*.bbbb *. * *,,sn. instrumentally and the results to be read as the ballistic deflection. University College, London.)

Size: px
Start display at page:

Download "*.bbbb *. * *,,sn. instrumentally and the results to be read as the ballistic deflection. University College, London.)"

Transcription

1 THE SUPERNORMAL PHASE IN MUSCULAR CONTRACTION. BY TAKEO KAMADA. (From the Department of Physiology and Biochemistry, University College, London.) 6I THE isometric response of a muscle to a single shock can be measured, not only by the maximum tension developed, but by the area of the tension-time curve. The importance of tension-time is that it is the basis S 3'. <, 25 * ee *e 25 *.bbbb *. * *,,sn 2 : 1 2mi. Ca 15 I"~..1_ Ca loo 5. O Order of twitches Fig. 1. Attainment of steady state during regular series of twitches. Gastrocnemius at C. in 2 Ringer. Horizontally, order of twitch in regular series; vertically, response (tension-time) as galvanometer deflection (mm.). The three series were made in order: 2 min. intervals, 1 min. intervals, i min. intervals. After the first two series a long rest was given. of the maintained contraction: the "economy" of a tetanus depends upon the "area" of a single twitch. The method described below allowe the integration necessary for determining the tension-time to be performed instrumentally and the results to be read as the ballistic deflection of a galvanometer.

2 188 T. KAMADA. Recorded as tension-time the response of a muscle to a single shock shows a striking supernormal phase [Hartree and Hill, 1921] in the sense that at a suitable interval the response to a second shock is greater than that to the first one. Other aspects of this supernormal state have been referred to recently by Hill [1931 a, p. 296] and by Rushton [1932, p. 244]. In the present research its characteristics have been further investigated. o 2 S~~~~~ o o o OO A. 15B Order of twitches Fig. 2. Change in steady state due to change of interval between twitches. Gastrocnemius at C. in 2 Ringer. Horizontally, order of twitch in regular series; vertically, response (tension-time) as galvanometer deflection (mm.). The series with 2 min. intervals (solid circles) occurred first. After the. establishment of a steady state (level B) the interval was diminished to 1 min. (double circles). When the new steady state (level A) was established the interval was changed back to 2 min. and a third steady state was found at the same level B as before (solid circles). After about one hour's rest the muscle was stimulated again in a regular series at 1 min. intervals (hollow circles); the steady state was now reached at level A. If a regular series of shocks be given to a muscle at not too high a rate the tension-time response (hereafter referred to as the response) increases until it reaches (apart from the onset of fatigue) a stationary level (see Fig. 1). Increasing the interval then causes a fall, decreasing the interval a rise in the level (see Fig. 2). If at any moment after one of the shocks of such a series an extra shock be interpolated, the response is greater or less according to the relations described below.

3 SUPERNORMAL PHASE IN CONTRACTION. 189 METHOD. A differential cuprous oxide photoelectric cell was employed, as suggested by Hill [1931 b]. It was joined to a slow sensitive moving coil galvanometer employed ballistically. The gastrocnemius of a small Dutch frog (R. esc.) was connected by a wire to an isometric spring myograph, from the mirror of which a strong beam of light was reflected on to the middle of the cell. When the muscle contracted, the beam of light moved and generated a current in the cell. The amount of current so generated and recorded by the galvanometer was proportional to the tension-time. The muscle was stimulated by single super-maximal induction shocks through its nerve. Two Harvard coils placed at right angles on the table were adjusted to give identical shocks, their secondaries being arranged in series with the electrodes. The time interval was regulated by a Lucas revolving contact breaker, with one key in the primary of each coil. When many successive shocks were given the cam contact breaker described by Gerard, Hill and Zotterman [1927] was used with a single coil. The preparation was immersed in phosphate Ringer's solution (ph 7.2), oxygen or nitrogen being passed continuously. RESULTS. When a muscle was stimulated at regular intervals with single shocks, the response increased gradually to a constant value (Fig. 1). During this " steady state " the response depends on the interval between shocks, being greater with shorter intervals. Usually the steady state was stable, except in the absence of oxygen, when fatigue set in. The supernormal phase was tested after the establishment of the steady state by interpolating an extra shock. The muscle then had to contract twice in one interval, so that the next regular shock gave a slightly greater response. Continuing, however, with the regular series the steady condition was re-established. Following this routine, the supernormal effect at the second of two stimuli was determined with various intervals. Two different stages are found: (a) the relatively refractory phase, in which the second response is less than the first; (b) the supernormal phase, lasting up to the next regular shock, in which the second response is the greater. A third, but artificial, subnormal phase is then found in which, owing to the necessary omission of the next regular shock if an interval greater than that of the series is to be employed, the response is less than in the series.

4 19 T. KAMADA. TABLE I. Gastrocnemius at C. in 2 Ringer: regular series at 1 min. intervals. The supernormal value was obtained by subtracting double the regular response from the summated response (or when possible the regular response from that to the interpolated shock). With intervals more than 2 sec. the galvanometer was short-circuited during the first response: then the short-circuit was opened, so as to obtain the second response only. Interval between shocks (sec.): Supernormal effect (p.c.): When, during a regular series of shocks, a single one is replaced by a group in rapid succession, the extra activity disturbs the steady state and the next response in the regular series is enhanced. TABLE II. Gastrocnemius at C. in 2 Ringer: regular series at 1 min. intervals. Excess of response at next regular shock as the result of extra activity immediately following a shock of the regular series. (Extra activity represented by number of extra shocks at -5 sec. intervals.) Extra shocks Excess response (p.c.) The supernormal phase following a single shock can clearly be regarded as the first step in the establishment of a new steady state. This is true even of as short an interval as *5 sec. at 9 C. In such a case each shock is applied during and not after the previous contraction, and the total effect of a group of shocks must be read as a whole. With the longer groups the galvanometer had to be employed beyond the range of its ballistic proportionality, and a correction was employed by means of an experimental curve relating deflection to duration of illumination TABLE III. Gastrocnemius at 9.4 C. in 2 Ringer: regular series at 1 min. intervals. No. of Mean super- Sequence of extra shocks normal effect of observations -5 sec. extra shocks Average A, apart p.c. p.c ~~

5 SUPERNORMAL PHASE IN CONTRACTION. 191 of the photoelectric cell by an unsymmetrical light spot. See Fig. 3 and Table III. At higher temperatures the phenomena of the supernormal phase are not so evident, and the time intervals at which they must be sought are much less. At 2 C., for example, an interval of 5 sec. should correspond approximately to one of 1 min. at C. In the paper by Hill [1931 a, Fig. 9, p. 296] there are obvious supernormal responses to the later shocks of a *9 sec. and a -6 sec. series at 2.2 C. Since the i Extra shocks Fig. 3. Constructed from Table III. Horizontally, number of extra shocks at 5 sec. intervals given immediately after one of a regular series of shocks at 1 min. intervals; vertically, mean supernormal effect, i.e. mean response of extra shocks in excess of response in regular series expressed as a percentage of the latter. Gastrocnemius at 9.4 C. in 2 Ringer. intervals required are longer and the phenomena are more evident at the lower temperature, attention in the present research has been directed chiefly to these. DIsCUSSION. It has been shown that the tension-time response is greater, after a short interval during which it is less, the less complete the return of the muscle is to its resting or steady condition at the moment of response. There are two factors in this increase of the area of the tension-time curve, namely the usual staircase effect and the "slowing " effect recently referred to by Hill [1931 a, Fig. 9]. The latter factor seems to be much the more important. The supernormal phase in the thermal response and that in the mechanical response are independent of each other [see Hartree and Hill, 1921, Fig. 6]. There are various other forms of response in which a supernormal phase has been reported, e.g. in the electric response

6 192 T. KAMADA. [Samo jioff, 198; Adrian and Lucas, 1912], in the height of isotonic contraction under certain conditions [Bremer and Homes, 1932] and in the return of excitability [Adrian and Lucas, 1912; Cooper, 1924]. Whether there is any connection between the various supernormal phenomena is not certain. SUMMARY. If a regular series of single shocks be given to a gastrocnemius muscle through its nerve its tension-time response increases until a stationary level is attained. Increasing the stimulation interval causes a fall, decreasing the interval a rise in the level, so far as this is not affected by the onset of fatigue or by the relatively refractory period. The so-called supernormal response, at least in the case of the tensiontime of a contraction, can be regarded as the first step towards a change in the steady level due to a sudden change of the stimulation interval. I am deeply indebted to Prof. A. V. Hill who suggested the method, and under whose kind direction and help the work was carried out. To Mr J. L. Parkinson I wish to express my thanks for his assistance in the technique. REFERENCES. Adrian, E. D. and Lucas, K. (1912). J. Physiol. 44, 68. Bremer, F. and Hombs, G. (1932). Arch. int. Physiol. 35, 39. Cooper, S. (1924). J. Physiol. 59, 82. Gerard, R. W., Hill, A. V. and Zotterman, Y. (1927). Ibid. 63, 13. Hartree, W. and Hill, A. V. (1921). Ibid. 55, 389. Hill, A. V. (1931 a). Proc. Roy. Soc. B, 19, 294. Hill, A. V. (1931 b). J. Sci. Instr. 8, 262. Ruslhton, W. A. H. (1932). J. Physiol. 74, 231. Samojloff, A. (198). Arch. Anat. Physiol. Leipzig, Suppl. p. 1.

slowing of the muscle. Bronk [1933] has given a striking

slowing of the muscle. Bronk [1933] has given a striking 106 6I2.74I.I2 THE EFFECT OF ACTIVITY ON THE FORM OF THE MUSCLE TWITCH. BY J. L. PARKINSON. (From the Department of Physiology and Biochemistry, University College, London.) IT has been found by various

More information

University College, London. (Hill, 1949c) the use of a quick stretch applied shortly after a shock showed

University College, London. (Hill, 1949c) the use of a quick stretch applied shortly after a shock showed 438 J. Physiol. (95) 2, 438-445 THE HEAT PRODUTON ASSOATED WTH THE MANTENANE OF A PROLONGED ONTRATON AND THE EXTRA HEAT PRODUED DURNG LARGE SHORTENNG BY B.. ABBOTT From the Biophysics Research Unit, (Received

More information

indirectly through its nerve, its contraction is not simultaneous all over but

indirectly through its nerve, its contraction is not simultaneous all over but 466 J. Physiol. (I957) I39, 466-473 ALTERNATING RELAXATION HEAT IN MUSCLE TWITCHES BY A. V. HILL AND J. V. HOWARTH From the Physiological Laboratory, University College London (Received 31 July 1957) When

More information

ascending phases began to diverge was taken to mark the onset of decay in the

ascending phases began to diverge was taken to mark the onset of decay in the 605 J. Physiol. (I954) I24, 605-6I2 THE DURATION OF THE PLATEAU OF FULL ACTIVITY IN FROG MUSCLE BY J. M. RITCHIE From the National Institute for Medical Research, Mill Hill, London, N.W. 7 (Received 26

More information

effected readily by switches provided. Throughout the course of the

effected readily by switches provided. Throughout the course of the 612.743: 615.785.1 THE ELECTROMYOGRAM OF THE STRYCHNINE TETANUS IN THE GASTROCNEMIUS OF THE FROG. By D. H. SMYTH. From the Department of Physiology, Queen's University, Belfast. (Received for publication

More information

found, for a cycle of contraction and relaxation, by adding any net other factors enter into the calculation: (1) the 'internal' work, that is

found, for a cycle of contraction and relaxation, by adding any net other factors enter into the calculation: (1) the 'internal' work, that is J. Phy8iol. (1963), 166, pp. 211-224 211 With 4 text-figures Printed in Great Britain HEAT PRODUCTION AND ENERGY LIBERATION IN THE EARLY PART OF A MUSCULAR CONTRACTION BY R. C. WOLEDGE From the Department

More information

Sherrington and Sowton(1) in particular have shown that there is a

Sherrington and Sowton(1) in particular have shown that there is a THE REFRACTORY PHASE IN A REFLEX ARC. BY E. D. ADRIAN AND J. M. D. OLMSTED. (From the Physiological Laboratory, Cambridge.) IN the muscle-nerve preparation one of the phenomena which can be most accurately

More information

(Moscow). bringing forth each of the two types of contraction in the crayfish 6I2.8I7:595.3

(Moscow). bringing forth each of the two types of contraction in the crayfish 6I2.8I7:595.3 6I2.8I7:595.3 ON THE NATURE OF THE TWO TYPES OF RESPONSE IN THE NEUROMUSCULAR SYSTEM OF THE CRUSTACEAN CLAW. BY H. BLASCHKO1 (Kaiser Wilhelm-Institut fihr medizinische Forschung, Heidelberg), McKEEN CAT-TELL

More information

lengthening greater, than in an isometric contraction. The tension-length

lengthening greater, than in an isometric contraction. The tension-length 77 J Physiol. (I952) II7, 77-86 THE FORCE EXERTED BY ACTIVE STRIATED MUSCLE DURING AND AFTER CHANGE OF LENGTH BY B. C. ABBOTT AND X. M. AUBERT (Louvain) From the Biophysics Department, University College,

More information

6I2.8I3. preceding paper. Leads were placed on one of the dorsal cutaneous

6I2.8I3. preceding paper. Leads were placed on one of the dorsal cutaneous 6I2.8I3 RESPONSE OF TACTILE RECEPTORS TO INTERMITTENT STIMULATION. BY McKEEN CATTELL1 AND HUDSON HOAGLAND2. (From the Physiological Laboratory, Cambridge.) THE preceding paper [Adrian, Cattell and Hoagland]

More information

A BIFUNCTIONAL SINGLE MOTOR AXON SYSTEM OF A CRUSTACEAN MUSCLE

A BIFUNCTIONAL SINGLE MOTOR AXON SYSTEM OF A CRUSTACEAN MUSCLE A BIFUNCTIONAL SINGLE MOTOR AXON SYSTEM OF A CRUSTACEAN MUSCLE BY C. A. G. WIERSMA From the Kerckhoff Laboratories of Biology, California Institute of Technology and the Marine Station of the Nederl. Dierk.

More information

MUSCLE. BY C. F. WATTS (Research Student of Gonville

MUSCLE. BY C. F. WATTS (Research Student of Gonville THE EFFECT OF CURARI AND DENERVATION UPON THE ELECTRICAL EXCITABILITY OF STRIATED MUSCLE. BY C. F. WATTS (Research Student of Gonville and Caius College, Cambridge). (From the Physiological Laboratory,

More information

Fig. 1. The reverse change is shown in Fig. 3. fluid, and then when activity was re-established the fluid replaced by a

Fig. 1. The reverse change is shown in Fig. 3. fluid, and then when activity was re-established the fluid replaced by a CARDIAC TETANUS. By W. BURRID GE, M.B. (From the Physiological Laboratory, Oxford.) WALTHER(13) gives complete references to the experiments on cardiac tetanus and in his discussion concludes that superposition

More information

The Interaction between Two Trains o f Impulses Converging on. (Communicated by Sir Charles Sherrington, F.R.S. Received June 25, 1929.

The Interaction between Two Trains o f Impulses Converging on. (Communicated by Sir Charles Sherrington, F.R.S. Received June 25, 1929. 363 612. 816. 3 The Interaction between Two Trains o f Impulses Converging on the Same Moto By Sybil Cooper, Research Fellow of St. Hilda s College, Oxford, and D. D e n n y -B row n, Beit Memorial Research

More information

108. Time.Resolved X.Ray Diffraction from Frog Skeletal Muscle during an Isotonic Twitch under a Small Load

108. Time.Resolved X.Ray Diffraction from Frog Skeletal Muscle during an Isotonic Twitch under a Small Load No. 9] Proc. Japan Acad., 54, Ser. B (1978) 559 108. Time.Resolved X.Ray Diffraction from Frog Skeletal Muscle during an Isotonic Twitch under a Small Load By Haruo SUGI,*> Yoshiyuki AMEMIYA,**> and Hiroo

More information

6I University College, London, and the Department of. pharynx and the retractor muscle attached to it beneath the cesophagus

6I University College, London, and the Department of. pharynx and the retractor muscle attached to it beneath the cesophagus 6I2.735.3 THE HEAT PRODUCTION OF SMOOTH MUSCLE. BY EMIL B O ZLE R (Zoological Institute, Munich). (From the Department of Physiology and Biochemistry, University College, London, and the Department of

More information

EFFECT OF THE BLACK SNAKE TOXIN ON THE GASTROCNEMIUS-SCIATIC PREPARATION

EFFECT OF THE BLACK SNAKE TOXIN ON THE GASTROCNEMIUS-SCIATIC PREPARATION [20] EFFECT OF THE BLACK SNAKE TOXIN ON THE GASTROCNEMIUS-SCIATIC PREPARATION BY A. H. MOHAMED AND O. ZAKI Physiology Department, Faculty of Medicine, Abbassia, Cairo (Received 3 June 1957) When the toxin

More information

(From the Physiological Laboratory, University of Oxford.)

(From the Physiological Laboratory, University of Oxford.) OBSERVATIONS ON THE REFRACTORY PERIOD OF THE SARTORIUS OF THE FROG. BY H. C. BAZETT, Oxford. Wadham College, (From the Physiological Laboratory, University of Oxford.) THIS investigation was undertaken

More information

(Cavagna, Dusman & Margaria, 1968). The amount of energy thus stored

(Cavagna, Dusman & Margaria, 1968). The amount of energy thus stored J. Phy8iol. (1970), 206, pp. 257-262 257 With 3 text-ftgurem Printed in Great Britain THE SERIES ELASTIC COMPONENT OF FROG GASTROCNEMIUS By GIOVANNI A. CAVAGNA From the Istituto di Fisiologia Umana, Universita

More information

ON THE EXCITATION OF CRUSTACEAN MUSCLE

ON THE EXCITATION OF CRUSTACEAN MUSCLE 159 ON THE EXCITATION OF CRUSTACEAN MUSCLE IV. INHIBITION BY C. F. A. PANTIN, M.A., Sc.D. (From the Zoological Laboratory, Cambridge, and the Stazione Zoologica, Naples) (Received Augtut 10, 1935) (With

More information

products2. Clearly, if similar results to those obtained by Ginezinsky

products2. Clearly, if similar results to those obtained by Ginezinsky THE EFFECT ON MUSCLE CONTRACTION O1NJ.j SYMPATHETIC STIMULATION AND OF VARIOUS MODIFICATIONS OF CONDITIONS. BY DR HELENE WASTL (VIENNA). (From the Physiological Laboratory, Cambridge.) THE question, whether

More information

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis.

6I2.744.I5: e3. sufficiently high'. There exists in such cases a certain concentration of the. by direct analysis. 194 THE DIFFUSION OF ACTATE INTO AND FROM MUSCE. BY S. C. DEVADATTA. 6I2.744.I5:547.472e3 (From the Department of Physiology, Edinburgh University.) CERTAIN constituents of the voluntary muscles of the

More information

Lab 3: Excitability & Response of Skeletal Muscle

Lab 3: Excitability & Response of Skeletal Muscle Lab 3: Excitability & Response of Skeletal Muscle รศ.ดร.นพ. ช ยเล ศ ชยเลศ พ ช ตพรช ย พชตพรชย ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Objectives 1. Threshold, submaximal, maximal, supramaximal stimulus

More information

(Received 10 April 1956)

(Received 10 April 1956) 446 J. Physiol. (I956) I33, 446-455 A COMPARISON OF FLEXOR AND EXTENSOR REFLEXES OF MUSCULAR ORIGIN BY M. G. F. FUORTES AND D. H. HUBEL From the Department ofneurophysiology, Walter Reed Army Institute

More information

ON THE EXCITATION OF CRUSTACEAN MUSCLE

ON THE EXCITATION OF CRUSTACEAN MUSCLE 148 ON THE EXCITATION OF CRUSTACEAN MUSCLE III. QUICK AND SLOW RESPONSES BY C. F. A. PANTIN, M.A., Sc.D. (From the Zoological Laboratory, Cambridge, and the Stazione Zoologica, Naples) {Received August

More information

6I2.748:6I2.8I5.I]6I2.8I3

6I2.748:6I2.8I5.I]6I2.8I3 6I2.748:6I2.8I5.I]6I2.8I3 THE RESPONSE OF A MUSCLE SPINDLE DURING/ ACTIVE CONTRACTION OF A MUSCLE. / By BRYAN H. C. MATTHEWS (Beit Memorial Fellow), Fellow of King's College, Cambridge. (From the Physiological

More information

ON THE EXCITATION OF CRUSTACEAN MUSCLE

ON THE EXCITATION OF CRUSTACEAN MUSCLE Ill ON THE EXCITATION OF CRUSTACEAN MUSCLE II. NEUROMUSCULAR FACILITATION BY C. F. A. PANTIN, M.A., Sc.D. (From the Zoological Laboratory, Cambridge, and the Stazione Zoologica, Naples.) (Received August

More information

Fellow of King's College, Cambridge.

Fellow of King's College, Cambridge. ON AN APPARENT MUSCULAR INHIBITION PRO- DUCED BY EXCITATION OF THE NINTH SPINAL NERVE OF THE FROG, WITH A NOTE ON THE WEDENSKY INHIBITION. BY V. J. WOOLLEY, Fellow of King's College, Cambridge. (From the

More information

Humans make voluntary decisions to talk, walk, stand up, or sit down. The

Humans make voluntary decisions to talk, walk, stand up, or sit down. The 2 E X E R C I S E Skeletal Muscle Physiology O B J E C T I V E S 1. To define motor unit, twitch, latent period, contraction phase, relaxation phase, threshold, summation, tetanus, fatigue, isometric contraction,

More information

238. Picrotoxin: A Potentiator of Muscle Contraction

238. Picrotoxin: A Potentiator of Muscle Contraction No. 101 Proc. Japan Acad., 46 (1970) 1051 238. Picrotoxin: A Potentiator of Muscle Contraction By Kimihisa TAKEDA and Yutaka OOMURA Department of Physiology, Faculty of Medicine Kanazawa University, Kanazawa

More information

affect contractions in cardiac tissue (Koch-Weser & Blinks, 1963), and in

affect contractions in cardiac tissue (Koch-Weser & Blinks, 1963), and in J. Physiol. (1965), 18, pp. 225-238 225 With 12 text-figures Printed in Great Britain THE RELATION BETWEEN RESPONSE AND THE INTERVAL BETWEEN STIMULI OF THE ISOLATED GUINEA-PIG URETER BY A. W. CUTHBERT

More information

By analogy with a resting muscle Weber(3) first regarded a. (1). In a previous paper (2) based upon similar measurements of the initial

By analogy with a resting muscle Weber(3) first regarded a. (1). In a previous paper (2) based upon similar measurements of the initial THE RELATION BETWEEN THE WORK PERFORMED AND THE ENERGY LIBERATED IN MUSCULAR CONTRACTION. BY WALLACE 0. FENN. (From the Physiological Laboratories of Manchester and of University College, London.) MEASUREMENTS

More information

From the Physiology Department, King's College, University of London (Received 14 December 1949)

From the Physiology Department, King's College, University of London (Received 14 December 1949) 382 J. Physiol. (I950) III, 382-387 6I2.817.I*546.32 POTASSIUM AND NEUROMUSCULAR TRANSMISSION BY S. HAJDU, J. A. C. KNOX AND R. J. S. McDOWALL From the Physiology Department, King's College, University

More information

Gastrocnemius, soleus and tibialis anterior have been chosen for. J. Physiol. (I938) 93, I2.74I- I3

Gastrocnemius, soleus and tibialis anterior have been chosen for. J. Physiol. (I938) 93, I2.74I- I3 39 J. Physiol. (I938) 93, 39-60 6I2.74I- I3 THE AFTER EFFECTS OF A TETANUS ON MAMMALIAN MUSCLE BY G. L. BROWN AND U. S. VON EULER1 National Institute for Medical Research,. Hampstead, London, N. W. 3 (Received

More information

(Received November 30, 1934.)

(Received November 30, 1934.) 1 6i2.745.3 SOME FACTORS INFLUENCING THE HEAT PRO- DUCTION OF MUSCLE AFTER STRETCHING. BY U. S. v. EULER' (Stockholm). (From the Department of Physiology, University College, London.) (Received November

More information

Anaerobic and Aerobic Activity in Isolated Muscle. 313

Anaerobic and Aerobic Activity in Isolated Muscle. 313 Anaerobic and Aerobic Activity in Isolated Muscle. 313 (4) Stella, *Journ. Physiol., vol. 66, p. 19 (1928). (5) Eggleton, Eggleton and Hill, Roy. Soc. Proc., B, vol. 103, p. 620 (1928). (6) Hill, Roy.

More information

Such strips do not contract spontaneously, and it was shown that, when

Such strips do not contract spontaneously, and it was shown that, when 6I2. I72 THE STAIRCASE PHENOMENON IN VENTRICULAR MUSCLE. BY AL I SO N S. D AL E (Yarrow Student, Girton College). (From the Physiological Laboratory, Cambridge.) IN a previous paper [Dale, 1930] a relation

More information

Muscles & Physiology

Muscles & Physiology Collin County Community College BIOL 2401 Muscles & Physiology 1 Tension Development The force exerted by a contracting muscle cell or muscle group on an object is called muscle tension, and the opposing

More information

closely resembling that following an antidromic impulse [Eccles and

closely resembling that following an antidromic impulse [Eccles and 185 6I2.833. 96 REFLEX INTERRUPTIONS OF RHYTHMIC DISCHARGE. By E. C. HOFF, H. E. HOFF AND D. SHEEHAN1. (New Haven, Conn.) (From the Laboratory of Physiology, Yale University School of Medicine.) (Received

More information

AND MOVEMENT. BY GRACE BRISCOE. of Medicine for Women.)

AND MOVEMENT. BY GRACE BRISCOE. of Medicine for Women.) 612.74I.14 ADEQUATE ELECTRICAL STIMULI FOR POSTURE AND MOVEMENT. BY GRACE BRISCOE. (From the Physiological Laboratory of the London School of Medicine for Women.) INTRODUCTORY. MUSCLE has two main functional

More information

SOCIETY, PHYSIOLOGICAL PROCEEDINGS. January 11th, (3) stale or modified.

SOCIETY, PHYSIOLOGICAL PROCEEDINGS. January 11th, (3) stale or modified. PROCEEDINGS OF THE PHYSIOLOGICAL January 11th, 1896. CHARING CROSS HOSPITAL. SOCIETY, The effect of C02 upon nerve and the production of CO2 by nerve. By A. D. WALLER. PRELIMINARY. Considered with reference

More information

Effect of Alterations in the Thyroid State on the Intrinsic Contractile Properties of Isolated Rat Skeletal Muscle

Effect of Alterations in the Thyroid State on the Intrinsic Contractile Properties of Isolated Rat Skeletal Muscle Effect of Alterations in the Thyroid State on the Intrinsic Contractile Properties of Isolated Rat Skeletal Muscle HERMA K. GOLD, JAMES F. SPA, JR., and EUGEE BRAUwALD From the Cardiology Branch, ational

More information

Cardiac muscle is different from other types of muscle in that cardiac muscle

Cardiac muscle is different from other types of muscle in that cardiac muscle 6 E X E R C I S E Cardiovascular Physiology O B J E C T I V E S 1. To define autorhythmicity, sinoatrial node, pacemaker cells, and vagus nerves 2. To understand the effects of the sympathetic and parasympathetic

More information

Laboratory of Experimental Physiology of the

Laboratory of Experimental Physiology of the ON THE EFFECT OF ARTIFICIAL STIMULATION OF THE RED NUCLEUS IN THE ANTHROPOID APE. BY T. GRAHA.M BROWN. (From the Laboratory of Experimental Physiology of the University of Manchester.) THE author has previously

More information

Strength and conditioning? Chapter 4 Training Techniques. Weight gain (24yr, 73kg, 177cm, takes 18% protein) Guidelines.

Strength and conditioning? Chapter 4 Training Techniques. Weight gain (24yr, 73kg, 177cm, takes 18% protein) Guidelines. Strength and conditioning? Chapter 4 Training Techniques Minimise the probability of injury Maximise performance Athletic Training Spring 2014 Jihong Park Guidelines Safety: environment, technique, nutrition

More information

Hampstead, London, N.W.3

Hampstead, London, N.W.3 22 6I2.743:547.435-292 ACTION POTENTIALS OF NORMAL MAMMALIAN MUSCLE. EFFECTS OF ACETYLCHOLINE AND ESERINE By G. L. BROWN From the National Institute for Medical Research, Hampstead, London, N.W.3 (Received

More information

milliamperes, and the frequency of interruption to be varied from 2 to action(1). reflex effects on the heart. It is advisable to do this previous to

milliamperes, and the frequency of interruption to be varied from 2 to action(1). reflex effects on the heart. It is advisable to do this previous to STUDIES OF REFLEX ACTIVITY IN THE INVOLUNTARY NERVOUS SYSTEM. I. Depressor Reflexes. BY SAMSON WRIGHT, (Physiological Laboratory, Middlesex Hospital.) THE vaso-motor effects of stimulating the central

More information

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels Chapter 12 Muscle Physiology Outline o Skeletal Muscle Structure o The mechanism of Force Generation in Muscle o The mechanics of Skeletal Muscle Contraction o Skeletal Muscle Metabolism o Control of Skeletal

More information

Force enhancement in single skeletal muscle fibres on the ascending limb of the force length relationship

Force enhancement in single skeletal muscle fibres on the ascending limb of the force length relationship The Journal of Experimental Biology 207, 2787-2791 Published by The Company of Biologists 2004 doi:10.1242/jeb.01095 2787 Force enhancement in single skeletal muscle fibres on the ascending limb of the

More information

University of Manchester.)

University of Manchester.) 6I2.744.2:547.292-II5 THE LACTIC ACID METABOLISM OF FROG'S MUSCLE POISONED WITH IODOACETIC ACID. I. The lactic acid metabolism of anaerobic iodoacetate muscle. II. The lactic acid metabolism of aerobic

More information

SOCIETY, PHYSIOLOGICAL December 11, PROCEEDINGS. (Preliminary communication.)

SOCIETY, PHYSIOLOGICAL December 11, PROCEEDINGS. (Preliminary communication.) PROCEEDINGS QF THE PHYSIOLOGICAL December 11, 1926. SOCIETY, A muscle twitch lasting for hours. By K. FURUSAWA. The longitudinal abdominal muscle of Holothuria nigra, put in diluted sea water (10-20 p.c.),

More information

Lab #9: Muscle Physiology

Lab #9: Muscle Physiology Background Overview of Skeletal Muscle Contraction Sarcomere Thick Filaments Skeletal muscle fibers are very large, elongated cells (Fig 9.1). Roughly 80% of the content of each muscle fiber consists of

More information

[Gaskell, 1880] produced vaso-dilatation of muscle, and in a concentration

[Gaskell, 1880] produced vaso-dilatation of muscle, and in a concentration 6I2.741.6i DOES MUSCULAR CONTRACTION AFFECT THE LOCAL BLOOD SUPPLY IN THE ABSENCE OF LACTIC ACID FORMATION? BY TSANG-G. NI. (From the Laboratory of Zoophysiology, University of Copenhagen.) IT is generally

More information

(From the Physiological Laboratory, Cambridge.)

(From the Physiological Laboratory, Cambridge.) THE IMPULSES PRODUCED BY SENSORY NERVE ENDINGS. Part 3. Impulses set up by Touch and Pressure. BY E. D. ADRIAN AND YNGVE ZOTTERMAN1. (From the Physiological Laboratory, Cambridge.) IN Part I of the present

More information

DEPENDENCE OF SPERM MOTILITY AND RESPIRATION ON OXYGEN CONCENTRATION

DEPENDENCE OF SPERM MOTILITY AND RESPIRATION ON OXYGEN CONCENTRATION DEPENDENCE OF SPERM MOTILITY AND RESPIRATION ON OXYGEN CONCENTRATION ABRAHAM C. NEVO A.R.C. Unit of Reproductive Physiology and Biochemistry, Cambridge, England {Received 22nd June 1964) Summary. Motility

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

EQA DISCUSSION QUESTIONS: INFLUENCE OF MUSCLE FIBER TYPE ON MUSCLE CONTRACTION. Influence of Muscle Fiber Type on Muscle Contraction

EQA DISCUSSION QUESTIONS: INFLUENCE OF MUSCLE FIBER TYPE ON MUSCLE CONTRACTION. Influence of Muscle Fiber Type on Muscle Contraction 0907T_c13_205-218.qxd 1/25/05 11:05 Page 209 EXERCISE 13 CONTRACTION OF SKELETAL MUSCLE 209 Aerobic cellular respiration produces ATP slowly, but can produce large amounts of ATP over time if there is

More information

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I 1 BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 09 MUSCULAR SYSTEM Part 2 of 2 Dr. Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. Some illustrations are courtesy

More information

FATIGUE STUDIED IN REACTION TIME EXPERIMENTS. By. furnish results of a general kind, and does not enable one to arrive at a

FATIGUE STUDIED IN REACTION TIME EXPERIMENTS. By. furnish results of a general kind, and does not enable one to arrive at a FATIGUE STUDIED IN REACTION TIME EXPERIMENTS. By T. H. MILROY. (From the Physiology Laboratory, Queen's University, Belfast.) (Received for publication 5th April 1909.) MANY methods have been employed

More information

Analysis of EMG and Biomechanical Features of Sports Aerobics Movements

Analysis of EMG and Biomechanical Features of Sports Aerobics Movements Analysis of EMG and Biomechanical Features of Sports Aerobics Movements Jingjing Wang* WuHan Sport University, Wuhan, Hubei, 430070, China *itrazyl@163.com Abstract To analyze electromyography (EMG) and

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

The Muscular System PART B

The Muscular System PART B 6 The Muscular System PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Sliding Filament

More information

tuberosity, the lower end of the femur and, when necessary, the tibia. of Medicine for Women J. Physiol. (I938) 93, I I2.74I.

tuberosity, the lower end of the femur and, when necessary, the tibia. of Medicine for Women J. Physiol. (I938) 93, I I2.74I. 194 J. Physiol. (I938) 93, I94-205 6I2.74I.I5 CHANGES IN MUSCLE CONTRACTION CURVES PRODUCED BY DRUGS OF THE ESERINE AND CURARINE GROUPS BY GRACE BRISCOE From the Physiological Laboratory of the London

More information

History dependent force properties of skeletal muscle: in vitro, in situ and in vivo considerations

History dependent force properties of skeletal muscle: in vitro, in situ and in vivo considerations History dependent force properties of skeletal muscle: in vitro, in situ and in vivo considerations Introduction W. Herzog, H.D. Lee, J. Wakeling, R. Schachar, and T. Leonard Faculty of Kinesiology, University

More information

FACTORS INFLUENCING FACILITATION IN ACTINOZOA. THE ACTION OF CERTAIN IONS

FACTORS INFLUENCING FACILITATION IN ACTINOZOA. THE ACTION OF CERTAIN IONS 6i FACTORS INFLUENCING FACILITATION IN ACTINOZOA. THE ACTION OF CERTAIN IONS BY D. M. ROSS AND C. F. A. PANTIN, F.R.S. From the Zoological Laboratory, Cambridge {Received 25 July 1939) (With Six Text-figures)

More information

(From the Physiological Laboratory, Cambridge.)

(From the Physiological Laboratory, Cambridge.) THE INNERVATION OF THE PYLORIC SPHINCTER OF THE RAT. BY M. NAKANISHI. (From the Physiological Laboratory, Cambridge.) WHILST numerous observations have been made on the behaviour of the pyloric region

More information

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with 381 6I2.I34:6I2.893 THE CONSTRICTOR RESPONSE OF THE INFERIOR VENA CAVA TO STIMULATION OF THE SPLANCHNIC NERVE BY K. J. FRANKLIN AND A. D. McLACHLIN (From the University Department of Pharmacology, Oxford)

More information

1-Recognize the meaning of summation of contraction and its types. 2-detrmine the effect of changing length on skeletal muscle tension.

1-Recognize the meaning of summation of contraction and its types. 2-detrmine the effect of changing length on skeletal muscle tension. Lec7 Physiology Dr.HananLuay Objectives 1-Recognize the meaning of summation of contraction and its types. 2-detrmine the effect of changing length on skeletal muscle tension. 3-Differntiate between the

More information

Warm Up! Test review (already! ;))

Warm Up! Test review (already! ;)) Warm Up! Test review (already! ;)) Write a question you might find on the Unit 5 test next week! (Multiple choice, matching, fill in, or short answer!) - challenge yourself and be ready to share!!! PowerPoint

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 10 Muscular Tissue Introduction The purpose of the chapter is to: 1. Learn about the structure and function of the 3 types of muscular tissue

More information

Effect of cold treatment on the concentric and eccentric torque-velocity relationship of the quadriceps femoris

Effect of cold treatment on the concentric and eccentric torque-velocity relationship of the quadriceps femoris Effect of cold treatment on the concentric and eccentric torque-velocity relationship of the quadriceps femoris By: Kerriann Catlaw *, Brent L. Arnold, and David H. Perrin Catlaw, K., Arnold, B.L., & Perrin,

More information

College of Medicine, Salt Lake City, Utah, U.S.A.

College of Medicine, Salt Lake City, Utah, U.S.A. J. Phy8iol. (1968), 196, pp. 311-325 311 With 7 text-figurms Printed in Great Britain FACILITATION OF HEART MUSCLE CONTRACTION AND ITS DEPENDENCE ON EXTERNAL CALCIUM AND SODIUM By R. K. ORKAND From the

More information

Skeletal muscles are composed of hundreds to thousands of individual cells,

Skeletal muscles are composed of hundreds to thousands of individual cells, 2 E X E R C I S E Skeletal Muscle Physiology O B J E C T I V E S 1. To define these terms used in describing muscle physiology: multiple motor unit summation, maximal stimulus, treppe, wave summation,

More information

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 9 Muscles and Muscle Tissue Lecture 16 1 Lecture Overview Types, characteristics, functions of muscle Structure of skeletal muscle Mechanism of

More information

Some Remarks on Measurements of Electrical Excitability of the Human Eye.

Some Remarks on Measurements of Electrical Excitability of the Human Eye. The Tohohu Journal of Experimental Medicine, Vol. 54, No. 4, 1951. Some Remarks on Measurements of Electrical Excitability of the Human Eye. Koiti By Motokawa. (Physiological Laboratory, Tohoku University,

More information

"INSERTION ACTIVITY" IN ELECTROMYOGRAPHY

INSERTION ACTIVITY IN ELECTROMYOGRAPHY J. Neurol. Neurosurg. Psychiat., 1949, 12, 268. "INSERTION ACTIVITY" IN ELECTROMYOGRAPHY WITH NOTES ON DENERVATED MUSCLE RESPONSE TO CONSTANT CURRENT BY ERIC KUGELBERG and INGEMAR PETERSEN From the Department

More information

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Muscle Cell Anatomy & Function (mainly striated muscle tissue) Muscle Cell Anatomy & Function (mainly striated muscle tissue) General Structure of Muscle Cells (skeletal) several nuclei (skeletal muscle) skeletal muscles are formed when embryonic cells fuse together

More information

Hippocrates thought that the tendons caused the body to move (he confused tendons with nerves, and in fact used the same word, neuron, for both).

Hippocrates thought that the tendons caused the body to move (he confused tendons with nerves, and in fact used the same word, neuron, for both). Early Ideas about Muscular Contraction Hippocrates thought that the tendons caused the body to move (he confused tendons with nerves, and in fact used the same word, neuron, for both). Aristotle compared

More information

Smith, Miller and Grab er(4) state that the maintenance of an efficient

Smith, Miller and Grab er(4) state that the maintenance of an efficient THE SIGNIFICANCE OF THE DIASTOLIC AND SYSTOLIC BLOOD-PRESSURES FOR THE MAINTENANCE OF THE CORONARY CIRCULATION. BY G. V. ANREP AND B. KING. (From the Physiological Laboratory, Cambridge.) IT is generally

More information

EFFECTS OF TETRODOTOXIN ON THE NEUROMUSCULAR JUNCTION

EFFECTS OF TETRODOTOXIN ON THE NEUROMUSCULAR JUNCTION EFFECTS OF TETRODOTOXIN ON THE NEUROMUSCULAR JUNCTION TARO FURUKAWA, TADAO SASAOKA AND YUJI HOSOYA* Department of Physiology, Osaka City University Medical School, Abeno-ku, Osaka, Japan Tetrodotoxin is

More information

Cell Physiolgy By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences

Cell Physiolgy By: Dr. Foadoddini Department of Physiology & Pharmacology Birjand University of Medical Sciences Chapt. 6,7,8 Cell Physiolgy By: Department of Physiology & Pharmacology Birjand University of Medical Sciences ١ Contraction of Skeletal Muscle ٢ ٣ ٤ T tubule ٥ Sliding Filament Mechanism ٦ ٧ ٨ ٩ ١٠ ١١

More information

Lifting your toes up towards your tibia would be an example of what movement around the ankle joint?

Lifting your toes up towards your tibia would be an example of what movement around the ankle joint? NAME: TEST 1 ANATOMY IN SPORT SCIENCE: SEMESTER 1, 2017 TOTAL MARKS = 58 Total: / 58 marks Percentage: Grade: TERMINOLOGY: The structures that connect bone to bone are called: The ankle joint is to the

More information

liberated in the body is probably less than 1 part in a million. The

liberated in the body is probably less than 1 part in a million. The 547.435-292: 577.153 KINETICS OF CHOLINE ESTERASE. By A. J. CLARK, J. RAVENT6S, E. STEDMAN, and ELLEN STEDMAN. From the Departments of Pharmacology and Medical Chemistry, University of Edinburgh. (Received

More information

The Muscular System 6PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

The Muscular System 6PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Muscular System 6PART B Contraction of Skeletal Muscle Muscle fiber contraction is all or none

More information

Session 3-Part 2: Skeletal Muscle

Session 3-Part 2: Skeletal Muscle Session 3-Part 2: Skeletal Muscle Course: Introduction to Exercise Science-Level 2 (Exercise Physiology) Presentation Created by Ken Baldwin, M.ED, ACSM-H/FI Copyright EFS Inc. All Rights Reserved. Skeletal

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. 1 Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5.

More information

Relation between Membrane Potential Changes and Tension in Barnacle Muscle Fibers

Relation between Membrane Potential Changes and Tension in Barnacle Muscle Fibers Relation between Membrane Potential Changes and Tension in Barnacle Muscle Fibers CHARLES EDWARDS, SHIKO CHICHIBU, and SUSUMU HAGIWARA From the Department of Physiology, University of Minnesota, Minneapolis,

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5. Striated

More information

1724 Lab: Frog Skeletal Muscle Physiology (Marieb Exercise 16A) Marieb/iWorx / Ziser, 2002

1724 Lab: Frog Skeletal Muscle Physiology (Marieb Exercise 16A) Marieb/iWorx / Ziser, 2002 1724 Lab: Frog Skeletal Muscle Physiology (Marieb Exercise 16A) Marieb/iWorx / Ziser, 2002 I. Introduction. Read the introductory material in your lab manual Marieb Ex 16A: Skeletal Muscle Physiology Frog

More information

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE PART I: MUSCLE STRUCTURE Muscle Tissue A primary tissue type, divided into: skeletal muscle cardiac muscle smooth muscle Functions of Skeletal Muscles Produce skeletal movement Maintain body position Support

More information

Baltimore 5, Maryland, U.S.A.

Baltimore 5, Maryland, U.S.A. 318 J. Physiol. (I953) I21, 3I8-340 PROPERTIES OF THE 'SLOW' SKELETAL MUSCLE FIBRES OF THE FROG* BY STEPHEN W. KUFFLER AND E. M. VAUGHAN WILLIAMSt From the Wilmer Institute, The Johns Hopkins Hospital

More information

Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle

Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle J. Appl. Physiol. 88: 35 40, 2000. Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle F. ABBATE, 1 A. J. SARGEANT, 1,2 P. W. L. VERDIJK, 1 AND A. DE

More information

Chapter 7 The Muscular System - Part 2. Mosby items and derived items 2012 by Mosby, Inc., an affiliate of Elsevier Inc. 1

Chapter 7 The Muscular System - Part 2. Mosby items and derived items 2012 by Mosby, Inc., an affiliate of Elsevier Inc. 1 Chapter 7 The Muscular System - Part 2 Mosby items and derived items 2012 by Mosby, Inc., an affiliate of Elsevier Inc. 1 FUNCTIONS OF SKELETAL MUSCLE A. Functions 1. Movement 2. Posture or muscle tone

More information

OBSERVATIONS ON THE ISOLATED PHRENIC

OBSERVATIONS ON THE ISOLATED PHRENIC Brit. J. Pharmacol. (1946), 1, 38-61. OBSERVATIONS ON THE ISOLATED PHRENIC NERVE DIAPHRAGM PREPARATION OF THE RAT BY E. BULBRING From the Department of Pharmacology, Oxford (Received January 11, 1946)

More information

stimulated, although the atropine prevents any apparent action upon the

stimulated, although the atropine prevents any apparent action upon the THE DIFFERENTIAL PARALYSIS OF CARDIAC NERVE ENDINGS AND MUSCLE. BY W. R. WITANOWSKI (Fellow of the Rockefeller Foundation). (From the Pharmacological Department, University College, London.) 0. L 0 EWI

More information

A ballistic bomb calorimeter

A ballistic bomb calorimeter A ballistic bomb calorimeter BY D. S. MILLER AND P. R. PAYNE Human Nutrition Research Unit, Nutrition Building, National Institute for Medical Research, Mill Hill, London, N. W. 7 (Received 9 May 1959-Revised

More information

The Purpose of Training

The Purpose of Training The Purpose of Training Training improves the physiological capacity of athletes to bring out the best performance possible. The demands of the sport can be identified by undertaking an activity analysis.

More information

AEA Aquatic Fitness Professional Learning Objectives

AEA Aquatic Fitness Professional Learning Objectives AEA Aquatic Fitness Professional Learning Objectives GENERAL CATEGORIES Categories correspond to chapters of the Aquatic Fitness Professional Manual, Seventh Edition PART I: Foundations of Fitness and

More information

Muscle Mechanics. Bill Sellers. This lecture can be found at:

Muscle Mechanics. Bill Sellers.   This lecture can be found at: Muscle Mechanics Bill Sellers Email: wis@mac.com This lecture can be found at: http://mac-huwis.lut.ac.uk/~wis/lectures/ Muscles are not straightforward linear tension generators but behave in quite unexpected

More information

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages ! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! Tension Production - Muscle FIBER! All-or-none

More information