bard]). Inferior vena cava filters were placed by physicians from multiple departments; two-thirds (67.0%) were interventional radiologists. The medical or surgical services placing filters included radiology (n=626), trauma surgery (n=249), vascular surgery (n=37), cardiology (n=21), cardiothoracic surgery (n=1), and unknown (n=18). INDICATIONS FOR FILTER PLACEMENT Stated indications for filter placement were as follows (in descending order): trauma (50.2%), malignancy (15.9%), bleeding during anticoagulant therapy (11.8%), cerebral hemorrhage (7.6%), active or previous gastrointestinal tract bleeding (6.3%), PE with large clot burden (6.3%), preparation for surgery in a patient with history of venous thromboembolism (VTE) (6.3%), inability to anticoagulate after surgery (3.4%), failure of anticoagulant therapy (3.3%), prophylaxis for high-risk surgery (1.8%), patient noncompliance (1.8%), hemorrhagic stroke (1.1%), fall risk (0.7%), or unclear indications (0.6%). Some patients had more than 1 stated indication for placement. In total, 504 of 952 patients (52.9%) had VTE at the time of filter placement, and the remaining 448 patients (47.1%) had filters placed in the absence of acute VTE. Figure 1 shows the indications for and retrieval rates of filters, partitioned according to the presence or absence of VTE at the time of filter insertion. Overall retrieval rates were lower when they were used for prophylaxis in the absence of VTE rather than in the presence of VTE (7.7% vs 9.5%). Half of the filters (n=478) were placed in patients after a fall, blunt trauma, or penetrating trauma. Of these, 375 filters inserted after trauma (78.5%) were placed without any evidence of VTE. A median of 3 days (range, 0-32 days) elapsed between the date of trauma and filter insertion, with 174 of 478 filters (36.4%) being inserted 5 or more days after trauma (Figure 2). 514

3 VENOUS THROMBOEMBOLISM Before IVC filter placement, 31 of 978 patients (3.2%) sustainedavtewhenreceivinganticoagulanttherapyandcould be classified as anticoagulant failures. Of 952 patients who had a filter placed, 237 (24.9%) received therapeutic anticoagulant therapy before discharge from the hospital, indicating that their contraindication to anticoagulant therapy (if present at the time of filter insertion) was transient. No protocol was in place for routine imaging after filter placement or retrieval. Approximately half of the patients included in this review had subsequent imaging performed at various times. The imaging showed that 74 patients had VTE that developed after filter placement. In those 74 patients, 85 VTEs were diagnosed. Forty-one of those 85 VTEs (48.2%) occurred in patients who had no VTE before filter placement. In these cases, the filter had been placed strictly for prophylaxis, and the subsequent VTE could be viewed as a consequence of filter insertion. Twenty-six VTEs found after filter placement occurred during the index hospitalization and included 9 pulmonary emboli. Sixteen of the remaining VTEs were pulmonary emboli that developed after discharge from the hospital, all of which occurred with the filter still in place. Eighty-nine percent of VTEs after IVC filter placement occurred in patients not receiving anticoagulants. FOLLOW-UP DATA Thirty nine of 952 patients included in this review died before leaving the hospital. Of the remaining 913 patients, 78 (8.5%) had no mention of IVC filter placement in the discharge summary. Two hundred seven patients had no documented follow-up data at Boston Medical Center, and 360 patients had no mention of the IVC filter during subsequent medical follow-up care at our institution. An attempt was made to remove 71 of 679 retrievable filters (10.5%) placed. Among the 679 filters, 608 retrievals (89.5%) were not attempted, 58 retrievals (8.5%) were successful, and 13 retrieval attempts (1.9%) failed. Of the 58 successful reteievals, 15 (25.9%) had their filter removed during the index hospitalization, and 43 (74.1%) had their filter removed after hospital discharge. Retrieval attempts failed in 13 of 71 patients (18.3% of attempts) for the following reasons: filter embedded in the IVC (n=8), filter protruding through a blood vessel (n=3), abnormal filter position (n=2), or clot within the filter (n=1). One patient had more than 1 reason for retrieval failure, including a clot in the filter, and protrusion from the IVC. Of these unsuccessful attempts, 2 occurred during the index hospitalization, 1 shortly after discharge, and the remaining 10 failed after the filter had been in place for more than 85 days (Figure 3). The median retrieval time after filter placement was 122 days (range, days). No complications of filter retrieval were documented. SELECTED COMPLICATIONS Despite the lack of standardized follow-up imaging, at least 10 serious filter-related complications were captured in our 133 Malignancy (75 with active bleeding) (3.4% 54 GI bleeding (7.4% 52 History of VTE (anticoagulants stopped for surgery) (12.6% 26 Excluded for incomplete documentation 504 Known VTE (9.5% 978 Filter billing codes 952 Filters in analysis (8.5% 103 Acute trauma (14.2% 54 Large clot burden or compromised pulmonary status (16.7% 50 Cerebral hemorrhage (4.0% 448 No VTE (7.7% 375 Acute trauma (7.3% 73 Other (9.6% Figure 1. Partitioning scheme of indications for inferior vena cava filters and retrieval rates according to the presence or absence of venous thromboembolism (VTE) at the time of filter placement. Some filters had more than 1 indication for placement. Retrieval rates are shown as the percentage of potentially retrievable filters that were actually removed. Indications with fewer than 50 filters are not shown. GI indicates gastrointestinal. No. of Filters Placed Time After Trauma, d Figure 2. Number of days after trauma until inferior vena cava filter placement Time Until Filter Removal, d Figure 3. Number of days until attempted retrieval among successfully removed inferior vena cava filters. The middle line indicates the median of 122 days. The dots are scattered upward so that they do not overlap. 515

4 review, including 9 filters that had migrated from the initial location of placement and 2 filters that had fractured. Complications were considered serious if the patient required hospital admission or prolonged hospitalization for treatment. Several examples are given herein. An 82-year-old woman had a filter placed because of the presence of multiple PEs and DVTs and perceived inability to anticoagulate after a recent surgical procedure. The filter was partially placed in the renal vein during the initial procedure. Despite multiple attempts, it could not be successfully repositioned or removed. Shortly after the filter placement, the patient s hemoglobin level began to fall. She refused red blood cell transfusion for religious reasons and died days later. A 33-year-old man was brought to the hospital after a motor vehicle crash. He had a prophylactic IVC filter (G2; Bard) placed 2 days later. The patient received no follow-up care at our institution for more than 5 years, until he returned with report of chest pain. He was found to have a fractured IVC filter, with one strut of the filter lodged in a pulmonary artery. The patient underwent a fluoroscopic procedure and had both the strut from the pulmonary artery and the remaining portion of the filter in the IVC removed. A 56-year-old man developed a PE 4 days after a motor vehicle crash and had an IVC filter (Eclipse; Bard) placed. After filter placement, the patient s hemoglobin level fell, and imaging showed IVC perforation by the filter and an associated retroperitoneal bleed. Filter removal was attempted 9 days after placement but was unsuccessful. The patient s bleeding stabilized, and he was eventually discharged on a regimen of anticoagulant therapy, with the IVC filter in place. A 41-year-old woman with a history of papillary thyroid cancer metastatic to the brain had a filter (G2; Bard) placed for PE prophylaxis in the setting of a lower extremity DVT. She returned to the hospital 44 days later with pain, and imaging showed filter prongs protruding into her lumbar vessels and overlying the aorta. She had the filter removed and replaced. COMMENT During our study, 952 IVC filters were placed, with approximately half of the filters placed for prophylaxis of PE without evidence of VTE at the time of filter placement. The use of filters for VTE prophylaxis is controversial; as noted in our study, they do not prevent the development of DVT and do not entirely prevent PE. Their use is associated with complications, and many patients can receive pharmacological prophylaxis instead of filters. The 2012 American College of Chest Physicians guidelines recommend that an IVC filter should not be placed in a patient without current VTE based on a lack of highquality evidence that temporary filters reduce clinically important outcomes compared with pharmacological prophylaxis. 8 An important consideration when placing a filter is the risk of complications, not only during placement and retrieval but also long-term consequences if left in place. At least 10 serious complications were noted in this review. This is likely an underestimate of the total mechanical complications because minor mechanical issues were not systematically noted in this data set. Most of the filters in this review were designed for retrieval, yet only 8.5% were successfully removed. Therefore, approximately 91.5% of retrievable filters placed in patients at risk for VTE became permanent filters. The rate of filter retrieval varies significantly among institutions, with a recent systematic review noting on average a 34% retrieval rate. 11 Attention should be dedicated to improving overall retrieval rates. The goal is to increase retrievals in patients who no longer have an indication for the filter. Prompt retrieval decreases the long-term risks of filter retention, specifically increased incidence of DVT and filter fracture or migration. Although manufacturer literature shows safe retrieval of some filters up to 300 days after placement, 19 recent data show that increasing complications occur when the filters are left in place for longer periods. 11,14,20 While the feasibility of very delayed retrieval is well documented, the 18.3% rate of retrieval failure seen in our data was likely in part due to delayed retrieval attempts because 10 of 13 failed retrieval attempts occurred after the filter had been in place for 85 days or longer. During the period of this medical record review, no standardized procedure was in place to track patients or facilitate retrieval, with 59.6% of patients having no follow-up data or no mention of the filter at the time of follow-up care. Efforts to improve filter retrieval rates have been a recent focus of our institution. A filter insertion procedure note that specifies the indication for filter placement and the anticipated duration of placement is now mandatory for all IVC filter insertions. Patients are given educational material after filter placement stating that most filters should be removed once the risk for blood clots has subsided or anticoagulant therapy is tolerated. Every IVC filter is promptly entered into a central interdepartmental registry and tracked until retrieval. For filters not deemed permanent at the time of insertion, a designated administrator schedules timely retrieval or a clinic visit specifically to assess for the appropriateness and timing of retrieval. Retrievals are performed by interventional radiology or vascular surgery and do not typically require interruption of anticoagulant therapy. Filter clinics and personnel dedicated to ensuring follow-up care for patients with filters have been shown to improve retrieval rates. 18,21 Many patients may qualify to have their filter removed before discharge from the hospital. In this review, 24.9% of patients who had VTE and had a filter placed received anticoagulants before leaving the hospital. Presumably, all these patients could have been considered for filter removal once anticoagulant therapy was tolerated. In addition, a significant proportion of filters placed for prophylaxis after trauma were inserted after the period of highest bleeding risk had subsided ( 3 days after trauma), when anticoagulant therapy without an IVC filter may have been a more appropriate option. 8,22 These issues may be influenced by inpatient hospital reimbursement. For example, by modifying the diagnosis related group, the Centers for Medicare and Medicaid Services reimbursement for a patient admitted for an acute DVT increases by almost 250% if an IVC filter is placed. 23 Retrieval on the same admission would not increase reimbursement, while outpatient retrieval is reimbursed separately. 516

5 This analysis has limitations. The study was a retrospective medical record review; therefore, it is subject to various biases inherent in such data. We are aware of patients who had a filter placed during this period who were not included in our analysis, presumably because no billing code was generated for every filter placed. However, we believe that our review includes most relevant medical records. Some patients may have had their filters removed or experienced thrombotic events at outside hospitals, and these were not captured in our study. The high volume of filter use by the trauma service at our institution may skew the indications for placement and retrieval and may not necessarily apply to hospitals with a different patient population. The absence of systematic imaging or follow-up data for these patients is a serious limitation of this study. In conclusion, our research suggests that the frequent use of IVC filters for VTE treatment and prophylaxis, combined with a low retrieval rate and inconsistent use of anticoagulant therapy, results in suboptimal outcomes, such as mechanical filter failure and high rates of VTE. More comprehensive longitudinal data would likely identify additional complications. To better analyze the risks associated with IVC filter placement, a prospective randomized trial or cohort study is needed for indications other than proximal DVT (eg, prophylaxis in patients with trauma without VTE). Accepted for Publication: December 19, Published Online: March 18, doi: /jamainternmed Correspondence: Shayna Sarosiek, MD, Section of Hematology and Oncology, Department of Medicine, Boston University, 72 E Concord St, Ste K503, Boston, MA (shayna.sarosiek@bmc.org). Author Contributions: Drs Sarosiek and Sloan had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: All authors. Acquisition of data: Sarosiek and Sloan. Analysis and interpretation of data: All authors. Drafting of the manuscript: All authors. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Sarosiek. Obtained funding: Sloan. Administrative, technical, and material support: All authors. Study supervision: Crowther and Sloan. Conflict of Interest Disclosures: Dr Crowther is the recipient of a Heart and Stroke Foundation of Ontario Career Investigator Award and holds the LEO Pharma Chair in Thromboembolism Research at McMaster University. Funding/Support: Richard Davis, PhD, provided generous financial support for this research. Additional Contributions: Jeffrey Kalish, MD, Hannah Marks, BS, Meg Waite, RN, and Patricia Nash, CCS, gave invaluable assistance during the preparation of the manuscript. We thank the IVC Filter Retrieval Task Force for their dedication to improve filter management at Boston Medical Center. REFERENCES 1. Heit JA, Cohen AT, Anderson FA; VTE Impact Assessment Group. Estimated annual number of incident and recurrent, non-fatal and fatal venous thromboembolism (VTE) events in the US. ASH Annu Meeting Abstracts. 2005;106(11): Tapson VF. Acute pulmonary embolism. N Engl J Med. 2008;358(10): Trousseau A. Painful white swelling. Clin Med Hotel Dieu Paris. 1865;3(2): Becker DM, Philbrick JT, Selby JB. Inferior vena cava filters: indications, safety, effectiveness. Arch Intern Med. 1992;152(10): Stein PD, Kayali F, Olson RE. Twenty-one-year trends in the use of inferior vena cava filters. Arch Intern Med. 2004;164(14): Decousus H, Leizorovicz A, Parent F, et al; Prévention du Risque d Embolie Pulmonaire par Interruption Cave Study Group. A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. N Engl J Med. 1998;338(7): Smouse B, Johar A. Is market growth of vena cava filters justified? a review of indications, use, and market analysis. Endovasc Today. February 2010: Guyatt GH, Akl EA, Crowther M, Gutterman DD, Schuünemann HJ; American College of Chest Physicians Antithrombotic Therapy and Prevention of Thrombosis Panel. Executive summary: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines [published correction appears in Chest. 2012;141(4):1129]. Chest. 2012;141(2)(suppl):7S-47S. 9. Kaufman JA, Kinney TB, Streiff MB, et al. Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology multidisciplinary consensus conference. J Vasc Interv Radiol. 2006; 17(3): Geerts WH, Bergqvist D, Pineo GF, et al; American College of Chest Physicians. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133 (6)(suppl):381S-453S. 11. Angel LF, Tapson V, Galgon RE, Restrepo MI, Kaufman J. Systematic review of the use of retrievable inferior vena cava filters. J Vasc Interv Radiol. 2011;22 (11): e3. /abstract. Accessed January 31, Tam MD, Spain J, Lieber M, Geisinger M, Sands MJ, Wang W. Fracture and distant migration of the Bard Recovery filter: a retrospective review of 363 implantations for potentially life-threatening complications. J Vasc Interv Radiol. 2012; 23(2): e1. /abstract. Accessed January 31, Zhou D, Spain J, Moon E, Mclennan G, Sands MJ, Wang W. Retrospective review of 120 Celect inferior vena cava filter retrievals: experience at a single institution. J Vasc Interv Radiol. 2012;23(12): Nicholson W, Nicholson WJ, Tolerico P, et al. Prevalence of fracture and fragment embolization of Bard retrievable vena cava filters and clinical implications including cardiac perforation and tamponade. Arch Intern Med. 2010;170(20): Food and Drug Administration Removing retrievable inferior vena cava filters: initial communication. August 9, /AlertsandNotices/ucm htm. Accessed February 10, Ray CE Jr, Mitchell E, Zipser S, Kao EY, Brown CF, Moneta GL. Outcomes with retrievable inferior vena cava filters: a multicenter study. J Vasc Interv Radiol. 2006;17(10): Mission JF, Kerlan RK Jr, Tan JH, Fang MC. Rates and predictors of plans for inferior vena cava filter retrieval in hospitalized patients. J Gen Intern Med. 2010; 25(4): Minocha J, Idakoji I, Riaz A, et al. Improving inferior vena cava filter retrieval rates: impact of a dedicated inferior vena cava filter clinic. J Vasc Interv Radiol. 2010;21(12): G2 Filter System IFUs [package insert]. Tempe AZ: Bard Peripheral Vascular, Inc; October Accessed November 29, PREPIC Study Group. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prévention du Risque d Embolie Pulmonaire par Interruption Cave) randomized study. Circulation. 2005;112(3): Ko SH, Reynolds BR, Nicholas DH, et al. Institutional protocol improves retrievable inferior vena cava filter recovery rate. Surgery. 2009;146(4): Geerts WH, Jay RM, Code KI, et al. A comparison of low-dose heparin with lowmolecular-weight heparin as prophylaxis against venous thromboembolism after major trauma. N Engl J Med. 1996;335(10): Medical MS-DRG 301: Peripheral vascular disorders (weight ) estimated reimbursement $8,059 versus Surgical MS DRG-254: Other vascular procedures (weight ) estimated reimbursement $20, /icd10manual/fullcode_cms/p0002.html. Accessed February 6,

Inferior Vena Cava Filters- Are they Followed up? By Dr Nathalie van Havre Dr Chamica Wijesinghe Dr Kieren Brown

Inferior Vena Cava Filters- Are they Followed up? By Dr Nathalie van Havre Dr Chamica Wijesinghe Dr Kieren Brown Inferior Vena Cava Filters- Are they Followed up? By Dr Nathalie van Havre Dr Chamica Wijesinghe Dr Kieren Brown Introduction Trousseau (1868) first described interruption to inferior vena cava (IVC) to

More information

Clinical Guide - Inferior Vena Cava Filters (Reviewed 2006)

Clinical Guide - Inferior Vena Cava Filters (Reviewed 2006) Clinical Guide - Inferior Vena Cava Filters (Reviewed 2006) Principal Developer: V. Oliva Secondary Developers: W. Geerts Background The treatment of choice for deep venous thrombosis (DVT) and pulmonary

More information

PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM

PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM International Consensus Statement 2013 Guidelines According to Scientific Evidence Developed under the auspices of the: Cardiovascular Disease Educational

More information

Inferior Vena Cava Filters

Inferior Vena Cava Filters Inferior Vena Cava Filters and the American Society of Hematology Choosing Wisely Campaign Kevin P. Hubbard, DO, HMDC MACOI Chief - Division of Specialty Medicine Professor and Chair - Section of Internal

More information

Inferior Venacaval Filters Valuable vs. Dangerous Valuable Annie Kulungowski. Department of Surgery Grand Rounds March 24, 2008

Inferior Venacaval Filters Valuable vs. Dangerous Valuable Annie Kulungowski. Department of Surgery Grand Rounds March 24, 2008 Inferior Venacaval Filters Valuable vs. Dangerous Valuable Annie Kulungowski Department of Surgery Grand Rounds March 24, 2008 History of Vena Cava Filters Virchow-1846-Proposes PE originate from veins

More information

I am NOT: Disclosures. The Problem of the Con-Position Non Thinking! Against New Ideas. Against New Therapies. Against Endovascular Therapies

I am NOT: Disclosures. The Problem of the Con-Position Non Thinking! Against New Ideas. Against New Therapies. Against Endovascular Therapies Inferior Vena Cava Filters: Disclosures A Love /Hate (Mostly Hate) Relationship Lack of Political Correctness Gregory L. Moneta, M.D. Professor and Chief, Vascular Surgery Oregon Health & Science University

More information

IVC Filters: For Whom, Why and When?

IVC Filters: For Whom, Why and When? IVC Filters: For Whom, Why and When? Dariusz Zawierucha, MD Interventional & Diagnostic Radiology Radiology Associates, PC 1 Disclosures: I have no financial conflicts to disclose. I do not endorse any

More information

Bard Meridian Filter Fracture

Bard Meridian Filter Fracture Bard Meridian Filter Fracture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Wu, Alex et al. Bard

More information

IVC FILTERS: A CASE REPORT REVIEWING THE INDICATIONS FOR PLACEMENT, RETRIEVAL AND ANTICOAGULATION

IVC FILTERS: A CASE REPORT REVIEWING THE INDICATIONS FOR PLACEMENT, RETRIEVAL AND ANTICOAGULATION IVC FILTERS: A CASE REPORT REVIEWING THE INDICATIONS FOR PLACEMENT, RETRIEVAL AND ANTICOAGULATION Resident(s): George Athanasatos Attending(s): Daniel Golwyn Program/Dept: Interventional Radiology CHIEF

More information

Thrombosis & Hemostasis Summit of North America 2016Apr16. IVC Filters

Thrombosis & Hemostasis Summit of North America 2016Apr16. IVC Filters Thrombosis & Hemostasis Summit of North America 2016Apr16 IVC Filters Bill Geerts, MD, FRCPC Thromboembolism Consultant, Sunnybrook HSC Professor of Medicine, University of Toronto National Lead, VTE Prevention,

More information

THROMBOEMBOLIC EVENTS AFTER IVC FILTER PLACEMENT IN TRAUMA PATIENTS. Lidie Lajoie, MD SUNY Downstate Department of Surgery December 20, 2012

THROMBOEMBOLIC EVENTS AFTER IVC FILTER PLACEMENT IN TRAUMA PATIENTS. Lidie Lajoie, MD SUNY Downstate Department of Surgery December 20, 2012 THROMBOEMBOLIC EVENTS AFTER IVC FILTER PLACEMENT IN TRAUMA PATIENTS Lidie Lajoie, MD SUNY Downstate Department of Surgery December 20, 2012 Background Trauma Patients at High Risk for VTE Spain, D.A.,

More information

VENOUS THROMBOEMBOLISM: DURATION OF TREATMENT

VENOUS THROMBOEMBOLISM: DURATION OF TREATMENT VENOUS THROMBOEMBOLISM: DURATION OF TREATMENT OBJECTIVE: To provide guidance on the recommended duration of anticoagulant therapy for venous thromboembolism (VTE). BACKGROUND: Recurrent episodes of VTE

More information

Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 2

Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 2 Vascular Specialist International Vol. 34, No. 4, December 2018 pissn 2288-7970 eissn 2288-7989 Clinical Outcomes of a Preoperative Inferior Vena Cava Filter in Acute Venous Thromboembolism Patients Undergoing

More information

HISTORICALLY, INSERTION

HISTORICALLY, INSERTION ORIGINAL INVESTIGATION A Population-Based Study of Inferior Vena Cava Filters in Patients With Acute Venous Thromboembolism Frederick A. Spencer, MD; Shannon M. Bates, MD; Robert J. Goldberg, PhD; Darleen

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Mismetti P, Laporte S, Pellerin O, Ennezat P-V, Couturaud F, Elias A, et al. Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone

More information

Deep Venous Thrombosis, Pulmonary Embolus and IVC Filters. Michael Meuse, M.D. Vascular and Interventional Radiology

Deep Venous Thrombosis, Pulmonary Embolus and IVC Filters. Michael Meuse, M.D. Vascular and Interventional Radiology Deep Venous Thrombosis, Pulmonary Embolus and IVC Filters Michael Meuse, M.D. Vascular and Interventional Radiology Pulmonary Embolism and DVT Estimated 570,000 to 650,000 cases of symptomatic PE each

More information

Early Ambulation Reduces the Risk of Venous Thromboembolism After Total Knee Replacement. Marilyn Szekendi, PhD, RN

Early Ambulation Reduces the Risk of Venous Thromboembolism After Total Knee Replacement. Marilyn Szekendi, PhD, RN Early Ambulation Reduces the Risk of Venous Thromboembolism After Total Knee Replacement Marilyn Szekendi, PhD, RN ANA 7 th Annual Nursing Quality Conference, February 2013 Research Team Banafsheh Sadeghi,

More information

IVC Filters: A new era of responsibility

IVC Filters: A new era of responsibility IVC Filters: A new era of responsibility Stephen L. Wang, MD Lead Physician, KP National IVC Filter Registry Director, IVC Filter Clinic KP Santa Clara Vascular/Interventional Radiology Disclosure of Relevant

More information

Inferior Vena Cava Filter Retrieval

Inferior Vena Cava Filter Retrieval Inferior Vena Cava Filter Retrieval Tips on the best methods for retrieving an IVC filter. BY THUONG G. VAN HA, MD Studies have shown that inferior vena cava (IVC) filters are effective in the prevention

More information

Special comment. (inferior vena cava filter, IVCF) Mobin-Uddin % [4] 1 IVCF

Special comment. (inferior vena cava filter, IVCF) Mobin-Uddin % [4] 1 IVCF 340 Special comment ; ; ; :R543.6 :A :1008-794X(2011)-05-0340-05 The consensus among Chinese interventional experts on the standard of inferior vena cava filter insertion and retrieval Academic Group of

More information

Copyright Protected. There is considerable debate over what constitutes. Inferior Vena Cava Filter Placement in Orthopedic Surgery

Copyright Protected. There is considerable debate over what constitutes. Inferior Vena Cava Filter Placement in Orthopedic Surgery An Original Study Inferior Vena Cava Filter Placement in Orthopedic Surgery Anne R. Bass, MD, Christopher J. Mattern, MD, MBA, James E. Voos, MD, Margaret G. E. Peterson, PhD, and David W. Trost, MD Abstract

More information

Mabel Labrada, MD Miami VA Medical Center

Mabel Labrada, MD Miami VA Medical Center Mabel Labrada, MD Miami VA Medical Center *1-Treatment for acute DVT with underlying malignancy is for 3 months. *2-Treatment of provoked acute proximal DVT can be stopped after 3months of treatment and

More information

Pictorial review of IVC filters and their complications

Pictorial review of IVC filters and their complications Pictorial review of IVC filters and their complications Poster No.: C-1353 Congress: ECR 2014 Type: Educational Exhibit Authors: J. A. Vossen, J. S. Golia, L. Miller, D. Fedele, N. Velasco; Bridgeport,

More information

Venous thrombotic, thromboembolic, and mechanical complications after retrievable inferior vena cava filters for major trauma

Venous thrombotic, thromboembolic, and mechanical complications after retrievable inferior vena cava filters for major trauma British Journal of Anaesthesia 114 (1): 63 9 (2015) Advance Access publication 30 June 2014. doi:10.1093/bja/aeu195 CLINICAL PRACTICE Venous thrombotic, thromboembolic, and mechanical complications after

More information

INFERIOR VENA CAVA FILTERS QUIZ 10 QUESTIONS MAY 5, 2014

INFERIOR VENA CAVA FILTERS QUIZ 10 QUESTIONS MAY 5, 2014 INFERIOR VENA CAVA FILTERS QUIZ 10 QUESTIONS MAY 5, 2014 QUESTION 1 1. Anatomically Transposition of the IVC is observed in what % of individuals A) 1-5% B).2-.05% C) 3-5% D) 5-10% ANSWER QUESTION 1 Answer

More information

J Jpn Coll Angiol, 2009, 49:

J Jpn Coll Angiol, 2009, 49: Online publication August 27, 2009 1 2 J Jpn Coll Angiol, 2009, 49: 247 254 deep vein thrombosis, thrombolytic therapy, catheter-directed thrombolysis, inferior vena cava filter, pulmonary thromboembolism

More information

IVC filter retrieval program effects on retrieval rates and number of patients lost to follow-up

IVC filter retrieval program effects on retrieval rates and number of patients lost to follow-up IVC filter retrieval program effects on retrieval rates and number of patients lost to follow-up Aliaksei Salei, MD; Joel Raborn, MD; Padma P. Manapragada, MD; Ahmed Kamel Abdel Aal, MD/PhD; AJ Gunn, MD

More information

SAFETY AND EFFECTIVENESS OF INFERIOR VENA CAVA FILTERS USED TO PROTECT AGAINST PULMONARY EMBOLUS

SAFETY AND EFFECTIVENESS OF INFERIOR VENA CAVA FILTERS USED TO PROTECT AGAINST PULMONARY EMBOLUS TITLE: SAFETY AND EFFECTIVENESS OF INFERIOR VENA CAVA FILTERS USED TO PROTECT AGAINST PULMONARY EMBOLUS AUTHOR: Judith Walsh, MD, MPH Professor of Medicine Division of General Internal Medicine Department

More information

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form Last Updated: Version 4.3 NQF-ENORSE VOLUNTARY CONSENSUS STANARS FOR HOSPITAL CARE Measure Information Form Measure Set: Venous Thromboembolism (VTE) Set Measure Set I #: Performance Measure Name: Intensive

More information

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form. Performance Measure Name: Venous Thromboembolism Prophylaxis

NQF-ENDORSED VOLUNTARY CONSENSUS STANDARDS FOR HOSPITAL CARE. Measure Information Form. Performance Measure Name: Venous Thromboembolism Prophylaxis Last Updated: Version 4.3 NQF-ENORSE VOLUNTARY CONSENSUS STANARS FOR HOSPITAL CARE Measure Information Form Measure Set: Venous Thromboembolism (VTE) Set Measure Set I #: Performance Measure Name: Venous

More information

1. SCOPE of GUIDELINE:

1. SCOPE of GUIDELINE: Page 1 of 35 CLINICAL PRACTICE GUIDELINE: Venous Thromboembolism (VTE) Prevention Guideline: Thromboprophylaxis AUTHORIZATION: VP, Medicine Date Approved: May 17, 2012 Date Revised: Vancouver Coastal Health

More information

AN AUDIT: THROMBOPROPHYLAXIS FOR TOTAL HIP REPLACEMENT PATIENTS AT NORTHWICK PARK AND CENTRAL MIDDLESEX HOSPITALS

AN AUDIT: THROMBOPROPHYLAXIS FOR TOTAL HIP REPLACEMENT PATIENTS AT NORTHWICK PARK AND CENTRAL MIDDLESEX HOSPITALS The West London Medical Journal 2010 Vol 2 No 4 pp 19-24 AN AUDIT: THROMBOPROPHYLAXIS FOR TOTAL HIP REPLACEMENT PATIENTS AT NORTHWICK PARK AND CENTRAL MIDDLESEX HOSPITALS Soneji ND Agni NR Acharya MN Anjari

More information

DEEP VEIN THROMBOSIS (DVT): TREATMENT

DEEP VEIN THROMBOSIS (DVT): TREATMENT DEEP VEIN THROMBOSIS (DVT): TREATMENT OBJECTIVE: To provide an evidence-based approach to treatment of patients presenting with deep vein thrombosis (DVT). BACKGROUND: An estimated 45,000 patients in Canada

More information

M Johnson Disclosures

M Johnson Disclosures 2/22/2013 IVC Filters: Current Controversies and the PRESERVE Study Matthew S Johnson MD FSIR Indiana University School of Medicine M Johnson Disclosures Speaking and Teaching Bayer Cook Nordion Research

More information

What You Should Know

What You Should Know 1 New 2018 ASH Clinical Practice Guidelines on Venous Thromboembolism: What You Should Know New 2018 ASH Clinical Practice Guidelines on Venous Thromboembolism: What You Should Know The American Society

More information

Top Ten Reasons For Failure To Prevent Postoperative Thrombosis

Top Ten Reasons For Failure To Prevent Postoperative Thrombosis Top Ten Reasons For Failure To Prevent Postoperative Thrombosis Joseph A. Caprini, MD, MS, FACS, RVT, FACCWS Louis W. Biegler Chair of Surgery NorthShore University HealthSystem, Evanston, IL Clinical

More information

PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM

PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM PREVENTION AND TREATMENT OF VENOUS THROMBOEMBOLISM International Consensus Statement 2013 Guidelines According to Scientific Evidence Developed under the auspices of the: Cardiovascular Disease Educational

More information

Duration of Anticoagulant Therapy. Linda R. Kelly PharmD, PhC, CACP September 17, 2016

Duration of Anticoagulant Therapy. Linda R. Kelly PharmD, PhC, CACP September 17, 2016 Duration of Anticoagulant Therapy Linda R. Kelly PharmD, PhC, CACP September 17, 2016 Conflicts of Interest No conflicts of interest to report Objectives At the end of the program participants will be

More information

VTE in the Trauma Population

VTE in the Trauma Population VTE in the Trauma Population Erik Peltz, D.O. February 11 th, 2015 * contributions from Eduardo Gonzalez, M.D. University of Colorado T-32 Research Fellow The problem. VTE - Scope of the Problem One of

More information

Percutaneously Inserted AngioVac Suction Thrombectomy for the Treatment of Filter-Related. Iliocaval Thrombosis

Percutaneously Inserted AngioVac Suction Thrombectomy for the Treatment of Filter-Related. Iliocaval Thrombosis Percutaneously Inserted AngioVac Suction Thrombectomy for the Treatment of Filter-Related Iliocaval Thrombosis Faiz D. Francis, DO; Gianvito Salerno, MD; Sabbah D. Butty, MD Abstract In the setting of

More information

Handbook for Venous Thromboembolism

Handbook for Venous Thromboembolism Handbook for Venous Thromboembolism Gregory Piazza Benjamin Hohlfelder Samuel Z. Goldhaber Handbook for Venous Thromboembolism Gregory Piazza Cardiovascular Division Harvard Medical School Brigham and

More information

IVC Filters: Rate of Insertion, Indications, Effects on Prognosis, Evidence Basis for Current Practices. Paul D. Stein, MD

IVC Filters: Rate of Insertion, Indications, Effects on Prognosis, Evidence Basis for Current Practices. Paul D. Stein, MD IVC Filters: Rate of Insertion, Indications, Effects on Prognosis, Evidence Basis for Current Practices Paul D. Stein, MD Professor Department of Osteopathic Medical Specialties College of Osteopathic

More information

Venous Thromboembolism National Hospital Inpatient Quality Measures

Venous Thromboembolism National Hospital Inpatient Quality Measures Venous Thromboembolism National Hospital Inpatient Quality Measures Presentation Overview Review venous thromboembolism as a new mandatory measure set Outline measures with exclusions and documentation

More information

Perforated inferior vena cava filter removal by concurrent femoral and internal jugular vein approaches

Perforated inferior vena cava filter removal by concurrent femoral and internal jugular vein approaches www.edoriumjournals.com CLINICAL IMAGES PEER REVIEWED OPEN ACCESS Perforated inferior vena cava filter removal by concurrent femoral and internal jugular vein approaches Raymond Yap, Ankur Sidhu, Mark

More information

Patterns of Failure of a Standardized Perioperative Venous Thromboembolism Prophylaxis Protocol

Patterns of Failure of a Standardized Perioperative Venous Thromboembolism Prophylaxis Protocol Patterns of Failure of a Standardized Perioperative Venous Thromboembolism Prophylaxis Protocol Ryan Macht MD, Michael Cassidy MD, Pamela Rosenkranz RN BSN MEd, Joseph Caprini MD FACS, David McAneny MD

More information

EXTENDING VTE PROPHYLAXIS IN ACUTELY ILL MEDICAL PATIENTS

EXTENDING VTE PROPHYLAXIS IN ACUTELY ILL MEDICAL PATIENTS EXTENDING VTE PROPHYLAXIS IN ACUTELY ILL MEDICAL PATIENTS Samuel Z. Goldhaber, MD Director, VTE Research Group Cardiovascular Division Brigham and Women s Hospital Professor of Medicine Harvard Medical

More information

Prevention of Venous Thromboembolism in High-Risk Patients

Prevention of Venous Thromboembolism in High-Risk Patients Prevention of Venous Thromboembolism in High-Risk Patients William H. Geerts The prevention of venous thromboembolism (VTE) in patients recovering from major trauma, spinal cord injury (SCI), or other

More information

Use of EKOS Catheter in the management of Venous Mr. Manoj Niverthi, Mr. Sarang Pujari, and Ms. Nupur Dandavate, The GTF Group

Use of EKOS Catheter in the management of Venous Mr. Manoj Niverthi, Mr. Sarang Pujari, and Ms. Nupur Dandavate, The GTF Group Use of EKOS Catheter in the management of Venous Thromboembolism @ Mr. Manoj Niverthi, Mr. Sarang Pujari, and Ms. Nupur Dandavate, The GTF Group Introduction Georgia Thrombosis Forum (GTF, www.gtfonline.net)

More information

10/8/2012. Disclosures. Making Sense of AT9: Review of the 2012 ACCP Antithrombotic Guidelines. Goals and Objectives. Outline

10/8/2012. Disclosures. Making Sense of AT9: Review of the 2012 ACCP Antithrombotic Guidelines. Goals and Objectives. Outline Disclosures Making Sense of AT9: Review of the 2012 ACCP Antithrombotic Guidelines No relevant conflicts of interest related to the topic presented. Cyndy Brocklebank, PharmD, CDE Chronic Disease Management

More information

American College of Radiology ACR Appropriateness Criteria

American College of Radiology ACR Appropriateness Criteria American College of Radiology ACR Appropriateness Criteria Date of origin: 1996 Last review date: 2012 Clinical Condition: Variant 1: Radiologic Management of Inferior Vena Cava Filters Acute pulmonary

More information

New Guidance in AT10 Clive Kearon, MD, PhD,

New Guidance in AT10 Clive Kearon, MD, PhD, New Guidance in AT10 Clive Kearon, MD, PhD, Professor, Department of Medicine, McMaster University; Program Director, McMaster Clinical Investigator Program, McMaster University Head, Clinical Thromboembolism

More information

Canadian Society of Internal Medicine Annual Meeting 2016 Montreal, QC

Canadian Society of Internal Medicine Annual Meeting 2016 Montreal, QC Canadian Society of Internal Medicine Annual Meeting 2016 Montreal, QC 1 st workshop: update to VTE guidelines in 2016 2 nd workshop: VTE controversies + new horizons André Roussin MD, FRCP, CSPQ CHUM

More information

VTE in Children: Practical Issues

VTE in Children: Practical Issues VTE in Children: Practical Issues Wasil Jastaniah MBBS,FAAP,FRCPC Consultant Pediatric Hem/Onc/BMT May 2012 Top 10 Reasons Why Pediatric VTE is Different 1. Social, ethical, and legal implications. 2.

More information

Inferior vena cava filters: current best practices

Inferior vena cava filters: current best practices J Thromb Thrombolysis (2015) 39:315 327 DOI 10.1007/s19-015-1187-5 Inferior vena cava filters: current best practices Anita Rajasekhar Published online: 14 February 2015 Ó Springer Science+Business Media

More information

Top 5 (or so) Hematology Consults. Tom DeLoughery, MD FACP FAWM. Oregon Health and Sciences University DISCLOSURE

Top 5 (or so) Hematology Consults. Tom DeLoughery, MD FACP FAWM. Oregon Health and Sciences University DISCLOSURE Top 5 (or so) Hematology Consults Tom FACP FAWM Oregon Health and Sciences University DISCLOSURE Relevant Financial Relationship(s) Speaker Bureau - None Consultant/Research none 1 What I am Talking About

More information

Individualizing VTE Treatment and Prevention of Recurrence: The Place for Direct Oral Anticoagulants in VTE

Individualizing VTE Treatment and Prevention of Recurrence: The Place for Direct Oral Anticoagulants in VTE Transcript Details This is a transcript of a continuing medical education (CME) activity accessible on the ReachMD network. Additional media formats for the activity and full activity details (including

More information

Disclosures. Objectives

Disclosures. Objectives BRIGHAM AND WOMEN S HOSPITAL Treatment of Massive and Submassive Pulmonary Embolism Gregory Piazza, MD, MS Assistant Professor of Medicine Harvard Medical School Staff Physician, Cardiovascular Division

More information

Clinical Policy: Dalteparin (Fragmin) Reference Number: ERX.SPA.207 Effective Date:

Clinical Policy: Dalteparin (Fragmin) Reference Number: ERX.SPA.207 Effective Date: Clinical Policy: (Fragmin) Reference Number: ERX.SPA.207 Effective Date: 01.11.17 Last Review Date: 02.18 Revision Log See Important Reminder at the end of this policy for important regulatory and legal

More information

Trauma Measure #3 Venous Thromboembolism (VTE) Prophylaxis in Abdominal Trauma. National Quality Strategy (NQS) Domain: Patient Safety

Trauma Measure #3 Venous Thromboembolism (VTE) Prophylaxis in Abdominal Trauma. National Quality Strategy (NQS) Domain: Patient Safety Trauma Measure #3 Venous Thromboembolism (VTE) Prophylaxis in Abdominal Trauma National Quality Strategy (NQS) Domain: Patient Safety Measure Type (Process/Outcome): Process 2016 PQRS OPTIONS FOR INDIVIDUAL

More information

Complex Retrieval of Embedded Inferior Vena Cava Filters in Interventional Radiology

Complex Retrieval of Embedded Inferior Vena Cava Filters in Interventional Radiology Transcript Details This is a transcript of an educational program accessible on the ReachMD network. Details about the program and additional media formats for the program are accessible by visiting: https://reachmd.com/programs/medical-breakthroughs-from-penn-medicine/complex-retrievalembedded-inferior-vena-cava-filters-interventional-radiology/7838/

More information

Clinical Implications of the Impact of Serum Tissue Factor Levels after Trauma

Clinical Implications of the Impact of Serum Tissue Factor Levels after Trauma Clinical Implications of the Impact of Serum Tissue Factor Levels after Trauma Ian E. Brown, MD, PhD, and Joseph M. Galante MD, FACS Formatted: Font: 16 pt, Bold Formatted: Centered Formatted: Font: Bold

More information

Cost-effective prevention of pulmonary embolus in high-risk trauma patients Brasel K J, Borgstrom D C, Weigelt J A

Cost-effective prevention of pulmonary embolus in high-risk trauma patients Brasel K J, Borgstrom D C, Weigelt J A Cost-effective prevention of pulmonary embolus in high-risk trauma patients Brasel K J, Borgstrom D C, Weigelt J A Record Status This is a critical abstract of an economic evaluation that meets the criteria

More information

Results from Hokusai-VTE presented during ESC Congress 2013 Hot Line session and published in the New England Journal of Medicine

Results from Hokusai-VTE presented during ESC Congress 2013 Hot Line session and published in the New England Journal of Medicine Press Release Daiichi Sankyo s Once-Daily Edoxaban Shows Comparable Efficacy and Superiority for the Principal Safety Endpoint Compared to Warfarin in a Phase 3 Study for the Treatment of Symptomatic VTE

More information

Diagnosis and Treatment of Deep Venous Thrombosis and Pulmonary Embolism

Diagnosis and Treatment of Deep Venous Thrombosis and Pulmonary Embolism Agency for Healthcare Research and Quality Evidence Report/Technology Assessment Diagnosis and Treatment of Deep Venous Thrombosis and Pulmonary Embolism Summary Number 68 Overview Venous thromboembolism

More information

Pulmonary embolism (PE) has often been considered a

Pulmonary embolism (PE) has often been considered a Prophylactic Inferior Vena Cava Filters: Do They Make a Difference in Trauma Patients? Robert A. Cherry, MD, FACS, Pamela A. Nichols, BSN, Theresa M. Snavely, BSN, RN, Mauger T. David, PhD, and Frank C.

More information

Comparison of Venothromboembolism Prophylaxis Practices in a Winnipeg Tertiary Care Hospital to Chest Guidelines: A Quality Improvement Project

Comparison of Venothromboembolism Prophylaxis Practices in a Winnipeg Tertiary Care Hospital to Chest Guidelines: A Quality Improvement Project Comparison of Venothromboembolism Prophylaxis Practices in a Winnipeg Tertiary Care Hospital to Chest Guidelines: A Quality Improvement Project Dr. Jonathan Laxton, FRCPC, R5 GIM University of Manitoba

More information

Bard Recovery Filter: Evaluation and Management of Vena Cava Limb Perforation, Fracture, and Migration

Bard Recovery Filter: Evaluation and Management of Vena Cava Limb Perforation, Fracture, and Migration Bard Recovery Filter: Evaluation and Management of Vena Cava Limb Perforation, Fracture, and Migration Jeffrey E. Hull, MD, and Scott W. Robertson, PhD PURPOSE: To report on the evaluation and management

More information

Clinical Policy: Dalteparin (Fragmin) Reference Number: ERX.SPA.207 Effective Date:

Clinical Policy: Dalteparin (Fragmin) Reference Number: ERX.SPA.207 Effective Date: Clinical Policy: (Fragmin) Reference Number: ERX.SPA.207 Effective Date: 01.11.17 Last Review Date: 11.17 Revision Log See Important Reminder at the end of this policy for important regulatory and legal

More information

Prevention of Venous Thromboembolism in Department of Veterans Affairs Hospitals

Prevention of Venous Thromboembolism in Department of Veterans Affairs Hospitals ORIGINAL RESEARCH Prevention of Venous Thromboembolism in Department of Veterans Affairs Hospitals Jerome Herbers, MD, MBA Susan Zarter, BSN Department of Veterans Affairs, Office of the Inspector General,

More information

Joint Theater Trauma System Clinical Practice Guideline

Joint Theater Trauma System Clinical Practice Guideline THE PREVENTION OF DEEP VENOUS THROMBOSIS IVC Filter Original Release/Approval 25 Dec 2004 Note: This CPG requires an annual review. Reviewed: Mar 2012 Approved: 24 Apr 2012 Supersedes: The Prevention of

More information

incidence of cancer-associated thrombosis (CAT) is further increased by additional risk factors such as chemotherapeutic 2

incidence of cancer-associated thrombosis (CAT) is further increased by additional risk factors such as chemotherapeutic 2 CANCER ASSOCIATED THROMBOSIS TREATMENT Patients with cancer are at a greater risk of developing venous thromboembolism than non-cancer patients, partly due to the ability of tumour cells to activate the

More information

Spontaneous Tilting after Placement of the Gu nther-tulip Inferior Vena Caval Filter: A Case Report 1

Spontaneous Tilting after Placement of the Gu nther-tulip Inferior Vena Caval Filter: A Case Report 1 Spontaneous Tilting after Placement of the Gu nther-tulip Inferior Vena Caval Filter: Case Report 1 Tae-Seok Seo, M.D., In-Ho Cha, M.D., Hae Young Seol, M.D., Cheol Min Park, M.D. Tilting of a deployed

More information

Disclosures. DVT: Diagnosis and Treatment. Questions To Ask. Dr. Susanna Shin - DVT: Diagnosis and Treatment. Acute Venous Thromboembolism (VTE) None

Disclosures. DVT: Diagnosis and Treatment. Questions To Ask. Dr. Susanna Shin - DVT: Diagnosis and Treatment. Acute Venous Thromboembolism (VTE) None Disclosures DVT: Diagnosis and Treatment None Susanna Shin, MD, FACS Assistant Professor University of Washington Acute Venous Thromboembolism (VTE) Deep Venous Thrombosis (DVT) Pulmonary Embolism (PE)

More information

VTE Management in Surgical Patients: Optimizing Prophylaxis Strategies

VTE Management in Surgical Patients: Optimizing Prophylaxis Strategies VTE Management in Surgical Patients: Optimizing Prophylaxis Strategies VTE in Surgical Patients: Recognizing the Patients at Risk Pathogenesis of thrombosis: Virchow s triad and VTE Risk Hypercoagulability

More information

Inferior Vena Cava Filter Migration to the Right Ventricle: A Case Report and Review of Filter Migration and Misdeployment

Inferior Vena Cava Filter Migration to the Right Ventricle: A Case Report and Review of Filter Migration and Misdeployment Elmer Press Case Report Inferior Vena Cava Filter Migration to the Right Ventricle: A Case Report and Review of Filter Migration and Misdeployment Jason Dreyer a, d, Ketul Patel b, Huma Shujaat b, Michael

More information

Perioperative Management of the Anticoagulated Patient

Perioperative Management of the Anticoagulated Patient Perioperative Management of the Anticoagulated Patient Citywide Resident Perioperative Medical Consultation Conference 5/5/17 Matthew Eisen, MD Director, Anticoagulation Services MetroHealth Medical Center

More information

EKOS. Interventional Vascular 3 February, Imagine where we can go.

EKOS. Interventional Vascular 3 February, Imagine where we can go. EKOS Interventional Vascular 3 February, 2015 Imagine where we can go. Forward-looking statement This presentation and information communicated verbally to you may contain certain projections and other

More information

Risk of venous thromboembolism and benefits of prophylaxis use in hospitalized medically ill US patients up to 180 days post-hospital discharge

Risk of venous thromboembolism and benefits of prophylaxis use in hospitalized medically ill US patients up to 180 days post-hospital discharge ORIGINAL CLINICAL INVESTIGATION Open Access Risk of venous thromboembolism and benefits of prophylaxis use in hospitalized medically ill US patients up to 180 days post-hospital discharge Li Wang 1, Nishan

More information

Inferior Vena Cava Filter for DVT

Inferior Vena Cava Filter for DVT Inferior Vena Cava Filter for DVT Deep Vein Thrombosis A deep vein thrombosis (DVT) is a blood clot that forms in a deep vein. This is a serious condition that occurs more often than you might think. If

More information

Medical Patients: A Population at Risk

Medical Patients: A Population at Risk Case Vignette A 68-year-old woman with obesity was admitted to the Medical Service with COPD and pneumonia and was treated with oral corticosteroids, bronchodilators, and antibiotics. She responded well

More information

Anticoagulation for prevention of venous thromboembolism

Anticoagulation for prevention of venous thromboembolism Anticoagulation for prevention of venous thromboembolism Original article by: Michael Tam Note: updated in June 2009 with the eighth edition (from the seventh) evidence-based clinical practice guidelines

More information

Icd 10 code for deep venous

Icd 10 code for deep venous Icd 10 code for deep venous thrombosis prophylaxis The Borg System is 100 % Icd 10 code for deep venous thrombosis prophylaxis PE. Pulmonary Embolus. F-10a Factor 10a Inhibitors. PH. Pulmonary. Hypertension.

More information

Indications of Anticoagulants; Which Agent to Use for Your Patient? Marc Carrier MD MSc FRCPC Thrombosis Program Ottawa Hospital Research Institute

Indications of Anticoagulants; Which Agent to Use for Your Patient? Marc Carrier MD MSc FRCPC Thrombosis Program Ottawa Hospital Research Institute Indications of Anticoagulants; Which Agent to Use for Your Patient? Marc Carrier MD MSc FRCPC Thrombosis Program Ottawa Hospital Research Institute Disclosures Research Support/P.I. Employee Leo Pharma

More information

Oral Anticoagulation Drug Class Prior Authorization Protocol

Oral Anticoagulation Drug Class Prior Authorization Protocol Oral Anticoagulation Drug Class Prior Authorization Protocol Line of Business: Medicaid P & T Approval Date: February 21, 2018 Effective Date: April 1, 2018 This policy has been developed through review

More information

SUBJECT: LIMB PNEUMATIC COMPRESSION EFFECTIVE DATE: 06/27/13 DEVICES FOR VENOUS REVISED DATE: 06/26/14 THROMBOEMBOLISM PROPHYLAXIS

SUBJECT: LIMB PNEUMATIC COMPRESSION EFFECTIVE DATE: 06/27/13 DEVICES FOR VENOUS REVISED DATE: 06/26/14 THROMBOEMBOLISM PROPHYLAXIS MEDICAL POLICY SUBJECT: LIMB PNEUMATIC COMPRESSION PAGE: 1 OF: 5 If the member's subscriber contract excludes coverage for a specific service it is not covered under that contract. In such cases, medical

More information

Landmark Phase III Study of Bayer s Xarelto (Rivaroxaban) Initiated for the Secondary Prevention of Myo

Landmark Phase III Study of Bayer s Xarelto (Rivaroxaban) Initiated for the Secondary Prevention of Myo Xarelto (Rivaroxaban) Landmark Phase III Study of Bayer s Xarelto (Rivaroxaban) Initiated for the Secondary Prevention of Myocardial Infarction and Death in Patients with Coronary or Peripheral Artery

More information

Obesity, renal failure, HIT: which anticoagulant to use?

Obesity, renal failure, HIT: which anticoagulant to use? Obesity, renal failure, HIT: which anticoagulant to use? Mark Crowther with thanks to Dr David Garcia and others. This Photo by Unknown Author is licensed under CC BY-SA 1 2 Drug choices The DOACs have

More information

How long to continue anticoagulation after DVT?

How long to continue anticoagulation after DVT? How long to continue anticoagulation after DVT? Dr. Nihar Ranjan Pradhan M.S., DNB (Vascular Surgery), FVES(UK) Consultant Vascular Surgeon Apollo Hospital, Jubilee Hills, Hyderabad (Formerly Faculty in

More information

RESPECT Safety Findings

RESPECT Safety Findings CO-1 SCAI Town Hall Meeting Monday, October 31, 2016 Washington, DC RESPECT Safety Findings John D. Carroll, M.D., MSCAI Professor of Medicine Cardiology University of Colorado School of Medicine University

More information

DVT - initial management NSCCG

DVT - initial management NSCCG Background information Information resources for patients and carers Updates to this care map Synonyms Below knee DVT and bleeding risks Patient with confirmed DVT Scan confirms superficial thrombophlebitis

More information

Prevalence and Clinical Consequences of Fracture and Fragment Migration of the Bard G2 Filter: Imaging and Clinical Follow-up in 684 Implantations

Prevalence and Clinical Consequences of Fracture and Fragment Migration of the Bard G2 Filter: Imaging and Clinical Follow-up in 684 Implantations CLINICAL STUDY Prevalence and Clinical Consequences of Fracture and Fragment Migration of the Bard G2 Filter: Imaging and Clinical Follow-up in 684 Implantations Tianzhi An, MD, Eunice Moon, MD, Jennifer

More information

Venous Thrombo-Embolism. John de Vos Consultant Haematologist RSCH

Venous Thrombo-Embolism. John de Vos Consultant Haematologist RSCH Venous Thrombo-Embolism John de Vos Consultant Haematologist RSCH overview The statistics Pathogenesis Prophylaxis Treatment Agent Duration Incidental VTE Recurrence of VTE IVC filters CVC related thrombosis

More information

Testing for factor V Leiden in patients with pulmonary or venous thromboembolism: a costeffectiveness

Testing for factor V Leiden in patients with pulmonary or venous thromboembolism: a costeffectiveness Testing for factor V Leiden in patients with pulmonary or venous thromboembolism: a costeffectiveness analysis Eckman M H, Singh S K, Erban J K, Kao G Record Status This is a critical abstract of an economic

More information

DATA FROM THE POPULAtion-based

DATA FROM THE POPULAtion-based ORIGINAL INVESTIGATION Venous Thromboembolism in the Outpatient Setting Frederick A. Spencer, MD; Darleen Lessard, MS; Cathy Emery, RN; George Reed, PhD; Robert J. Goldberg, PhD Background: There has been

More information

Lack of Clinical Benefit of Thromboprophylaxis in Patients Hospitalized in a Medical Unit Over a 10-year Span

Lack of Clinical Benefit of Thromboprophylaxis in Patients Hospitalized in a Medical Unit Over a 10-year Span Elmer Original Article ress Lack of Clinical Benefit of Thromboprophylaxis in Patients Hospitalized in a Medical Unit Over a 10-year Span Gabrielle Migner-Laurin a, Thomas St-Aubin b, Julie Lapointe b,

More information

IN-VITRO STUDY OF FILTERING EFFICIENCY IN VENA CAVA FILTERS

IN-VITRO STUDY OF FILTERING EFFICIENCY IN VENA CAVA FILTERS IN-VITRO STUDY OF FILTERING EFFICIENCY IN VENA CAVA FILTERS Marcelo Peixer Corbellini, corbellini@labcet.ufsc.br Amir Antônio Martins de Oliveira Jr., amir.oliveira@gmail.com Universidade Federal de Santa

More information

Intervention for Deep Venous Thrombosis and Pulmonary Embolus

Intervention for Deep Venous Thrombosis and Pulmonary Embolus Intervention for Deep Venous Thrombosis and Pulmonary Embolus Michael R. Jaff, DO Paul and Phyllis Fireman Endowed Chair in Vascular Medicine Massachusetts General Hospital Professor of Medicine Harvard

More information

Venous Thromboembolism. Prevention

Venous Thromboembolism. Prevention Venous Thromboembolism Prevention August 2010 Venous Thromboembloism Prevention 1 1 Expected Practice Assess all patients upon admission to the ICU for risk factors of venous thromboembolism (VTE) and

More information

Venous Thromboembolism (VTE): Prophylaxis and the Incidence of Hospital Acquired VTE(HAQ VTE) Olaide Akande, MBChB Mentor: John Hall, MD, FACP

Venous Thromboembolism (VTE): Prophylaxis and the Incidence of Hospital Acquired VTE(HAQ VTE) Olaide Akande, MBChB Mentor: John Hall, MD, FACP Venous Thromboembolism (VTE): Prophylaxis and the Incidence of Hospital Acquired VTE(HAQ VTE) Olaide Akande, MBChB Mentor: John Hall, MD, FACP Outline Rationale Background Objective Methods Results Conclusion

More information

Draft. These draft recommendations are not final and therefore are not intended for use or citation.

Draft. These draft recommendations are not final and therefore are not intended for use or citation. ASH Recommendations for VTE in Non-Surgical Patients INTRODUCTION American Society of Hematology (ASH) guidelines are based on a systematic review of available evidence. Through a structured process, a

More information