ORIGINAL CONTRIBUTION. Composite SISCOM Perfusion Patterns in Right and Left Temporal Seizures

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. Composite SISCOM Perfusion Patterns in Right and Left Temporal Seizures"

Transcription

1 ORIGINAL CONTRIBUTION Composite SISCOM Perfusion Patterns in Right and Left Temporal Seizures R. Edward Hogan, MD; Kitti Kaiboriboon, MD; Mary E. Bertrand, MD; Venkat Rao, MD; Jayant Acharya, MD Objective: To compare composite subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance imaging (also known as SISCOM) patterns between right and left medial temporalonset seizures to document neuroanatomical involvement in perfusion patterns. Design: A retrospective comparative survey. Setting: Epilepsy monitoring unit in a tertiary care referral center. Participants: Subjects with temporal lobe epilepsy (TLE) who underwent ictal single-photon emission computed tomography studies. Main Outcome Measures: Comparison of ictal perfusion pattern changes in subjects with right and left temporal seizures. Results: Composite subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance images showed similar regions of hyperperfusion change in the ipsilateral anteromedial temporal corpus striatum insula region in both groups. In the midbrain reticular formation, there was a significant difference in hyperperfusion between the left and right TLE groups. In addition, the right, but not the left, TLE group shows contralateral hypoperfusion of the temporoparietal junction. Conclusions: While anteromedial temporal corpus striatum insula perfusion patterns are similar, there are brainstem and hemispheric perfusion pattern differences in right and left TLE seizures, confirming pathophysiological differences between the groups. These findings help define neuronal network involvement in TLE seizures, and may explain the differences in clinical symptoms of right and left TLE seizures. Arch Neurol. 2006;63: Author Affiliations: Departments of Neurology, Saint Louis University, St Louis, Mo (Drs Hogan, Bertrand, Rao, and Acharya), and University of California, San Francisco (Dr Kaiboriboon). Dr Hogan is now with the Department of Neurology, Washington University School of Medicine, St Louis. RECENT ADVANCES IN NEUROimaging have enabled measurement of brain function during the ictal state. Notably, single-photon emission computed tomography (SPECT) allows measurement of changes in cerebral perfusion patterns during seizures. 1,2 Ictal SPECT-documented perfusion changes are related to electrographic seizure patterns, 3 and provide valuable insight into neuronal network function in epilepsy. 4 By using subtraction SPECT, previous investigators 5,6 have demonstrated patterns of ictal perfusion changes associated with alteration of consciousness in epileptic seizures. Given the differences in ictal symptoms of right and left temporal lobe epilepsy (TLE) seizures, 7 which are suggestive of differences in pathophysiological features between groups, analyzing right and left TLE seizures together may have confounded the differences of perfusion due to laterality of seizure onset. This study identifies hyperperfusion and hypoperfusion patterns in subjects with medial temporal-onset seizures according to the side of seizure onset and compares the patterns between groups. In addition, we interpret results in the context of neuronal network function in epilepsy and discuss findings of global perfusion changes in the context of clinical symptoms of right and left temporal lobe seizures. METHODS PATIENTS AND CLINICAL VARIABLES We retrospectively analyzed 32 consecutive patients with medically intractable TLE who underwent ictal and interictal SPECT studies. The study protocol was approved by the Saint Louis University institutional review board. All patients underwent long-term video electroencephalographic (EEG) monitoring, ictal and interictal SPECT studies, and high-resolution magnetic resonance imaging (MRI). Two of us (K.K. and M.E.B.) reviewed long-term video- 1419

2 Table. Baseline Characteristics of the Subjects* Characteristic Left (n = 17) TLE Group Right (n = 15) P Value Age, y 32.4 (11.7) 40.1 (10.2).06 Sex Male 7 (41) 7 (47) NA Female 10 (59) 8 (53) NA SPECT scanner protocol 1 6 (35) 5 (33) NA 2 11 (65) 10 (67) NA Injection time, s 32.1 (12.3) 32.2 (16.9).99 Symptoms during ictal SPECT injection Motionless staring (n = 6) 3 3 NA Automatism (n = 14) 7 7 NA Dystonic posturing (n = 7) 4 3 NA Versive head movements 3 2 NA (n=5) EEG pattern at injection Ipsilateral temporal (n = 17) 9 8 NA Ipsilateral temporal (n=3) 2 1 NA Bitemporal (n=7) 4 3 NA Bitemporal (n=1) 0 1 NA Diffuse (n=4) 2 2 NA Seizure duration, s 89.0 (37.2) 93.0 (39.4).77 Pathological diagnosis (n = 20) Hippocampal sclerosis 10 8 NA Subcortical heterotopia 0 1 NA DNET* 1 0 NA Abbreviations: DNET, dysembryoplastic neuroepithelial tumor; EEG, electroencephalographic; NA, data not applicable; SPECT, single-photon emission computed tomography; TLE, temporal lobe epilepsy. *Data are given as number of subjects in each group unless otherwise indicated. Data are given as mean (SD). Comparison of left and right TLE groups using the 2-tailed unpaired t test. Data are given as number (percentage) of each group. EEG monitoring results during ictal SPECT studies to determine the time of seizure onset and end, the time of radiopharmaceutical injection, seizure symptoms, and EEG localization. The epileptogenic focus was localized based on the long-term scalp video-eeg, neuroimaging studies, intracranial EEG (if available), and surgical outcomes. IMAGE ACQUISITION AND PROCESSING FOR COMPOSITE SUBTRACTION ICTAL SPECT COREGISTERED TO MRI STUDIES The SPECT images were obtained using 2 different protocols because of an upgrade of the SPECT scanner at our institution. Both protocols produce comparable results. 8 SPECT acquisition and composite subtraction ictal SPECT coregistered to MRI studies were performed as previously described. 9,10 In summary, after SPECT-to-SPECT coregistration and SPECT normalization, the normalized interictal SPECT image was matched to the template SPECT image. The variables generated for the normalized interictal SPECT image were then applied to the normalized ictal SPECT image. The transformed interictal and ictal SPECT images were subtracted and segmented in binary format to show only voxel intensities greater than 1 SD (for hyperperfusion studies) or less than 1 SD (for hypoperfusion studies). These subtracted images were then added together to make the final composite image. The composite SPECT image was coregistered to the template MRI using the coregistration coordinates of the template SPECT image and MRI. IMAGE ANALYSIS We used the binomial probability calculation equation to determine the significance of regions of perfusion. 9 The probability maps for right and left TLE composite studies were created separately. The binomial probability intensities that represented the lowest intensity, with probability less than 0.05, were in 6 of 17 subjects (P=.04) in the left TLE group and in 6 of 15 subjects (P =.02) in the right TLE group. Right and left TLE composite studies were reviewed side by side, sequentially through the entire image in each 3-dimensional plane to visually detect differences in symmetry of perfusion patterns between groups. A consensus in the visual review of 2 investigators (R.E.H. and V.R.) was used to determine regions of differences between groups. When a difference of perfusion in the midbrain tegmentum was found, 1 reviewer (R.E.H.) used the 3-dimensional voxel registration tool within the computer software used (Analyze 5.0; Biomedical Imaging Resource, Mayo Clinic, Rochester, Minn) to sample within the region of the midbrain reticular formation 11 to find the most prevalent intensity in the right and left TLE groups. RESULTS Thirty-two patients with medial temporal-onset seizures were included. Baseline demographic and physiological variables were not different between subjects with right and left TLE (Table). One subject in the left TLE group had a simple partial seizure. All other subjects had complex partial seizures. No subject had secondarily generalized tonic-clonic seizures. HYPERPERFUSION PATTERNS Composite subtraction ictal SPECT coregistered to MRI images of the right and left TLE groups showed similar areas of hyperperfusion changes in the ipsilateral anteromedial temporal corpus striatum insula, bilateral orbitofrontal, bilateral thalamus, and contralateral temporal regions (Figure 1 and Figure 2). Significant hyperperfusion in the region of brainstem tegmentum was observed in the left, but not the right, TLE group. HYPOPERFUSION PATTERNS Visual inspection of hypoperfusion changes showed the most prominent involvement in the cerebral midline structures and cerebellar hemispheres, bilaterally (Figure 3 and Figure 4). However, hemispheric asymmetries in the right and left TLE groups were also present. Significant contralateral hypoperfusion of the temporoparietal junction was observed in the right, but not the left, TLE group. In addition, larger regions of hypoperfusion were seen throughout the contralateral occipital lobe in the right TLE group (Figure 4). Figure 5 shows hyperperfusion of limbic structures, surrounded by hypoperfusion of hemispheric cortical structures in the left TLE group. 1420

3 Figure 1. Transaxial subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance imaging (SISCOM) sections through the entire brain, showing regions of hyperperfusion. Images in the upper half of the figure represent the left temporal lobe epilepsy (TLE) group, while images in the lower half of the figure represent the right TLE group. Common regions of 1-SD change occur for 15 subjects in the left TLE group and for 14 subjects in the right TLE group; the difference in color scales, which are depicted below the composite SISCOM images of each group, is shown. The anteromedial temporal corpus striatum insula region shows a contiguous region of highly significant hyperperfusion in both groups. The ipsilateral anterior temporal regions show similar degrees of hyperperfusion in the left (15 of 17 subjects) and right (13 of 15 subjects) TLE groups (P.001 for both). In addition, there is significant hyperperfusion of the bilateral thalamus and orbitofrontal and contralateral temporal regions. The left TLE group shows a contiguous region of hyperperfusion involving the anteromedial temporal corpus striatum insula region, posterior thalamus, and brainstem tegmentum. The pattern of brainstem tegmentum involvement is absent in the right TLE group. 1421

4 Figure 2. Images highlighting perfusion changes in the brainstem tegmentum. Crosshairs serve as reference to the brainstem tegmentum, which is shown in axial, coronal, and sagittal planes. The second and third columns show composite subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance imaging (SISCOM) and single-photon emission computed tomography (SPECT) images, respectively, of the left temporal lobe epilepsy (TLE) group. The fourth and fifth columns show the composite SISCOM and SPECT images, respectively, of the right TLE group. Hyperperfusion in the brainstem tegmentum in the left TLE group was seen in 7 of 17 subjects (P=.009) and in the right TLE group in 2 of 15 subjects (P =.56). In addition to the anteromedial temporal corpus striatum insular regions of hyperperfusion, there is midline thalamic, bilateral orbitofrontal, and contralateral temporal hyperperfusion in images of the right and left TLE groups. COMMENT Our study suggests that the most commonly hyperperfused areas, the anteromedial temporal corpus striatum insula, represent the primary neuronal network activated during a temporal lobe seizure. This finding is consistent with the growing evidence that partial epilepsy involves not only a localized brain region but also interconnected structures in preferential patterns of neuronal networks. 4,12 Several studies using positron emission tomography, 13 SPECT, 14 functional MRI, 15 and structural MRI 16 have documented widespread interictal abnormalities in patients with TLE, implicating extensive effects of focal epileptic seizures and supporting the concept of neuronal network involvement of epilepsy. In addition, intracranial electrocorticographic recordings of preferential ictal propagation patterns, which are the best documented work in defining ictal neuronal networks, suggest widespread neuroanatomical involvement in TLE. 17,18 Previous parametric mapping studies 6,19,20 of TLE showed ictal hyperperfusion in the ipsilateral anteromedial temporal region. While initial studies 20 did not show involvement of deep gray matter structures, subsequent studies have confirmed involvement of the corpus striatum alone 6 and the corpus striatum and the insula. 19 Recently, Isnard et al 21 performed depth electrode recordings of the insula and demonstrated insular cortex involvement in all of 81 recorded TLE seizures, confirming the extremely common involvement of the insula. In addition, intracranial EEG studies 22 of the basal ganglia show changes dependent on seizure propagation. Based on correlative analysis of global ictal brain perfusion changes, Blumenfeld et al 6 have proposed neuronal networks involving the basal ganglia and temporal structures and separate neuronal networks involving the thalamus, while Tae et al 19 have proposed an ictal activation of the cortical-thalamic-hippocampal-insular network. However, intracranial EEG data suggest that the centromedian thalamic nuclei participate little in the direct spread of complex partial seizures. 23 Given the correlation of ictal SPECT and EEG patterns, 3 intracranial electrographic studies support our findings of a primary anteromedial temporal corpus striatum insular neuronal network activation in TLE. While we found no significant asymmetry of hyperperfusion in the anteromedial temporal corpus striatum insula regions (the primary neuronal network) of the right and left TLE groups, there were differences in brainstem and hemispheric perfusion patterns. The differences between the right and left TLE groups from other studies 6,19,20 using parametric analysis are inconsistent. The first of these studies 20 did not show significant hyperperfusion changes in the brainstem tegmentum. In the 1422

5 Figure 3. Transaxial subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance imaging sections through the entire brain, showing regions of hypoperfusion. Images in the upper half of the figure represent the left temporal lobe epilepsy (TLE) group, while images in the lower half of the figure represent the right TLE group. Common regions of 1-SD change occur for 10 subjects in the left TLE group and for 11 subjects in the right TLE group. Hypoperfusion changes in both groups showed prominent involvement of the cerebral cortex, with the most pronounced involvement in the cerebral midline structures bilaterally. There are also regions of significant hypoperfusion of the bilateral cerebellar hemispheres in both groups. However, significant contralateral hypoperfusion of the temporoparietal junction was present in the right, but not the left, TLE group. 1423

6 Figure 4. Hypoperfusion patterns in the right and left temporal lobe epilepsy (TLE) groups. Hypoperfusion composite subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance images in axial, coronal, and sagittal planes, with the second column showing the left TLE group and the third column showing the right TLE group. The lowest intensity value of significance is represented by the transition of color scales between shades of green for both groups of images. This image serves to show regions of hypoperfusion asymmetry, such as significant contralateral hypoperfusion of the temporoparietal junction, which was present in the right, but not the left, TLE group. In addition, there is a larger region of hypoperfusion throughout the contralateral occipital lobe in the right TLE group, as seen on the axial images. second study, Blumenfeld et al 6 found perfusion changes of the midbrain tegmentum, proposing a neuronal network involving the midbrain tegmentum, other brainstem structures, and the thalamus. In the third study, Tae et al 19 found significant ictal midbrain hyperperfusion in subjects with right and left TLE compared with a group of control subjects, but not when comparing with interictal and ictal scans. In 2 studies, 6,20 right temporal scans were rotated so the entire group would show changes on the left side, which would explain why they did not find a difference in brainstem perfusion between right and left TLE onset studies. As in previous studies, 6,19,20 we found large regions of ictal hypoperfusion in the cerebral hemispheres, which tended to involve midline hemispheric structures. In addition, Blumenfeld et al 6 have proposed that regions of association cortex are primarily involved in ictal hypoperfusion in TLE. Comparing between right and left TLE groups, we did find asymmetries of involvement, with both groups showing greater involvement of the left pos- 1424

7 A B C D E F Figure 5. Images show 2 sagittal planes through the left temporal lobe in the left temporal lobe epilepsy group; sections through the insula (A-C) and through the corpus striatum (D-F) are shown. B and E show hyperperfusion subtraction ictal single-photon emission computed tomography coregistered to magnetic resonance imaging (SISCOM). C and F show hypoperfusion SISCOM. Common regions of 1-SD change occur in 15 subjects for hyperperfusion and in 10 subjects for hypoperfusion. The lowest intensity value of significance is represented as the transformation from green to yellow in the hyperperfusion images (B and E) and between shades of green in the hypoperfusion images (C and F). The hyperperfusion images show the anteromedial temporal region involvement and clearly demarcated involvement of the insula (B) and corpus striatum (E). In this plane, the hypoperfusion images (C and F) show diffuse involvement in the cerebral hemisphere, surrounding the region of hyperperfusion involving limbic structures (B and E). terior hemisphere, with significant hypoperfusion over the left temporoparietal region in the right TLE group (Figure 4). There are ictal signs and symptoms that indicate lateralization of seizure onset. 7 Some of these signs are relatively common, such as ictal dystonia, which lateralizes the ictal-onset zone to the contralateral hemisphere. 24 Other signs, such as postictal aphasia (lateralizing to the dominant hemisphere), are explained by language function differences between the temporal lobes. 7 However, the underlying pathophysiological basis of other ictal phenomena, such as ictal automatisms with preserved responsiveness, 25,26 which are documented to localize seizure onset to the right temporal lobe, is uncertain. Our patient population showed typical TLE ictal symptoms, which correlate with the associated perfusion patterns. Because ictal automatisms with preserved responsiveness are relatively uncommon, they could not be studied using the sample size of the present study. However, the perfusion pattern differences of the right and left TLE groups provide a theoretical framework to explain some of the symptom differences of the groups, assuming that perfusion changes represent probabilities of ictal involvement in the pathophysiological mechanisms of TLE. The differences in perfusion of the brainstem tegmentum correlate with the region of brainstem reticular formation. Given the clinical similarities between groups, it is appropriate to compare probabilities of regional perfusion changes. In this context, the greater than 60-fold difference in probabilities of hyperperfusion of the brainstem tegmentum between the left and right TLE groups is significant. Therefore, the hyperperfusion asymmetry in the brainstem reticular formation may explain why right temporal seizures, compared with left temporal seizures, cause a lesser degree of loss of consciousness in ictal automatisms with preserved responsiveness. Study of larger groups of patients and verification of the precision and accuracy of different image-processing techniques that allow direct statistical comparisons of changes between groups will be important in ongoing studies. In conclusion, right and left TLE seizures show similar regions of hyperperfusion in the anteromedial temporal corpus striatum insula region in both groups. However, there are extratemporal perfusion asymmetries in patients with right, compared with left, TLE. Differences in perfusion of the brainstem tegmentum in the region of the reticular formation may explain some symptom differences between right and left TLE, such as relative preservation of consciousness in right TLE in ictal automatisms with preserved responsiveness. Accepted for Publication: April 26, Correspondence: R. Edward Hogan, MD, Department of Neurology, Washington University School of Medicine, 1425

8 660 S Euclid, Campus Box 8111, St Louis, MO (hogane@neuro.wustl.edu). Author Contributions: Study concept and design: Hogan and Kaiboriboon. Acquisition of data: Hogan, Kaiboriboon, Bertrand, and Rao. Analysis and interpretation of data: Hogan, Kaiboriboon, and Acharya. Drafting of the manuscript: Hogan and Kaiboriboon. Critical revision of the manuscript for important intellectual content: Hogan, Kaiboriboon, Bertrand, Rao, and Acharya. Statistical analysis: Hogan and Kaiboriboon. Administrative, technical, and material support: Hogan, Kaiboriboon, Bertrand, and Rao. Study supervision: Hogan. REFERENCES 1. Rowe CC, Berkovic SF, Austin MC, McKay WJ, Bladin PF. Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantitative analysis. Neurology. 1991;41: Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002;3: Spanaki MV, Zubal IG, MacMullan J, Spencer SS. Periictal SPECT localization verified by simultaneous intracranial EEG. Epilepsia. 1999;40: Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43: Lee KH, Meador KJ, Park YD, et al. Pathophysiology of altered consciousness during seizures: subtraction SPECT study. Neurology. 2002;59: Blumenfeld H, McNally KA, Vanderhill SD, et al. Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex. 2004;14: Luders HO, Noachtar S, Burgess RC. Semiologic classification of epileptic seizures. In: Luders HO, Noachtar S, eds. Epileptic Seizures, Pathophysiology and Clinical Semiology. New York, NY: Churchill Livingstone Inc; 2000: Kaiboriboon K, Lowe VJ, Chantarujikapong SI, Hogan RE. The usefulness of subtraction ictal SPECT coregistered to MRI in single- and dual-headed SPECT cameras in partial epilepsy. Epilepsia. 2002;43: Hogan RE, Kaiboriboon K, Osman M. Composite SISCOM images in mesial temporal lobe epilepsy: technique and illustration of regions of hyperperfusion. Nucl Med Commun. 2004;25: Kaiboriboon K, Bertrand ME, Osman MM, Hogan RE. Quantitative analysis of cerebral blood flow patterns in mesial temporal lobe epilepsy using composite SISCOM. J Nucl Med. 2005;46: Parvizi J, Damasio A. Consciousness and the brainstem. Cognition. 2001;79: Nair DR, Mohamed A, Burgess R, Luders H. A critical review of the different conceptual hypotheses framing human focal epilepsy. Epileptic Disord. 2004;6: Sperling MR. Neuroimaging in epilepsy: recent developments in MR imaging, positron-emission tomography, and single-photon emission tomography. Neurol Clin. 1993;11: Rowe CC, Berkovic SF, Austin MC, et al. Visual and quantitative analysis of interictal SPECT with technetium-99m-hmpao in temporal lobe epilepsy. J Nucl Med. 1991;32: Tasch E, Cendes F, Li LM, Dubeau F, Andermann F, Arnold DL. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol. 1999;45: Bonilha L, Rorden C, Castellano G, et al. Voxel-based morphometry reveals gray matter network atrophy in refractory medial temporal lobe epilepsy. Arch Neurol. 2004;61: Wieser HG. Psychomotor seizures of hippocampal-amygdalar origin. In: Pedley TA, ed. Recent Advances in Epilepsy. Edinburgh, Scotland: Churchill Livingstone; 1986: Wieser HG. Part 3: Electroclinical Features of the Psychomotor Seizure. London, England: Butterworths; 1983: Tae WS, Joo EY, Kim JH, et al. Cerebral perfusion changes in mesial temporal lobe epilepsy: SPM analysis of ictal and interictal SPECT. Neuroimage. 2005; 24: Van Paesschen W, Dupont P, Van Driel G, Van Billoen H, Maes A. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain. 2003;126: Isnard J, Guenot M, Ostrowsky K, Sindou M, Mauguiere F. The role of the insular cortex in temporal lobe epilepsy. Ann Neurol. 2000;48: Rektor I, Kuba R, Brazdil M. Interictal and ictal EEG activity in the basal ganglia: an SEEG study in patients with temporal lobe epilepsy. Epilepsia. 2002;43: Velasco M, Velasco F, Velasco AL, Lujan M, Vazquez del Mercado J. Epileptiform EEG activities of the centromedian thalamic nuclei in patients with intractable partial motor, complex partial, and generalized seizures. Epilepsia. 1989; 30: Kotagal P, Luders H, Morris HH, et al. Dystonic posturing in complex partial seizures of temporal lobe onset: a new lateralizing sign. Neurology. 1989;39: Ebner A, Dinner DS, Noachtar S, Luders H. Automatisms with preserved responsiveness: a lateralizing sign in psychomotor seizures. Neurology. 1995;45: Janszky J, Schulz R, Ebner A. Simple partial seizures (isolated auras) in medial temporal lobe epilepsy. Seizure. 2004;13: Announcement Calendar of Events: A New Web Feature On the new Calendar of Events site, available at http: //pubs.ama-assn.org/cgi/calendarcontent and linked off the home page of the Archives of Neurology, individuals can now submit meetings to be listed. Just go to http: //pubs.ama-assn.org/cgi/cal-submit/ (also linked off the Calendar of Events home page). The meetings are reviewed internally for suitability prior to posting. This feature also includes a search function that allows searching by journal as well as by date and/or location. Meetings that have already taken place are removed automatically. 1426

Multimodal Imaging in Extratemporal Epilepsy Surgery

Multimodal Imaging in Extratemporal Epilepsy Surgery Open Access Case Report DOI: 10.7759/cureus.2338 Multimodal Imaging in Extratemporal Epilepsy Surgery Christian Vollmar 1, Aurelia Peraud 2, Soheyl Noachtar 1 1. Epilepsy Center, Dept. of Neurology, University

More information

High Resolution Ictal SPECT: Enhanced Epileptic Source Targeting?

High Resolution Ictal SPECT: Enhanced Epileptic Source Targeting? High Resolution Ictal SPECT: Enhanced Epileptic Source Targeting? Marvin A Rossi MD, PhD RUSH Epilepsy Center Research Lab http://www.synapticom.net Chicago, IL USA Medically-Refractory Epilepsy 500,000-800,000

More information

doi: /brain/awp028 Brain 2009: 132; Cortical and subcortical networks in human secondarily generalized tonic clonic seizures

doi: /brain/awp028 Brain 2009: 132; Cortical and subcortical networks in human secondarily generalized tonic clonic seizures doi:10.1093/brain/awp028 Brain 2009: 132; 999 1012 999 BRAIN A JOURNAL OF NEUROLOGY Cortical and subcortical networks in human secondarily generalized tonic clonic seizures H. Blumenfeld, 1,2,3 G. I. Varghese,

More information

Seizure Semiology and Neuroimaging Findings in Patients with Midline Spikes

Seizure Semiology and Neuroimaging Findings in Patients with Midline Spikes Epilepsia, 42(12):1563 1568, 2001 Blackwell Science, Inc. International League Against Epilepsy Seizure Semiology and Neuroimaging Findings in Patients with Midline Spikes *Ekrem Kutluay, *Erasmo A. Passaro,

More information

Seizure Semiology CHARCRIN NABANGCHANG, M.D. PHRAMONGKUTKLAO COLLEGE OF MEDICINE

Seizure Semiology CHARCRIN NABANGCHANG, M.D. PHRAMONGKUTKLAO COLLEGE OF MEDICINE Seizure Semiology CHARCRIN NABANGCHANG, M.D. PHRAMONGKUTKLAO COLLEGE OF MEDICINE Seizure Semiology Differentiate between epileptic and nonepileptic seizures Classification of epileptic syndrome Presurgical

More information

การส งตรวจคล นไฟฟ าสมอง

การส งตรวจคล นไฟฟ าสมอง Diagnosis of Epilepsy Video EEG & Imaging : A multidisciplinary approach to intractable epilepsy Tayard Desudchit MD Faculty Of Medicine Chulalongkorn U. ELECTROENCEPHALOG RAPHY การส งตรวจคล นไฟฟ าสมอง

More information

Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story

Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story Current Literature In Clinical Science Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story Mapping Thalamocortical Network Pathology in Temporal Lobe Epilepsy. Bernhardt BC, Bernasconi

More information

Case reports functional imaging in epilepsy

Case reports functional imaging in epilepsy Seizure 2001; 10: 157 161 doi:10.1053/seiz.2001.0552, available online at http://www.idealibrary.com on Case reports functional imaging in epilepsy MARK P. RICHARDSON Medical Research Council Fellow, Institute

More information

Imaging in epilepsy: Ictal perfusion SPECT and SISCOM

Imaging in epilepsy: Ictal perfusion SPECT and SISCOM Imaging in epilepsy: Ictal perfusion SPECT and SISCOM Patrick Dupont Laboratory for Cognitive Neurology Laboratory for Epilepsy Research Medical Imaging Research Center KU Leuven, Belgium E-mail: Patrick.Dupont@med.kuleuven.be

More information

Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report

Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report Clinical commentary Epileptic Disord 2014; 16 (3): 370-4 Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report Myo Khaing 1,2, Kheng-Seang Lim 1, Chong-Tin Tan 1

More information

Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication

Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication Original article Epileptic Disord 2008; 10 (4): 260-5 Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication Naotaka Usui, Tadahiro Mihara, Koichi

More information

Approximately 70% of childhood SURGICAL TREATMENTS FOR PEDIATRIC EPILEPSY PROCEEDINGS. Ronald P. Lesser, MD KEY POINTS

Approximately 70% of childhood SURGICAL TREATMENTS FOR PEDIATRIC EPILEPSY PROCEEDINGS. Ronald P. Lesser, MD KEY POINTS ASIM May p153-158 5/14/01 9:19 AM Page 153 SURGICAL TREATMENTS FOR PEDIATRIC EPILEPSY Ronald P. Lesser, MD KEY POINTS Most children with epilepsy refractory to drugs can improve with surgery Temporal lobe

More information

Network mechanisms for loss of consciousness in epilepsy

Network mechanisms for loss of consciousness in epilepsy Yale University EliScholar A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 2004 Network mechanisms for loss of consciousness in epilepsy Kathryn

More information

Spike frequency is dependent on epilepsy duration and seizure frequency in temporal lobe epilepsy

Spike frequency is dependent on epilepsy duration and seizure frequency in temporal lobe epilepsy Original article Epileptic Disord 2005; 7 (4): 355-9 Spike frequency is dependent on epilepsy duration and seizure frequency in temporal lobe epilepsy Jozsef Janszky 1,2,3, M. Hoppe 1, Z. Clemens 3, I.

More information

The relevance of somatosensory auras in refractory temporal lobe epilepsies

The relevance of somatosensory auras in refractory temporal lobe epilepsies BRIEF COMMUNICATION The relevance of somatosensory auras in refractory temporal lobe epilepsies Ghazala Perven, Ruta Yardi, Juan Bulacio, Imad Najm, William Bingaman, Jorge Gonzalez-Martinez, and Lara

More information

PRESURGICAL EVALUATION. ISLAND OF COS Hippocrates: On the Sacred Disease. Disclosure Research-Educational Grants. Patients with seizure disorders

PRESURGICAL EVALUATION. ISLAND OF COS Hippocrates: On the Sacred Disease. Disclosure Research-Educational Grants. Patients with seizure disorders PRESURGICAL EVALUATION Patients with seizure disorders Gregory D. Cascino, MD Mayo Clinic Disclosure Research-Educational Grants Mayo Foundation Neuro Pace, Inc. American Epilepsy Society American Academy

More information

Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study

Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study Seizure 1996; 5:97-101 Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study BERNHARD J. STEINHOFF, GREGOR HERRENDORF & CHRISTOPH KURTH Department of Clinical Neurophysiology, Georg-August

More information

BOLD Based MRI Functional Connectivity December 2, 2011

BOLD Based MRI Functional Connectivity December 2, 2011 BOLD Based MRI Functional Connectivity December 2, 2011 Luigi Maccotta, MD, PhD Adult Epilepsy Center Washington University School of Medicine American Epilepsy Society Annual Meeting Support Disclosure

More information

Difficult-to-Localize Intractable Focal Epilepsy: An In-Depth Look

Difficult-to-Localize Intractable Focal Epilepsy: An In-Depth Look Current Literature In Clinical Science Difficult-to-Localize Intractable Focal Epilepsy: An In-Depth Look Stereoelectroencephalography in the Difficult to Localize Refractory Focal Epilepsy: Early Experience

More information

Is DTI Increasing the Connectivity Between the Magnet Suite and the Clinic?

Is DTI Increasing the Connectivity Between the Magnet Suite and the Clinic? Current Literature In Clinical Science Is DTI Increasing the Connectivity Between the Magnet Suite and the Clinic? Spatial Patterns of Water Diffusion Along White Matter Tracts in Temporal Lobe Epilepsy.

More information

Est-ce que l'eeg a toujours sa place en 2019?

Est-ce que l'eeg a toujours sa place en 2019? Est-ce que l'eeg a toujours sa place en 2019? Thomas Bast Epilepsy Center Kork, Germany Does EEG still play a role in 2019? What a question 7T-MRI, fmri, DTI, MEG, SISCOM, Of ieeg course! /HFO, Genetics

More information

Cerebral MRI as an important diagnostic tool in temporal lobe epilepsy

Cerebral MRI as an important diagnostic tool in temporal lobe epilepsy Cerebral MRI as an important diagnostic tool in temporal lobe epilepsy Poster No.: C-2190 Congress: ECR 2014 Type: Educational Exhibit Authors: A. Puiu, D. Negru; Iasi/RO Keywords: Neuroradiology brain,

More information

PET and SPECT in Epilepsy

PET and SPECT in Epilepsy PET and SPECT in Epilepsy 12.6.2013 William H Theodore MD Chief, Clinical Epilepsy Section NINDS NIH Bethesda MD American Epilepsy Society Annual Meeting Disclosures Entity DIR NINDS NIH Elsevier Individual

More information

Advanced Imaging Techniques MRI, PET, SPECT, ESI-MSI, DTI December 8, 2013

Advanced Imaging Techniques MRI, PET, SPECT, ESI-MSI, DTI December 8, 2013 Advanced Imaging Techniques MRI, PET, SPECT, ESI-MSI, DTI December 8, 2013 Robert C. Knowlton, MD, MSPH University of California San Francisco Seizure Disorders Surgical Program American Epilepsy Society

More information

doi: /brain/awp027 Brain 2009: 132; Clinical use of ictal SPECT in secondarily generalized tonic clonic seizures

doi: /brain/awp027 Brain 2009: 132; Clinical use of ictal SPECT in secondarily generalized tonic clonic seizures doi:10.1093/brain/awp027 Brain 2009: 132; 2102 2113 2102 BRAIN A JOURNAL OF NEUROLOGY Clinical use of ictal SPECT in secondarily generalized tonic clonic seizures G. I. Varghese, 1 M. J. Purcaro, 1 J.

More information

Medial Temporal Lobe Epilepsy with Severe Pain Sensation

Medial Temporal Lobe Epilepsy with Severe Pain Sensation Copyright 2009 American Scientific Publishers All rights reserved Printed in the United States of America American Journal of Neuroprotection and Neuroregeneration Vol. 1, 1 5, 2009 Medial Temporal Lobe

More information

Epilepsy: diagnosis and treatment. Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM

Epilepsy: diagnosis and treatment. Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM Epilepsy: diagnosis and treatment Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM Definition: the clinical manifestation of an excessive excitation of a population of cortical neurons Neurotransmitters:

More information

Seizure Localization in Patients with Multiple Tubers: Presurgical Evaluation in Tuberous Sclerosis

Seizure Localization in Patients with Multiple Tubers: Presurgical Evaluation in Tuberous Sclerosis Seizure Localization in Patients with Multiple Tubers: Presurgical Evaluation in Tuberous Sclerosis Case Report Journal of Epilepsy Research pissn 2233-6249 / eissn 2233-6257 Pamela Song, MD 1, Eun Yeon

More information

Statistical parametric mapping analysis of positron emission tomography images for the detection of seizure foci: results in temporal lobe epilepsy

Statistical parametric mapping analysis of positron emission tomography images for the detection of seizure foci: results in temporal lobe epilepsy Yale University EliScholar A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1997 Statistical parametric mapping analysis of positron emission

More information

Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry. Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA

Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry. Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA Overview Definition of epileptic circuitry Methods of mapping

More information

The Requirement for Ictal EEG Recordings Prior to Temporal Lobe Epilepsy Surgery

The Requirement for Ictal EEG Recordings Prior to Temporal Lobe Epilepsy Surgery Page 1 of 7 Archives of Neurology Issue: Volume 58(4), April 2001, pp 678-680 Copyright: Copyright 2001 by the American Medical Association. All Rights Reserved. Applicable FARS/DFARS Restrictions Apply

More information

Semiological seizure classification of epileptic seizures in children admitted to video-eeg monitoring unit

Semiological seizure classification of epileptic seizures in children admitted to video-eeg monitoring unit The Turkish Journal of Pediatrics 2015; 57: 317-323 Original Semiological seizure classification of epileptic seizures in children admitted to video-eeg monitoring unit Serdar Alan 1*, Dilek Yalnızoğlu

More information

Epilepsy Surgery: Who should be considered? How will patients do? Bassel Abou-Khalil, M.D.

Epilepsy Surgery: Who should be considered? How will patients do? Bassel Abou-Khalil, M.D. Epilepsy Surgery: Who should be considered? How will patients do? Bassel Abou-Khalil, M.D. Disclosures none Self-assessment questions Q1- Which qualify for drug resistance in focal epilepsy? A. Failure

More information

Surgery in temporal lobe epilepsy patients without cranial MRI lateralization

Surgery in temporal lobe epilepsy patients without cranial MRI lateralization Acta neurol. belg., 2006, 106, 9-14 Surgery in temporal lobe epilepsy patients without cranial MRI lateralization Y. B. GOMCELI 1, A. ERDEM 2, E. BILIR 3, G. KUTLU 1, S. KURT 4, E. ERDEN 5,A. KARATAS 2,

More information

Scalp EEG Findings in Temporal Lobe Epilepsy

Scalp EEG Findings in Temporal Lobe Epilepsy Scalp EEG Findings in Temporal Lobe Epilepsy Seyed M Mirsattari M.D., Ph.D., F.R.C.P.(C) Assistant Professor Depts. of CNS, Medical Biophysics, Medical Imaging, and Psychology University of Western Ontario

More information

Case report. Epileptic Disord 2005; 7 (1): 37-41

Case report. Epileptic Disord 2005; 7 (1): 37-41 Case report Epileptic Disord 2005; 7 (1): 37-41 Periodic lateralized epileptiform discharges (PLEDs) as the sole electrographic correlate of a complex partial seizure Gagandeep Singh, Mary-Anne Wright,

More information

Successful Treatment of Mesial Temporal Lobe Epilepsy with Bilateral Hippocampal Atrophy and False Temporal Scalp Ictal Onset: A case report

Successful Treatment of Mesial Temporal Lobe Epilepsy with Bilateral Hippocampal Atrophy and False Temporal Scalp Ictal Onset: A case report Hiroshima J. Med. Sci. Vol. 61, No. 2, 37~41, June, 2012 HIJM 61 7 37 Successful Treatment of Mesial Temporal Lobe Epilepsy with Bilateral Hippocampal Atrophy and False Temporal Scalp Ictal Onset: A case

More information

Lateralizing value of early head turning and ictal dystonia in temporal lobe seizures: a video-eeg study

Lateralizing value of early head turning and ictal dystonia in temporal lobe seizures: a video-eeg study Seizure 2001; 10: 428 432 doi:10.1053/seiz.2001.0538, available online at http://www.idealibrary.com on Lateralizing value of early head turning and ictal dystonia in temporal lobe seizures: a video-eeg

More information

Neocortical Temporal Lobe Epilepsy

Neocortical Temporal Lobe Epilepsy INVITED REVIEW Jeffrey D. Kennedy and Stephan U. Schuele Summary: Neocortical temporal lobe epilepsy (NTLE) comprises a heterogeneous group of epilepsies with focal seizures characterized by auditory,

More information

Ictal SPECT. W. Van Paesschen

Ictal SPECT. W. Van Paesschen Epilepsia, 45(Suppl. 4):35 40, 2004 Blackwell Publishing, Inc. C International League Against Epilepsy Ictal SPECT W. Van Paesschen Department of Neurology, University Hospital Gasthuisberg, Katholieke

More information

Surgery for Medically Refractory Focal Epilepsy

Surgery for Medically Refractory Focal Epilepsy Surgery for Medically Refractory Focal Epilepsy Seth F Oliveria, MD PhD The Oregon Clinic Neurosurgery Director of Functional Neurosurgery: Providence Brain and Spine Institute Portland, OR Providence

More information

Candidates for Epilepsy Surgery. Presurgical Evaluation. Presurgical Evaluation. Presurgical Evaluation. Presurgical Evaluation 8/27/2017

Candidates for Epilepsy Surgery. Presurgical Evaluation. Presurgical Evaluation. Presurgical Evaluation. Presurgical Evaluation 8/27/2017 PresurgicalEpilepsy Eval: A multidisciplinary approach to intractable epilepsy Tayard Desudchit MD Faculty Of Medicine Chulalongkorn U. Candidates for Epilepsy Surgery Persistent seizures despite appropriate

More information

Comparative Analysis of MR Imaging, Positron Emission Tomography, and Ictal Single-photon Emission CT in Patients with Neocortical Epilepsy

Comparative Analysis of MR Imaging, Positron Emission Tomography, and Ictal Single-photon Emission CT in Patients with Neocortical Epilepsy AJNR Am J Neuroradiol 22:937 946, May 2001 Comparative Analysis of MR Imaging, Positron Emission Tomography, and Ictal Single-photon Emission CT in Patients with Neocortical Epilepsy Sung-Il Hwang, Jae

More information

Semiology of Temporal Lobe Seizures: Value in Lateralizing the Seizure Focus

Semiology of Temporal Lobe Seizures: Value in Lateralizing the Seizure Focus Epilepsia, 39(7):721-726, 1998 Lippincott-Raven Publishers, Philadelphia 0 International League Against Epilepsy Semiology of Temporal Lobe Seizures: Value in Lateralizing the Seizure Focus William J.

More information

Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis

Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis Epileptology in Czech Republic Epileptic Disord 2007; 9 (Suppl. 1): S59-67 Magnetic resonance spectroscopy of the thalamus in patients with mesial temporal lobe epilepsy and hippocampal sclerosis Dagmar

More information

Common Ictal Patterns in Patients with Documented Epileptic Seizures

Common Ictal Patterns in Patients with Documented Epileptic Seizures THE ICTAL IRAQI PATTERNS POSTGRADUATE IN EPILEPTIC MEDICAL JOURNAL PATIENTS Common Ictal Patterns in Documented Epileptic Seizures Ghaieb Bashar ALJandeel, Gonzalo Alarcon ABSTRACT: BACKGROUND: The ictal

More information

EEG source Localization (ESL): What do we know now?

EEG source Localization (ESL): What do we know now? EEG source Localization (ESL): What do we know now? Talk overview Theoretical background Fundamental of ESL (forward and inverse problems) Voltage topography of temporal spikes Improving source localization

More information

Occipital Lobe Epilepsy: Clinical Characteristics, Surgical Outcome, and Role of Diagnostic Modalities

Occipital Lobe Epilepsy: Clinical Characteristics, Surgical Outcome, and Role of Diagnostic Modalities Epilepsia, 46(5):688 695, 2005 Blackwell Publishing, Inc. C 2005 International League Against Epilepsy Occipital Lobe Epilepsy: Clinical Characteristics, Surgical Outcome, and Role of Diagnostic Modalities

More information

MRI-negative frontal lobe epilepsy with ipsilateral akinesia and reflex activation

MRI-negative frontal lobe epilepsy with ipsilateral akinesia and reflex activation Anatomo-electro-clinical correlations with video sequences Epileptic Disord 2008; 10 (4): 349-55 Anatomo-electro-clinical correlations: the Miami Children s Hospital, USA Case Report - Case 04-2008 MRI-negative

More information

Temporal lobe epilepsy in children: overview of clinical semiology

Temporal lobe epilepsy in children: overview of clinical semiology Review article Epileptic Disord 2005; 7 (4): 299-307 Temporal lobe epilepsy in children: overview of clinical semiology Amit Ray 1, Prakash Kotagal 2 1 Department of Neurology, Fortis Hospital, Delhi,

More information

Epilepsy. Hyunmi Choi, M.D., M.S. Columbia Comprehensive Epilepsy Center The Neurological Institute. Seizure

Epilepsy. Hyunmi Choi, M.D., M.S. Columbia Comprehensive Epilepsy Center The Neurological Institute. Seizure Epilepsy Hyunmi Choi, M.D., M.S. Columbia Comprehensive Epilepsy Center The Neurological Institute Seizure Symptom Transient event Paroxysmal Temporary physiologic dysfunction Caused by self-limited, abnormal,

More information

Hamartomas and epilepsy: clinical and imaging characteristics

Hamartomas and epilepsy: clinical and imaging characteristics Seizure 2003; 12: 307 311 doi:10.1016/s1059 1311(02)00272-8 Hamartomas and epilepsy: clinical and imaging characteristics B. DIEHL, R. PRAYSON, I. NAJM & P. RUGGIERI Departments of Neurology, Pathology

More information

Temporal lobe epilepsy (TLE) is the most common type of

Temporal lobe epilepsy (TLE) is the most common type of Differential Features of Metabolic Abnormalities Between Medial and Lateral Temporal Lobe Epilepsy: Quantitative Analysis of F-FDG PET Using SPM Yu Kyeong Kim, MD 1 ; Dong Soo Lee, MD, PhD 1 ; Sang Kun

More information

ChosingPhase 2 Electrodes

ChosingPhase 2 Electrodes ChosingPhase 2 Electrodes ACNS Course ECoG/Invasive EEG Houston, February 4 th, 2015 Stephan Schuele, MD, MPH Comprehensive Epilepsy Center Northwestern Memorial Hospital Northwestern University, Feinberg

More information

Spike voltage topography in temporal lobe epilepsy

Spike voltage topography in temporal lobe epilepsy Thomas Jefferson University Jefferson Digital Commons Department of Neurology Faculty Papers Department of Neurology 5-17-2016 Spike voltage topography in temporal lobe epilepsy Ali Akbar Asadi-Pooya Thomas

More information

Hypersalivation in Temporal Lobe Epilepsy

Hypersalivation in Temporal Lobe Epilepsy Epilepsia, 47(3):644 651, 2006 Blackwell Publishing, Inc. C 2006 International League Against Epilepsy Hypersalivation in Temporal Lobe Epilepsy Jagdish Shah, Huifang Zhai, Darren Fuerst, and Craig Watson

More information

Large scale brain models of epilepsy: dynamics meets connectomics

Large scale brain models of epilepsy: dynamics meets connectomics Correspondence to Professor Mark Richardson, King s College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK; mark.richardson@kcl.ac.uk Received 17 April 2012 Revised 3 July 2012

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Quek AM, Britton JW, McKeon A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch Neurol. Published online March 26, 2012. doi:10.1001/archneurol.2011.2985.

More information

Method Comparison for Interrater Reliability of an Image Processing Technique in Epilepsy Subjects

Method Comparison for Interrater Reliability of an Image Processing Technique in Epilepsy Subjects 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Method Comparison for Interrater Reliability of an Image Processing Technique

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

Accepted Manuscript. Editorial. Responsive neurostimulation for epilepsy: more than stimulation. Jayant N. Acharya

Accepted Manuscript. Editorial. Responsive neurostimulation for epilepsy: more than stimulation. Jayant N. Acharya Accepted Manuscript Editorial Responsive neurostimulation for epilepsy: more than stimulation Jayant N. Acharya PII: S2467-981X(18)30022-2 DOI: https://doi.org/10.1016/j.cnp.2018.06.002 Reference: CNP

More information

Epilepsy & Behavior Case Reports

Epilepsy & Behavior Case Reports Epilepsy & Behavior Case Reports 1 (2013) 45 49 Contents lists available at ScienceDirect Epilepsy & Behavior Case Reports journal homepage: www.elsevier.com/locate/ebcr Case Report Partial disconnection

More information

SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis

SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis DOI: 10.1093/brain/awg108 Brain (2003), 126, 1103±1111 SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis W. Van Paesschen, 1 P. Dupont, 2 G. Van Driel, 1 H.

More information

Positron Emission Tomography Studies of Cerebral Glucose Metabolism in Chronic Partial Epilepsy

Positron Emission Tomography Studies of Cerebral Glucose Metabolism in Chronic Partial Epilepsy Positron Emission Tomography Studies of Cerebral Glucose Metabolism in Chronic Partial Epilepsy Bassel W. Abou-Khalil, MD," George J. Siegel, MD," J. Chris Sackellares., MD,* Sid Gilman, MD," Richard Hichwa,

More information

Clinical severity of seizures Hot Topics Symposium December 10, 2013

Clinical severity of seizures Hot Topics Symposium December 10, 2013 Clinical severity of seizures Hot Topics Symposium December 10, 2013 R. Edward Hogan, M.D. Associate Professor Washington University in St. Louis Director, Comprehensive Epilepsy Center at Barnes-Jewish

More information

Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy

Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy Morphometric MRI Analysis of the Parahippocampal Region in Temporal Lobe Epilepsy NEDA BERNASCONI, a ANDREA BERNASCONI, ZOGRAFOS CARAMANOS, FREDERICK ANDERMANN, FRANÇOIS DUBEAU, AND DOUGLAS L. ARNOLD Department

More information

Ictal unilateral hyperkinetic proximal lower limb movements: an independent lateralising sign suggesting ipsilateral seizure onset

Ictal unilateral hyperkinetic proximal lower limb movements: an independent lateralising sign suggesting ipsilateral seizure onset Original article Epileptic Disord 2013; 15 (2): 142-7 Ictal unilateral hyperkinetic proximal lower limb : an independent lateralising sign suggesting ipsilateral seizure onset Rute Teotónio 1,2, Roman

More information

Brain Mapping of Episodic Memory in Patients with Medial Temporal Lobe Epilepsy Using Activation Positron Emission Tomography

Brain Mapping of Episodic Memory in Patients with Medial Temporal Lobe Epilepsy Using Activation Positron Emission Tomography Brain Mapping of Episodic Memory in Patients with Medial Temporal Lobe Epilepsy Using Activation Positron Emission Tomography Hyunwoo Nam, M.D., Sang-Kun Lee, M.D., Dong Soo Lee, M.D.*, Jae Sung Lee, M.S.*,

More information

Electro-clinical manifestations of the epilepsy associated to the different anatomical variants of hypothalamic hamartomas

Electro-clinical manifestations of the epilepsy associated to the different anatomical variants of hypothalamic hamartomas Electro-clinical manifestations of the epilepsy associated to the different anatomical variants of hypothalamic hamartomas Alberto JR Leal Hospital Fernando Fonseca, Dep. Neurology Lisbon. Abstract Objective

More information

Characteristics of Headache Associated with Intractable Partial Epilepsy

Characteristics of Headache Associated with Intractable Partial Epilepsy Epilepsia, 46(8):1241 1245, 2005 Blackwell Publishing, Inc. C 2005 International League Against Epilepsy Characteristics of Headache Associated with Intractable Partial Epilepsy Alexei E. Yankovsky, Frederick

More information

Comparison of fluorine-18 deoxyglucose and O-15 water PET in temporal lobe epilepsy

Comparison of fluorine-18 deoxyglucose and O-15 water PET in temporal lobe epilepsy Acta neurol. belg., 2000, 100, 214-220 Original articles Comparison of fluorine-18 deoxyglucose and O- water PET in temporal lobe epilepsy R. TATLIDIL 1, S. LUTHER 2, A. WEST 3, H. JADVAR 4 and Th. KINGMAN

More information

Typical childhood absence seizures are associated with thalamic activation

Typical childhood absence seizures are associated with thalamic activation Original article Epileptic Disord 005; 7 (): 373-7 Typical childhood absence seizures are associated with thalamic activation A. Labate 1, R.S. Briellmann 1,, D.F. Abbott 1,, A.B. Waites 1,, Graeme D.

More information

Seizure 18 (2009) Contents lists available at ScienceDirect. Seizure. journal homepage:

Seizure 18 (2009) Contents lists available at ScienceDirect. Seizure. journal homepage: Seizure 18 (2009) 288 292 Contents lists available at ScienceDirect Seizure journal homepage: www.elsevier.com/locate/yseiz Posterior cortex epilepsy: Diagnostic considerations and surgical outcome Tao

More information

The Clinical and Electrophysiological Characteristics of Temporal Lobe Epilepsy with Normal MRI

The Clinical and Electrophysiological Characteristics of Temporal Lobe Epilepsy with Normal MRI Journal of Clinical Neurology / Volume 2 / March, 2006 Original Articles The Clinical and Electrophysiological Characteristics of Temporal Lobe Epilepsy with Normal MRI S.E. Kim, M.D., Ph.D., F. Andermann,

More information

Interictal rhythmical midline theta differentiates frontal from temporal lobe epilepsies 1 Pedro Beleza, Özgür Bilgin, and Soheyl Noachtar

Interictal rhythmical midline theta differentiates frontal from temporal lobe epilepsies 1 Pedro Beleza, Özgür Bilgin, and Soheyl Noachtar FULL-LENGTH ORIGINAL RESEARCH Interictal rhythmical midline theta differentiates frontal from temporal lobe epilepsies 1 Pedro Beleza, Özgür Bilgin, and Soheyl Noachtar Epilepsy Center, Department of Neurology,

More information

Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to

Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to 125 A B C Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to obtain entire dimension of the hippocampal body.

More information

TITLE: Positron Emission Tomography for Epilepsy: Clinical Effectiveness and Guidelines

TITLE: Positron Emission Tomography for Epilepsy: Clinical Effectiveness and Guidelines TITLE: Positron Emission Tomography for Epilepsy: Clinical Effectiveness and Guidelines DATE: 15 June 2010 CONTEXT AND POLICY ISSUES: Epilepsy is a chronic neurological disorder and 70% of the cases can

More information

EEG IN FOCAL ENCEPHALOPATHIES: CEREBROVASCULAR DISEASE, NEOPLASMS, AND INFECTIONS

EEG IN FOCAL ENCEPHALOPATHIES: CEREBROVASCULAR DISEASE, NEOPLASMS, AND INFECTIONS 246 Figure 8.7: FIRDA. The patient has a history of nonspecific cognitive decline and multiple small WM changes on imaging. oligodendrocytic tumors of the cerebral hemispheres (11,12). Electroencephalogram

More information

EPILEPSY SURGERY EVALUATION IN ADULTS WITH SCALP VIDEO-EEG MONITORING. Meriem Bensalem-Owen, MD University of Kentucky

EPILEPSY SURGERY EVALUATION IN ADULTS WITH SCALP VIDEO-EEG MONITORING. Meriem Bensalem-Owen, MD University of Kentucky EPILEPSY SURGERY EVALUATION IN ADULTS WITH SCALP VIDEO-EEG MONITORING Meriem Bensalem-Owen, MD University of Kentucky DISCLOSURES Received grants for sponsored research as investigator from: UCB Eisai

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Gregg NM, Kim AE, Gurol ME, et al. Incidental cerebral microbleeds and cerebral blood flow in elderly individuals. JAMA Neurol. Published online July 13, 2015. doi:10.1001/jamaneurol.2015.1359.

More information

The American Approach to Depth Electrode Insertion December 4, 2012

The American Approach to Depth Electrode Insertion December 4, 2012 The American Approach to Depth Electrode Insertion December 4, 2012 Jonathan Miller, MD Director, Epilepsy Surgery University Hospitals Case Medical Center/Case Western Reserve University Cleveland, Ohio

More information

FRONTAL & TEMPORAL. A. Shah, MD. Director, Comprehensive Epilepsy Program Wayne State University/ Detroit Medical Center

FRONTAL & TEMPORAL. A. Shah, MD. Director, Comprehensive Epilepsy Program Wayne State University/ Detroit Medical Center FRONTAL & TEMPORAL LOBE EPILEPSY A. Shah, MD Professor of Neurology Director, Comprehensive Epilepsy Program Wayne State University/ Detroit Medical Center Pretest 1. A complex partial seizure (CPS) may

More information

Temporal lobe dysembryoplastic neuroepithelial tumour: significance of discordant interictal spikes

Temporal lobe dysembryoplastic neuroepithelial tumour: significance of discordant interictal spikes Original article Epileptic Disord 2004; 6: 10-14 Temporal lobe dysembryoplastic neuroepithelial tumour: significance of discordant interictal spikes Angelo Labate 1, Regula S. Briellmann 1,6, Anthony S.

More information

Benefit of Simultaneous Recording of EEG and MEG in Dipole Localization

Benefit of Simultaneous Recording of EEG and MEG in Dipole Localization Epilepsia, 43(8):924 928, 2002 Blackwell Publishing, Inc. International League Against Epilepsy Benefit of Simultaneous Recording of EEG and MEG in Dipole Localization *Harumi Yoshinaga, *Tomoyuki Nakahori,

More information

Brain spect in mesial temporal lobe epilepsy

Brain spect in mesial temporal lobe epilepsy Article Arq Neuropsiquiatr 2010;68(2):153-160 Brain spect in mesial temporal lobe epilepsy Comparison between visual analysis and spm Bárbara Juarez Amorim 1, Celso Darío Ramos 1, Allan Oliveira dos Santos

More information

Latero-Orbital and Anterior-Temporal Electrodes "Their Usefulness in Diagnosing Complex Partial Seizures"

Latero-Orbital and Anterior-Temporal Electrodes Their Usefulness in Diagnosing Complex Partial Seizures Mona T. ElGhoneimy et al. LateroOrbital and AnteriorTemporal Electrodes "Their Usefulness in Diagnosing Complex Partial Seizures" Mona T. ElGhoneimy 1, Hanan Hosny 2, Faisal Abdel Wahab 3, Abdel Naser

More information

Visual Activation Positron Emission Tomography for Presurgical Evaluation of Occipital Lobe Epilepsy

Visual Activation Positron Emission Tomography for Presurgical Evaluation of Occipital Lobe Epilepsy Neurol Med Chir (Tokyo) 42, 356 360, 2002 Visual Activation Positron Emission Tomography for Presurgical Evaluation of Occipital Lobe Epilepsy Case Report Hideyuki NAKAMA, SatoruOHTOMO, TaisukeOTSUKI,

More information

fmri (functional MRI)

fmri (functional MRI) Lesion fmri (functional MRI) Electroencephalogram (EEG) Brainstem CT (computed tomography) Scan Medulla PET (positron emission tomography) Scan Reticular Formation MRI (magnetic resonance imaging) Thalamus

More information

SWI including phase and magnitude images

SWI including phase and magnitude images On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution whole-brain reformatted in axial, coronal, and sagittal planes

More information

Focal fast rhythmic epileptiform discharges on scalp EEG in a patient with cortical dysplasia

Focal fast rhythmic epileptiform discharges on scalp EEG in a patient with cortical dysplasia Seizure 2002; 11: 330 334 doi:10.1053/seiz.2001.0610, available online at http://www.idealibrary.com on CASE REPORT Focal fast rhythmic epileptiform discharges on scalp EEG in a patient with cortical dysplasia

More information

What is the Relationship Between Arachnoid Cysts and Seizure Foci?

What is the Relationship Between Arachnoid Cysts and Seizure Foci? Epilepsin, 38( 10):1098-1102, 1997 Lippincott-Raven Publishers, Philadelphia 0 International League Against Epilepsy What is the Relationship Between Arachnoid Cysts and Seizure Foci? Santiago Arroyo and

More information

Diffusion Tensor Imaging 12/06/2013

Diffusion Tensor Imaging 12/06/2013 12/06/2013 Beate Diehl, MD PhD FRCP University College London National Hospital for Neurology and Neurosurgery Queen Square London, UK American Epilepsy Society Annual Meeting Disclosure None Learning

More information

Ictal pain: occurrence, clinical features, and underlying etiologies.

Ictal pain: occurrence, clinical features, and underlying etiologies. Thomas Jefferson University Jefferson Digital Commons Department of Neurology Faculty Papers Department of Neurology 8-1-2016 Ictal pain: occurrence, clinical features, and underlying etiologies. Ali Akbar

More information

Chronic PLEDs with transitional rhythmic discharges (PLEDs-plus) in remote stroke

Chronic PLEDs with transitional rhythmic discharges (PLEDs-plus) in remote stroke Original article Epileptic Disord 2007; 9 (2): 164-9 Chronic PLEDs with transitional rhythmic discharges (PLEDs-plus) in remote stroke José F. Téllez-Zenteno 1, Sylaja N. Pillai 2, Michael D. Hill 2, Neelan

More information

Computational Medical Imaging Analysis Chapter 7: Biomedical Applications

Computational Medical Imaging Analysis Chapter 7: Biomedical Applications Computational Medical Imaging Analysis Chapter 7: Biomedical Applications Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information

9/30/2016. Advances in Epilepsy Surgery. Epidemiology. Epidemiology

9/30/2016. Advances in Epilepsy Surgery. Epidemiology. Epidemiology Advances in Epilepsy Surgery George Jallo, M.D. Director, Institute for Brain Protection Sciences Johns Hopkins All Children s Hospital St Petersburg, Florida Epidemiology WHO lists it as the second most

More information

SEIZURE OUTCOME AFTER EPILEPSY SURGERY

SEIZURE OUTCOME AFTER EPILEPSY SURGERY SEIZURE OUTCOME AFTER EPILEPSY SURGERY Prakash Kotagal, M.D. Head, Pediatric Epilepsy Cleveland Clinic Epilepsy Center LEFT TEMPORAL LOBE ASTROCYTOMA SEIZURE OUTCOME 1 YEAR AFTER EPILEPSY SURGERY IN ADULTS

More information

Chronic recording electrocorticography guided resective epilepsy surgery: overview and future directions

Chronic recording electrocorticography guided resective epilepsy surgery: overview and future directions Molecular & Cellular Epilepsy 2014; 1: e208. http://www.smartscitech.com/index.php/mce RESEARCH HIGHLIGHT Chronic recording electrocorticography guided resective epilepsy surgery: overview and future directions

More information

Early detection of abnormalities in partial epilepsy

Early detection of abnormalities in partial epilepsy 104 Institute of Child Health and Hospital for Sick Children, London, Neurosciences Unit J H Cross G D Jackson B G R Neville F J Kirkham Radiology and Physics Unit A Connelly D G Gadian Department of Clinical

More information

Sensitivity of scalp EEG and magnetoencephalography

Sensitivity of scalp EEG and magnetoencephalography Original article Epileptic Disord 0; 5 (): 7- Sensitivity of scalp 0-0 EEG and magnetoencephalography Yosuke Kakisaka,, afeed Alkawadri, Zhong I Wang, ei Enatsu, John C Mosher, Anne-Sophie Dubarry, Andreas

More information