Anatomical Study of Blood Supply to the Spinal Cord

Size: px
Start display at page:

Download "Anatomical Study of Blood Supply to the Spinal Cord"

Transcription

1 Anatomical Study of Blood Supply to the Spinal Cord Kiyofumi Morishita, MD, PhD, Gen Murakami, MD, PhD, Yasuaki Fujisawa, MD, PhD, Nobuyoshi Kawaharada, MD, PhD, Jhoji Fukada, MD, PhD, Tatsuya Saito, MD, and Tomio Abe, MD, PhD Departments of Thoracic and Cardiovascular Surgery, and Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan Background. Low incidences of spinal cord ischemia after thoracoabdominal aortic aneurysm repair, despite sacrifice of all segmental arteries, have recently been reported. This, however, cannot be explained by previous anatomical findings, which prompted us to perform an anatomical study of blood supply to the spinal cord. Methods. Fifty-five spinal cords from Japanese formolfixed cadavers (mean age, years) were studied. Diameters of the anterior spinal artery (ASA) above and below the junction with the arteria radicularis magna (ARM) and diameters of the ARM were measured using the NIH image program (National Institutes of Health Image 1.58). Results. The degree of narrowing of the ASA, defined as the diameter above the ARM expressed as a percentage of the diameter below the ARM, ranged from 23% to 161% and averaged 66% 30%. The degree of narrowing was plotted against the ARM diameter divided by the ASA diameter above the junction to examine the impact of the degree of narrowing on distal spinal blood flow from the ARM. The degree of narrowing was related to distal spinal blood flow from the ARM (r 0.56, p < ). Conclusions. The degree of narrowing of the ASA varies considerably. Furthermore, distal spinal blood the narrow point of the ASA becomes narrower. These anatomical findings of spinal blood supply should be useful for elucidating the mechanisms of spinal cord injury after repair of extensive thoracoabdominal aneurysms. (Ann Thorac Surg 2003;76: ) 2003 by The Society of Thoracic Surgeons Spinal cord ischemia still occurs in 5% to15% of patients undergoing extensive thoracoabdominal aortic aneurysm repair [1 3], although many efforts have been made to reduce the rate of paraplegia or paraparesis. Spinal cord injury generally results from temporary or permanent interruption of spinal cord blood supply. The complexity of spinal cord circulation has puzzled surgeons for many years. In addition to considerable variations in normal anatomy, occlusion of segmental arteries due to mural thrombus or atherosclerotic change has made it difficult to elucidate the pathogenesis of spinal cord ischemia. This is why there are conflicting views regarding the appropriate strategy (sacrifice vs aggressive reattachment) for reconstruction of the segmental arteries in thoracoabdominal aortic aneurysm repair. Griepp and colleagues [4] sequentially clamped each pair of intersegmental arteries and subsequently sacrificed them if no change in somatosensory evoked potentials occurred within 8 to 10 minutes after occlusion. The Presented at the Poster Session of the Thirty-ninth Annual Meeting of The Society of Thoracic Surgeons, San Diego, CA, Jan 31 Feb 2, Address reprint requests to Dr Morishita, Department of Thoracic and Cardiovascular Surgery, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo , Japan; kmori@sapmed.ac.jp. rate of paraplegia in their patients was only 2% despite the fact that intersegmental arteries had not been reattached. They speculated that the anterior spinal artery (ASA) was functionally continuous with multiple input arteries throughout its length. Acher and colleagues [5] reported that immediate oversewing of all intercostal arteries resulted in a rate of spinal cord ischemia of only 3.4%. In contrast, Safi and colleagues [6] claimed that reattachment of T9 to T12 significantly prevented neurologic deficit. Svensson and colleagues [7] also concluded that the failure of successful reattachment of critical segmental arteries caused spinal cord ischemia. It is generally believed that the ASA becomes extremely narrow above the junction with the arterial radicularis magna (ARM) and that spinal blood circulation below the junction depends on the ARM [8]. However, the anatomical findings cannot explain the low postoperative rate of spinal cord ischemia despite sacrifice of all intersegmental arteries. This has prompted us to perform an anatomical study of distal spinal blood supply. Material and Methods Fifty-five spinal cords from Japanese formol-fixed cadavers (29 males and 26 females) with a mean age of by The Society of Thoracic Surgeons /03/$30.00 Published by Elsevier Inc doi: /s (03)

2 1968 MORISHITA ET AL Ann Thorac Surg BLOOD SUPPLY TO THE SPINAL CORD 2003;76: Fig 2. Distribution of narrowing in the ASA. For representation of the degrees of narrowing in the ASA, its diameter above the junction was expressed as a percentage of the diameter below the junction. (ASA anterior spinal artery.) Fig 1. Measurement of the ASA and the ARM. Diameters of the ASA 1 cm above (A) and below (B) the junction with the ARM were measured. The diameter of the ARM 1 cm away from the junction was also measured (C). (ARM arterial radicularis magna; ASA anterior spinal artery.) years (range, 49 to 97 years) were studied. The causes of death did not include any significant aortic disease. Dissection of the spinal cord has been described in detail elsewhere [9]. Briefly, with each cadaver placed in the prone position, laminectomy of the vertebrae was performed. The spinal cord was removed from the fifth thoracic vertebral level to the second lumbar vertebral level. The left T12 intercostal artery was marked to investigate the vertebral level and laterality of the ARM. Dye was not used in this study, based on our previous work that there is no difference between diameters of the ARMs that are injected with dye and those that are not in formol-fixed cadavers [9]. The ASA and ARM were dissected along their course. After checking the continuity of the ASA, its diameters 1 cm above and below the junction with the ARM were measured. The diameter of the ARM 1-cm away from the junction was also measured (Fig 1). The NIH image program was used for the measurements [10]. The ARM was defined as the largest of the anterior radicular arteries joining the ASA with a hairpin turn. Statistical Analysis All data are expressed as means standard deviations. Differences in measurements were analyzed using a one-way analysis of variance (ANOVA), followed by Fisher s PLSD test if permitted by the F value. Relations among variables were assessed using linear regression analysis. This analysis was performed using StatView J-5.0 software (SAS Institute, Cary, NC). A value of p less than 0.05 was considered statistically significant. Results The ASA was continuous from the fifth thoracic vertebral level to the cauda equina in all cases. The ARM arose from T7 T8 segment in 10%, T9 T11 in 68%, T12 L1 in 16%, and L2 L4 in 6%. The origin of the ARM was from the left side in 43 cases (78%). Diameters of the ASA 1 cm above the junction with the ARM ranged from mm to mm (mean diameter, mm), diameters of the ASA 1 cm below the junction with the ARM ranged from mm to mm (mean diameter, mm), and diameters of the ARM 1 cm away from the junction ranged from mm to mm (mean diameter, mm). The diameters were significantly different (ASA above junction vs ASA below junction, p 0.001; ASA above junction vs ARM, p 0.001; ASA below junction vs ARM, p ). For comparison of the degrees of narrowing in the ASA, the diameter above the junction was expressed as a percentage of the diameter below the junction. The percentage ranged from 23% to 161% and averaged 66% 30% (Fig 2). The degree of narrowing of the ASA varied from patient to patient. There were three cadavers with a percentage of more than 120%, indicating that the ASA diameter above the junction is much wider than that below the junction. Each had the ARM and the lower lumbar artery supplying the lower lumbar spinal cord. The lower lumbar artery also showed a hairpin bend. As blood in the distal spinal cord circulation is mainly supplied by the ASA and the ARM, the ARM diameter

3 Ann Thorac Surg MORISHITA ET AL 2003;76: BLOOD SUPPLY TO THE SPINAL CORD 1969 Fig 3. Correlation between narrowing of the ASA and impact of blood flow on distal spinal cord circulation. To show which artery impacts distal spinal blood flow, the ARM diameter was divided by the ASA diameter above the junction. (ARM arterial radicularis magna; ASA anterior spinal artery.) was divided by the ASA diameter above the junction to show which artery impacts distal spinal blood flow. We plotted the above-described ratios against ASA diameters above the junction expressed as percentages of the ASA diameters below the junction. The relationships between the ratios and the percentages were linear and had coefficients of correlation (r 0.56, p ; Fig 3). This indicated that distal spinal blood supply becomes progressively dependent on the ARM as the narrow point of the ASA becomes narrower. Comment Previous anatomical studies revealed that the ASA becomes extremely narrow above the junction with the ARM and that the distal spinal cord is mainly perfused through the ARM [8 11]. Based on these anatomical findings, most surgeons have performed reattachment of lower thoracic and lumbar segmental arteries from which the ARM is thought to originate. In contrast to the strategy of reattachment of segmental arteries, some authors have recently contended that sacrifice of segmental arteries can be performed safely [4, 5]. Surprisingly, only a few of the patients operated on by these authors suffered from postoperative spinal cord injury. This, however, cannot be explained by the previously reported anatomy of blood supply to the spinal cord. Theoretically, sacrifice of segmental arteries would cause distal cord spinal ischemia. Biglioli and colleagues have suggested that such ligation of the segmental arteries can be justified due to anatomic continuity of the ASA [12]. However, as pointed out by Svensson [13], the narrow point of the ASA reduces blood flow of the distal spinal cord. He used the law of Hagen-Poiseuille to show that blood cannot sufficiently flow down the ASA through the narrow point. According to his theory, if all segmental arteries are sacrificed, the distal flow through the narrow point will be so small that ischemia cannot be prevented from occurring. In such a situation, instead of segmental arteries, a collateral pathway can supply blood to the distal spinal cord. It is expected that most patients have collateral circulation for supplying blood to the distal spinal cord based on the fact that few patients have suffered from spinal cord ischemia despite the sacrifice of all segmental arteries. However, in an angiographic study by Kieffer and colleagues, the ARM was visualized via anastomotic circulation in a fourth of almost 400 patients with thoracic or thoracoabdominal aortic aneurysms [14]. In other words, collateral circulation takes the place of segmental arteries to supply blood to the distal spinal cord in only one fourth of patients. Another anatomical explanation is required for surgeons to understand the mechanism of postoperative spinal cord ischemia. We hypothesized that the degree of narrowing of the ASA varied from patient to patient. However, we have little information on the degree of ASA narrowing. The present study focused on degrees of narrowing of the ASA. The degree of narrowing, defined as diameter of the ASA above the junction expressed as a percentage of its diameter below the junction, ranged from 23% to 161% in the cadavers we examined. The presence of a slight narrowing may account for low incidences of spinal cord ischemia despite sacrifice of segmental arteries. In addition to the large range of degrees of narrowing of the ASA, our study showed that distal spinal blood the narrow point of the ASA becomes narrower. For example, in patients with an extremely narrow point, the ARM provides the distal spinal cord with 202 times greater blood flow than that through the upper ASA [11]. When the size of the ASA below the junction is equal to that above the junction, blood flow through the ARM is reduced to about double that from the upper ASA. When the diameter of the ASA below the junction is narrower than that above the junction, blood flow from the ASA is almost the same as that from the ARM. Interestingly, the lower lumbar arteries with a hairpin bend inevitably supplied the lumbar spinal cord in the latter cases. The anatomical findings in the present study suggest that if the narrow point of the ASA is extremely narrow, reattachment of the intersegmental arteries may be required; if the ASA has no narrow point, or only a slightly narrow point, sacrifice of the intersegmental arteries can be justified, and if, conversely, the diameter of the ASA above the junction is larger than that below the junction, the lower lumbar artery may play an important role in lumbar spinal cord circulation [3, 15]. There are many ways (such as administration of neuroprotective agents) other than the anatomical maintenance of spinal cord blood supply to prevent spinal cord injury. However, the most important problem that surgeons face intraoperatively is which segmental arteries should be reattached. Aggressive reattachment increases aortic cross-clamping time, though some of the reattached arteries may not need to be reattached [13]. On the other hand, some

4 1970 MORISHITA ET AL Ann Thorac Surg BLOOD SUPPLY TO THE SPINAL CORD 2003;76: authors [4, 5] have reported that a low rate of paraplegia was achieved without reattachment of a single intersegmental artery. However, their strategy is not effective for extensive aortic dissection. Most surgeons agree that reattachment of only the arteries that need to be reattached should be performed. To achieve such reattachment, an accurate diagnostic tool for preoperatively identifying the anatomy of spinal cord circulation, including the ASA, is required. Spinal arteriography has been performed for preoperative localization of the segmental arteries supplying the spinal cord, but this technique has not demonstrated the ASA in detail [14]. Magnetic resonance imaging (MRI) angiography has emerged as a new noninvasive method for detection of the ARM [16, 17]. Based on the anatomical findings in the present study, we have recently started examining the narrow point of the ASA as well as localization of the ARM. Although currently available MRI technology does not enable precise measurement of the diameters of the ASA, a narrow point can be identified. When the ASA does not have a narrow point, the segmental arteries can be sacrificed. If the ASA has a narrow point, the segmental artery that gives rise to the ARM is reattached. We are investigating whether performing reattachment of the segmental arteries based on such an assessment has an effect on postoperative paraplegia. There are several limitations in the present study. First, we did not investigate the effect of arteriosclerosis on our data. We did actually examine the presence of arteriosclerosis in spinal cord circulation. However, the results were not reported in this paper because description of findings of arteriosclerosis in our cadavers will be published in another article focusing on vascular arteriosclerosis of the spinal cord. Briefly, there was no arteriosclerosis in the intercostal arteries, anterior radicular arteries, or anterior spinal artery, though some of them had the orifices of their segmental arteries occluded by arteriosclerosis. Jacobs and colleagues [15], based on their experience, speculated that only the orifices of the segmental arteries are occluded with aortic plaques and that their lumen can be still patent. Previous anatomical studies have shown that arteriosclerosis seldom occurs in the spinal artery [18, 19]. It therefore seems that the presence of arteriosclerosis does not greatly affect the anatomy of spinal cord circulation. Second, only Japanese cadavers were used in this study. It is unknown whether the anatomical findings in this study are applied to Western people. The present study demonstrated that the degree of narrowing of the ASA varies from patient to patient and that distal spinal blood supply becomes progressively dependent on the ARM as the narrow point of the ASA becomes narrower. However, there have been no reported findings regarding these issues for other races. A similar study in a Western country is needed to determine whether there is ethnic variability in this anatomic factor. Third, we did not distend the vessels by injecting dye. Unlike fresh cadavers, the tissues of formol-fixed cadavers are so hard that the arteries cannot be distended by even high-pressured injection of dye. Since this was confirmed in a previous study [9], we did not use dye. Consequently, the ASA and ARM were smaller than previously reported diameters. However, the main focus of this study was not to measure the ASA and ARM diameters but to investigate degrees of narrowing of the ASA. The investigation was free from bias by expressing the ASA diameter above the junction as a percentage of its diameter below the junction. In conclusion, the degree of narrowing of the ASA varies considerably. Furthermore, distal spinal blood the narrow point of the ASA becomes narrower. These anatomical findings of spinal blood supply should be useful for elucidating the mechanisms of spinal cord injury after repair of extensive thoracoabdominal aneurysms. References 1. Cambria RP, Clouse WD, Davison JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval. Ann Surg 2002;236: Coselli JS, LeMaire SA, Conklin LD, Kok soy C, Schmittling ZC. Morbidity and mortality after extent II thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 2002;73: Estrera AL, Miller CC III, Huynh TTT, Porat E, Safi HJ. Neurologic outcome after thoracic and thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 2001;72: Griepp RB, Ergin MA, Galla JD, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg 1996;112: Acher CW, Wynn MM, Hoch JR, Kranner PW. Cardiac function is a risk factor for paralysis in thoracoabdominal aortic replacement. J Vasc Surg 1998;27: Safi HJ, Miller CC III, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg 1998;27: Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg 1993;17: Dommisse GF. The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br 1974; 56: Koshino T, Murakami G, Morishita K, Mawatari T, Abe T. Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 1999;117: Sidney LS, Edward DS, Ralph SQ. Digital photography for the light microscope: results with a gated, video-rate CCD camera and NIH image software. Bio Techniques 1995;19: Svensson LG, Klepp P, Hinder RA. Spinal cord anatomy of the baboon: comparison with man and implications on spinal cord blood flow during thoracic aortic cross-clamping. S Afr J Surg 1986;24: Biglioli P, Spirito R, Roberto M, et al. The anterior spinal artery: the main arterial supply of the human spinal cord a preliminary anatomic study. J Thorac Cardiovasc Surg 2000;119: Svensson L. Commentary to the paper entitled Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg 1999;117:903 5.

5 Ann Thorac Surg MORISHITA ET AL 2003;76: BLOOD SUPPLY TO THE SPINAL CORD Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E. Spinal cord arteriography: a safe adjunct before descending thoracic or thoracoabdominal aortic aneurysmectomy. J Vasc Surg 2002;35: Jacobs MJ, de Mol BA, Elenbaas T, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg 2002;35: Yamada N, Okita Y, Minatoya K, et al. Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoracoabdominal aortic aneurysms. Eur J Cardiothorac Surg 2000;18: Kawaharada N, Morishita K, Fukada J, et al. Thoracoabdominal or descending aortic aneurysm repair after preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography. Eur J Cardiothorac Surg 2002;21: Blackwood W. Discussion on vascular disease of the spinal cord. Proc Roy Soc Med 1958;51: Bailey AA. Changes with age in the spinal cord. Arch Neurol Psychiat 1953;70: The Thoracic Surgery Foundation for Research and Education The Thoracic Surgery Foundation for Research and Education (TSFRE) extends best wishes to all its colleagues and friends for a joyous and peaceful holiday season and a prosperous and happy New Year. The generosity and commitment of those who have given to TSFRE have made possible our support of exciting and innovative research projects. The end of one year and start of another is a time of reflection, introspection, and consideration of the legacy we shall be leaving behind. TSFRE would ask, to acknowledge what cardiothoracic surgery has done for you, that you make an annual donation to the Foundation. Tax-deductible gifts and pledges that sum at $10,000 donated over a period of years will make you a Life Member of TSFRE. Annual gifts can include securities that have appreciated in value, thereby providing additional tax relief. You might also consider the making of a planned gift to TSFRE. The most common planned gift is a charitable bequest to TSFRE through your will after you have properly ensured that your family and other loved ones will be financially secure. Under certain circumstances, a donation from your estate might give TSFRE $10,000 while representing only about $2,500 that would go to your family should the payment of estate, income and capital gains taxes be required. Real Estate as a planned gift can be a very practical mechanism, even if the real estate property has decreased in value. A donor may even give real estate and yet retain the use of the property. Sometimes a real estate gift can provide an ongoing source of income to the donor or to another designated individual. You might also consider establishing a charitable trust in the name of your family thereby providing funds to TSFRE with a provision that the funds from which the gift derives would eventually return to you or your family or other loved ones. This announcement refers to some of the many options available to you and we urge you to consult with your financial advisor once you have made the basic decision that you would like to support research and education in cardiothoracic surgery. TSFRE would also be happy to discuss these and other planned gift options with you. Please feel free to contact Joe Webber, the Director of Development at (978) or him at jwebber@prri.com. Again, we thank you for your support to TSFRE. We also ask that you acknowledge what cardiothoracic surgery has done for you by supporting the research and education of our successors so that they will continue to serve patients as well as possible by The Society of Thoracic Surgeons Ann Thorac Surg 2003;76: /03/$30.00 Published by Elsevier Inc

Magnetic Resonance Angiographic Localization of the Artery of Adamkiewicz for Spinal Cord Blood Supply

Magnetic Resonance Angiographic Localization of the Artery of Adamkiewicz for Spinal Cord Blood Supply CARDIOVASCULAR Magnetic Resonance Angiographic Localization of the Artery of Adamkiewicz for Spinal Cord Blood Supply Nobuyoshi Kawaharada, MD, PhD, Kiyofumi Morishita, MD, PhD, Hideki Hyodoh, MD, PhD,

More information

Evolving Strategy and Results of Spinal Cord Protection in Type I and II Thoracoabdominal Aortic Aneurysm Repair

Evolving Strategy and Results of Spinal Cord Protection in Type I and II Thoracoabdominal Aortic Aneurysm Repair Original Article Evolving Strategy and Results of Spinal Cord Protection in Type I and II Thoracoabdominal Aortic Aneurysm Repair Norihiko Shiiya, MD, Takashi Kunihara, MD, Kenji Matsuzaki, MD, and Keishu

More information

The Adamkiewicz artery (arteria radicularis magna)

The Adamkiewicz artery (arteria radicularis magna) DOES THE ADAMKIEWICZ ARTERY ORIGINATE FROM THE LARGER SEGMENTAL ARTERIES? Tokuo Koshino, MD a Gen Murakami, MD b Kiyofumi Morishita, MD a Tohru Mawatari, MD a Tomio Abe, MD a Objective: The Adamkiewicz

More information

Open surgical repair of thoracoabdominal aneurysms - the Massachusetts General Hospital experience

Open surgical repair of thoracoabdominal aneurysms - the Massachusetts General Hospital experience Research Highlight Open surgical repair of thoracoabdominal aneurysms - the Massachusetts General Hospital experience Virendra I. Patel, Robert T. Lancaster, Mark F. Conrad, Richard P. Cambria Division

More information

Anterior Spinal Artery and Artery of Adamkiewicz Detected by Using Multi-Detector Row CT

Anterior Spinal Artery and Artery of Adamkiewicz Detected by Using Multi-Detector Row CT AJNR Am J Neuroradiol 24:13 17, January 2003 Anterior Spinal Artery and Artery of Adamkiewicz Detected by Using Multi-Detector Row CT Kohsuke Kudo, Satoshi Terae, Takeshi Asano, Masaki Oka, Kenshi Kaneko,

More information

Selective Visceral Perfusion during Thoracoabdominal Aortic Aneurysm Repair

Selective Visceral Perfusion during Thoracoabdominal Aortic Aneurysm Repair Original Article Selective Visceral Perfusion during Thoracoabdominal Aortic Aneurysm Repair Yukio Kuniyoshi, MD, PhD, Kageharu Koja, MD, PhD, Kazufumi Miyagi, MD, Tooru Uezu, MD, Satoshi Yamashiro, MD,

More information

Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations

Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations Lars G. Svensson, MD, Phi), Kenneth R. Hess, MS, Joseph S. Coselli,

More information

Spinal cord ischemia may be reduced via a novel technique of intercostal artery revascularization during open thoracoabdominal aneurysm repair

Spinal cord ischemia may be reduced via a novel technique of intercostal artery revascularization during open thoracoabdominal aneurysm repair From the Society for Clinical Vascular Surgery Spinal cord ischemia may be reduced via a novel technique of intercostal artery revascularization during open thoracoabdominal aneurysm repair Edward Y. Woo,

More information

Accepted Manuscript. Perioperative renal function and thoracoabdominal aneurysm repair: Where do we go from here? Leonard N. Girardi, M.D.

Accepted Manuscript. Perioperative renal function and thoracoabdominal aneurysm repair: Where do we go from here? Leonard N. Girardi, M.D. Accepted Manuscript Perioperative renal function and thoracoabdominal aneurysm repair: Where do we go from here? Leonard N. Girardi, M.D. PII: S0022-5223(18)31804-X DOI: 10.1016/j.jtcvs.2018.06.057 Reference:

More information

Neuromonitor-guided repair of thoracoabdominal aortic aneurysms

Neuromonitor-guided repair of thoracoabdominal aortic aneurysms Neuromonitor-guided repair of thoracoabdominal aortic aneurysms Anthony L. Estrera, MD, a Roy Sheinbaum, MD, a Charles C. Miller III, PhD, b Ryan Harrison, BA, a and Hazim J. Safi, MD a Objective: Monitoring

More information

Influence of Perioperative Hemodynamics on Spinal Cord Ischemia in Thoracoabdominal Aortic Repair

Influence of Perioperative Hemodynamics on Spinal Cord Ischemia in Thoracoabdominal Aortic Repair Influence of Perioperative Hemodynamics on Spinal Cord Ischemia in Thoracoabdominal Aortic Repair Yujiro Kawanishi, MD, Kenji Okada, MD, Masamichi Matsumori, MD, Hiroshi Tanaka, MD, Teruo Yamashita, MD,

More information

Postoperative risk factors for delayed neurologic deficit after thoracic and thoracoabdominal aortic aneurysm repair: A case-control study

Postoperative risk factors for delayed neurologic deficit after thoracic and thoracoabdominal aortic aneurysm repair: A case-control study Postoperative risk factors for delayed neurologic deficit after thoracic and thoracoabdominal aortic aneurysm repair: A case-control study Ali Azizzadeh, MD, Tam T. T. Huynh, MD, Charles C. Miller III,

More information

Paraplegia and paraplesis secondary to spinal cord ischemia

Paraplegia and paraplesis secondary to spinal cord ischemia ORIGINAL RESEARCH K. Uotani N. Yamada A.K. Kono T. Taniguchi K. Sugimoto M. Fujii A. Kitagawa Y. Okita H. Naito K. Sugimura Preoperative Visualization of the Artery of Adamkiewicz by Intra-Arterial CT

More information

Assessment of Spinal Cord Circulation and Function in Endovascular Treatment of Thoracic Aortic Aneurysms

Assessment of Spinal Cord Circulation and Function in Endovascular Treatment of Thoracic Aortic Aneurysms Assessment of Spinal Cord Circulation and Function in Endovascular Treatment of Thoracic Aortic Aneurysms Geert Willem H. Schurink, MD, PhD, Robbert J. Nijenhuis, MD, Walter H. Backes, PhD, Werner Mess,

More information

NIH Public Access Author Manuscript J Vasc Surg. Author manuscript; available in PMC 2011 January 1.

NIH Public Access Author Manuscript J Vasc Surg. Author manuscript; available in PMC 2011 January 1. NIH Public Access Author Manuscript Published in final edited form as: J Vasc Surg. 2010 January ; 51(1): 38. doi:10.1016/j.jvs.2009.08.044. Postoperative Renal Function Preservation with Non-Ischemic

More information

Mortality and Paraplegia After Thoracoabdominal Aortic Aneurysm Repair: A Risk Factor Analysis

Mortality and Paraplegia After Thoracoabdominal Aortic Aneurysm Repair: A Risk Factor Analysis ORIGINAL ARTICLES: CARDIOVASCULAR Mortality and Paraplegia After Thoracoabdominal Aortic Aneurysm Repair: A Risk Factor Analysis Joseph S. Coselli, MD, Scott A. LeMaire, MD, Charles C. Miller III, PhD,

More information

ORIGINAL ARTICLE. Systemic Temperature and Paralysis After Thoracoabdominal and Descending Aortic Operations

ORIGINAL ARTICLE. Systemic Temperature and Paralysis After Thoracoabdominal and Descending Aortic Operations ORIGINAL ARTICLE Systemic Temperature and Paralysis After Thoracoabdominal and Descending Aortic Operations Lars G. Svensson, MD, PhD; Lev Khitin, MD; Edward M. Nadolny, CCP; Wendy A. Kimmel, CCP Hypothesis:

More information

Preoperative and operative predictors of delayed neurologic deficit following repair of thoracoabdominal aortic aneurysm

Preoperative and operative predictors of delayed neurologic deficit following repair of thoracoabdominal aortic aneurysm Preoperative and operative predictors of delayed neurologic deficit following repair of thoracoabdominal aortic aneurysm Anthony L. Estrera, MD a Charles C. Miller III, PhD a Tam T. T. Huynh, MD a Ali

More information

Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: Hospital and surgeon volume-related outcomes

Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: Hospital and surgeon volume-related outcomes Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: Hospital and surgeon volume-related outcomes John A. Cowan, Jr, MD, a Justin B. Dimick, MD, a Peter K. Henke, MD, a

More information

Elective Surgery for Thoracic Aortic Aneurysms: Late Functional Status and Quality of Life

Elective Surgery for Thoracic Aortic Aneurysms: Late Functional Status and Quality of Life Elective Surgery for Thoracic Aortic Aneurysms: Late Functional Status and Quality of Life Andreas Zierer, MD, Spencer J. Melby, MD, Jordon G. Lubahn, BS, Gregorio A. Sicard, MD, Ralph J. Damiano, Jr,

More information

Paraplegia in endovascular repair of TAA and in TEVAR: Incidence, prevention and therapy. Johannes Lammer Medical University Vienna, Austria

Paraplegia in endovascular repair of TAA and in TEVAR: Incidence, prevention and therapy. Johannes Lammer Medical University Vienna, Austria Paraplegia in endovascular repair of TAA and in TEVAR: Incidence, prevention and therapy Johannes Lammer Medical University Vienna, Austria Conflict of interests: none 68y, male, PAU in coral reef aorta,

More information

Replacement of the thoracoabdominal aorta for extensive

Replacement of the thoracoabdominal aorta for extensive Anatomy of Spinal Cord Blood Supply in the Pig Justus T. Strauch, MD, Alexander Lauten, MD, Ning Zhang, MD, Thorsten Wahlers, MD, and Randall B. Griepp, MD Department of Cardiothoracic Surgery, The Mount

More information

Postoperative renal function preservation with nonischemic femoral arterial cannulation for thoracoabdominal aortic repair

Postoperative renal function preservation with nonischemic femoral arterial cannulation for thoracoabdominal aortic repair From the Society for Vascular Surgery Postoperative renal function preservation with nonischemic femoral arterial cannulation for thoracoabdominal aortic repair Charles C. Miller III, PhD, a,b Joshua C.

More information

T ment of the descending thoracic or thoracoabdominal

T ment of the descending thoracic or thoracoabdominal ORIGINAL ARTICLES Preliminary Report of Localization of Spinal Cord Blood Supply by Hydrogen During Aortic Operations Lars G. Svensson, MB, PhD, Vasishta Patel, MD, Joseph S. Coselli, MD, and E. Stanley

More information

Descending Thoracic Aortic Aneurysm: Surgical Approach and Treatment Using the Adjuncts Cerebrospinal Fluid Drainage and Distal Aortic Perfusion

Descending Thoracic Aortic Aneurysm: Surgical Approach and Treatment Using the Adjuncts Cerebrospinal Fluid Drainage and Distal Aortic Perfusion Descending Thoracic Aortic Aneurysm: Surgical Approach and Treatment Using the Adjuncts Cerebrospinal Fluid Drainage and Distal Aortic Perfusion Anthony L. Estrera, MD, Forrest S. Rubenstein, MD, Charles

More information

Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair

Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair Hazim J. Safi, MD, Charles C. Miller III, PhD, Christian Carr, MS, Dimitrios C. Iliopoulos, MD, Douglas A. Dorsay,

More information

Paraplegia after thoracoabdominal aortic surgery: not just assisted circulation, hypothermic arrest, clamp and sew, or TEVAR

Paraplegia after thoracoabdominal aortic surgery: not just assisted circulation, hypothermic arrest, clamp and sew, or TEVAR Perspective Paraplegia after thoracoabdominal aortic surgery: not just assisted circulation, hypothermic arrest, clamp and sew, or TEVAR Charles Acher, Martha Wynn Departments of Surgery and Anesthesiology,

More information

Protecting the brain and spinal cord in aortic arch surgery

Protecting the brain and spinal cord in aortic arch surgery Keynote Lecture Series Protecting the brain and spinal cord in aortic arch surgery Lars G. Svensson Heart & Vascular Institute, Cleveland Clinic, Cleveland, OH, USA Correspondence to: Lars G. Svensson,

More information

Table I. Associated diseases

Table I. Associated diseases Thoracic and thoracoabdominal aortic aneurysm repair using cardiopulmonary bypass, profound hypothermia, and circulatory arrest via left side of the chest incision Hazim J. Safi, MD, Charles C. Miller

More information

Thoracic and Thoracoabdominal Aneurysm Repair: Is Reimplantation of Spinal Cord Arteries a Waste of Time?

Thoracic and Thoracoabdominal Aneurysm Repair: Is Reimplantation of Spinal Cord Arteries a Waste of Time? CARDIOVASCULAR Thoracic and Thoracoabdominal Aneurysm Repair: Is Reimplantation of Spinal Cord Arteries a Waste of Time? Christian D. Etz, MD, James C. Halstead, MA (Cantab), MRCS, David Spielvogel, MD,

More information

Neurological Complications of TEVAR. Frank J Criado, MD. Union Memorial-MedStar Health Baltimore, MD USA

Neurological Complications of TEVAR. Frank J Criado, MD. Union Memorial-MedStar Health Baltimore, MD USA ISES Online Neurological Complications of Frank J Criado, MD TEVAR Union Memorial-MedStar Health Baltimore, MD USA frank.criado@medstar.net Paraplegia Incidence is 0-4% after surgical Rx of TAAs confined

More information

Spinal cord ischemia in thoracoabdominal aneurysm surgery: monitoring and conditioning the spinal cord de Haan, P.

Spinal cord ischemia in thoracoabdominal aneurysm surgery: monitoring and conditioning the spinal cord de Haan, P. UvA-DARE (Digital Academic Repository) Spinal cord ischemia in thoracoabdominal aneurysm surgery: monitoring and conditioning the spinal cord de Haan, P. Link to publication Citation for published version

More information

Aortic Arch/ Thoracoabdominal Aortic Replacement

Aortic Arch/ Thoracoabdominal Aortic Replacement Aortic Arch/ Thoracoabdominal Aortic Replacement Joseph S. Coselli, M.D. Vice Chair, Department of Surgery Professor, Chief, and Cullen Foundation Endowed Chair Division of Cardiothoracic Surgery Baylor

More information

Thoracoabdominal aortic aneurysms by definition traverse

Thoracoabdominal aortic aneurysms by definition traverse Thoracoabdominal Aortic Aneurysm Repair: Open Technique Joseph Huh, MD, Scott A. LeMaire, MD, Scott A. Weldon, MA, CMI, and Joseph S. Coselli, MD Thoracoabdominal aortic aneurysms by definition traverse

More information

Combination of Myogenic and Neurogenic Motor Evoked Potential Monitoring During Thoracoabdominal Aortic Surgery

Combination of Myogenic and Neurogenic Motor Evoked Potential Monitoring During Thoracoabdominal Aortic Surgery Hiroshima J. Med. Sci. Vol. 67, No. 4, 117~121, December, 2018 HIMJ 67 18 117 Combination of Myogenic and Neurogenic Motor Evoked Potential Monitoring During Thoracoabdominal Aortic Surgery Shinya TAKAHASHI

More information

How to manage the left subclavian and left vertebral artery during TEVAR

How to manage the left subclavian and left vertebral artery during TEVAR How to manage the left subclavian and left vertebral artery during TEVAR Jürg Schmidli Chief of Vascular Surgery Inselspital Hamburg 2017 Dept Cardiovascular Surgery, Bern, Switzerland Disclosure No Disclosures

More information

Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair

Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair Kyle D. Weaver, MD, a Diana B. Wiseman, MD, a Mark Farber, MD, b Matthew G. Ewend, MD, a William Marston, MD, b and Blair

More information

Spinal cord injury has been a devastating complication

Spinal cord injury has been a devastating complication Selective Perfusion of Segmental Arteries in Patients Undergoing Thoracoabdominal Aortic Surgery Toshihiko Ueda, MD, Hideyuki Shimizu, MD, Atsuo Mori, MD, Ichiro Kashima, MD, Katsumi Moro, MD, and Shiaki

More information

Paraplegia prevention branches: A new adjunct for preventing or treating spinal cord injury after endovascular repair of thoracoabdominal aneurysms

Paraplegia prevention branches: A new adjunct for preventing or treating spinal cord injury after endovascular repair of thoracoabdominal aneurysms Paraplegia prevention branches: A new adjunct for preventing or treating spinal cord injury after endovascular repair of thoracoabdominal aneurysms Christos Lioupis, BSc, MSc, EBSQ-Vasc, a Marc Michel

More information

Cardiopulmonary Bypass for Thoracic Aortic Aneurysm: A Report on 488 Cases

Cardiopulmonary Bypass for Thoracic Aortic Aneurysm: A Report on 488 Cases The Journal of The American Society of Extra-Corporeal Technology Cardiopulmonary Bypass for Thoracic Aortic Aneurysm: A Report on 488 Cases Yulong Guan, MD; Jing Yang, MD; Caihong Wan, MD; Meiling He;

More information

What is the benefit. of MEP s in BEVAR for TAAA. in preventing paraplegia?

What is the benefit. of MEP s in BEVAR for TAAA. in preventing paraplegia? What is the benefit of MEP s in BEVAR for TAAA in preventing paraplegia? P M Kasprzak Department of Vascular Surgery, Endovascular Surgery University Hospital Regensburg, Germany Disclosures Dr. Kasprzak

More information

SPINAL CORD ISCHEMIA AFTER THORACIC ANEURYSM REPAIR: RISK STRATIFICATION & PREVENTION DISCLOSURES. INDIVIDUAL None

SPINAL CORD ISCHEMIA AFTER THORACIC ANEURYSM REPAIR: RISK STRATIFICATION & PREVENTION DISCLOSURES. INDIVIDUAL None DISCLOSURES AFTER THORACIC ANEURYSM REPAIR: INDIVIDUAL None RISK STRATIFICATION & PREVENTION INSTITUTIONAL Cook, Inc W. L. Gore, Inc Conrad, J Vasc Surg, 2008 1 Intraoperative Adjuncts Oversew intercostals

More information

Thoracoabdominal Aorta: Advances and Novel Therapies

Thoracoabdominal Aorta: Advances and Novel Therapies Thoracoabdominal Aorta: Advances and Novel Therapies Robert Meisner, MD FACS Sidney Kimmel Medical Center Assistant Professor of Surgery Vascular / Endovascular Surgeon at Lankenau Medical Center November

More information

Extent of Aortic Coverage and Incidence of Spinal Cord Ischemia After Thoracic Endovascular Aneurysm Repair

Extent of Aortic Coverage and Incidence of Spinal Cord Ischemia After Thoracic Endovascular Aneurysm Repair Extent of Aortic Coverage and Incidence of Spinal Cord Ischemia After Thoracic Endovascular Aneurysm Repair Robert J. Feezor, MD, Tomas D. Martin, MD, Philip J. Hess Jr, MD, Michael J. Daniels, ScD, Thomas

More information

Spinal Cord Blood Supply and Its Surgical Implications

Spinal Cord Blood Supply and Its Surgical Implications Review Article Spinal Cord Blood Supply and Its Surgical Implications Matthew W. Colman, MD Francis J. Hornicek, MD, PhD Joseph H. Schwab, MD Abstract The blood supply to the spine is based on a predictable

More information

Intraoperative spinal cord monitoring (IOM) during surgery

Intraoperative spinal cord monitoring (IOM) during surgery ORIGINAL ARTICLES Electrophysiologic Monitoring During Surgery to Repair the Thoraco-Abdominal Aorta Tod B. Sloan and Leslie C. Jameson Summary: Prevention of paraplegia during the repair of thoracoabdominal

More information

Cold blood spinoplegia under motor-evoked potential monitoring during thoracic aortic surgery

Cold blood spinoplegia under motor-evoked potential monitoring during thoracic aortic surgery PERIOPERATIVE MANAGEMENT Cold blood spinoplegia under motor-evoked potential monitoring during thoracic aortic surgery Shinya Takahashi, MD, Kazumasa Orihashi, MD, Katsuhiko Imai, MD, Taketomo Mizukami,

More information

ACD. The Journal of Thoracic and Cardiovascular Surgery c Volume 139, Number 3 655

ACD. The Journal of Thoracic and Cardiovascular Surgery c Volume 139, Number 3 655 A novel approach to prevent spinal cord ischemia: Inoue stent graft with a side branch of small caliber for the reconstruction of the artery of Adamkiewicz Takeshi Shimamoto, MD, a Akira Marui, MD, PhD,

More information

Anterior Spinal Artexy Syndrome with Chronic Traumatic Thoracic Aortic Aneurysm

Anterior Spinal Artexy Syndrome with Chronic Traumatic Thoracic Aortic Aneurysm Anterior Spinal Artexy Syndrome with Chronic Traumatic Thoracic Aortic Aneurysm Vincent R. Conti, M.D., John Calverley, M.D., William L. Safley, M.D., Melinda Estes, M.D., and Edward H. Williams, M.D.

More information

Measurement of spinal cord blood flow by an inhalation method and intraarterial injection of hydrogen gas

Measurement of spinal cord blood flow by an inhalation method and intraarterial injection of hydrogen gas Measurement of spinal cord blood flow by an inhalation method and intraarterial injection of hydrogen gas Itoshi Harakawa, MD, Takashi Yano, MD, Tsunehisa Sakurai, MD, Naomichi Nishikimi, MD, and Yuji

More information

Angiographic localization of spinal cord blood supply and its relationship to postoperative paraplegia

Angiographic localization of spinal cord blood supply and its relationship to postoperative paraplegia Angiographic localization of spinal cord blood supply and its relationship to postoperative paraplegia G. Melville Williams, MD, Bruce A. Perler, MD, James F. Burdick, MD, Floyd A. Osterman, Jr, MD, Sally

More information

Lumbar CSF Drains for Thoracic Aortic Surgery

Lumbar CSF Drains for Thoracic Aortic Surgery Lumbar CSF Drains for Thoracic Aortic Surgery John C. Klick, MD CASE CAG Why do them? Open descending thoracic aortic aneurysm repair (still the gold standard) has an incidence of postoperative paraplegia

More information

Daniela Branzan MD, Department of Vascular Surgery and Department of Interventional Angiology University Hospital Leipzig

Daniela Branzan MD, Department of Vascular Surgery and Department of Interventional Angiology University Hospital Leipzig Ischemic Preconditioning with Minimally Invasive Segmental Artery Coil Embolization (MISACE) prior to Endovascular TAAA Repair: Clinical Experience in 50+ Patients Daniela Branzan MD, Department of Vascular

More information

Long-term results of the frozen elephant trunk technique for the extensive arteriosclerotic aneurysm

Long-term results of the frozen elephant trunk technique for the extensive arteriosclerotic aneurysm Long-term results of the frozen elephant trunk technique for the extensive arteriosclerotic aneurysm Naomichi Uchida, MD, a Hidenori Shibamura, MD, a Akira Katayama, MD, a Miwa Sutoh, MD, a Masatsugu Kuraoka,

More information

A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta

A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta E. Stanley Crawford, MD, Lars G. Svensson, M~B, Phi), Kenneth

More information

debris + 3 debris debris debris Tel: ,3

debris + 3 debris debris debris Tel: ,3 13 467 471 2004 debris + 3 13.2 15.47.0 6.5 7.7 0 3 25.012.5 7.0 0 13 467 471 2004 Tel: 075-251-5752 602-8566 463-1 2004 3 7 2004 5 18 30 1 2,3 4 2000 7 debris debris debris 7 13 4 Table 1 Patients profiles

More information

Pulmonary Complications After Descending Thoracic and Thoracoabdominal Aortic Aneurysm Repair: Predictors, Prevention, and Treatment

Pulmonary Complications After Descending Thoracic and Thoracoabdominal Aortic Aneurysm Repair: Predictors, Prevention, and Treatment Complications After Descending Thoracic and Thoracoabdominal Aortic Aneurysm Repair: Predictors, Prevention, and Treatment Christian D. Etz, MD, Gabriele Di Luozzo, MD, Ricardo Bello, MD, Maximilian Luehr,

More information

Spinal cord protection segmental artery embolization. Christian D. Etz, MD, PhD Heisenberg Professor for Aortic Surgery

Spinal cord protection segmental artery embolization. Christian D. Etz, MD, PhD Heisenberg Professor for Aortic Surgery Spinal cord protection segmental artery embolization Christian D. Etz, MD, PhD Heisenberg Professor for Aortic Surgery Ischemic Spinal Cord Injury No definite prevention strategy essential for safe open

More information

In the frequent catastrophic cascade of events immediately

In the frequent catastrophic cascade of events immediately Operation for Acute and Chronic Aortic Dissection: Recent Outcome With Regard to Neurologic Deficit and Early Death Hazim J. Safi, MD, Charles C. Miller III, PhD, Michael J. Reardon, MD, Dimitrios C. Iliopoulos,

More information

The impact of diaphragm management on prolonged ventilator support after thoracoabdominal aortic repair

The impact of diaphragm management on prolonged ventilator support after thoracoabdominal aortic repair The impact of diaphragm management on prolonged ventilator support after thoracoabdominal aortic repair Jennifer Engle, MD, Hazim J. Safi, MD, Charles C. Miller III, PhD, Matthew P. Campbell, MD, Stuart

More information

Shunting of the Coeliac and Superior Mesenteric Arteries during Thoracoabdominal Aneurysm Repair

Shunting of the Coeliac and Superior Mesenteric Arteries during Thoracoabdominal Aneurysm Repair Eur J Vasc Endovasc Surg 26, 602 606 (2003) doi: 10.1016/S1078-5884(03)00355-1, available online at http://www.sciencedirect.com on Shunting of the Coeliac and Superior Mesenteric Arteries during Thoracoabdominal

More information

Ascending Thoracic Aorta: Postsurgical CT Evaluation

Ascending Thoracic Aorta: Postsurgical CT Evaluation Ascending Thoracic Aorta: Postsurgical CT Evaluation Santiago Martinez Jimenez, MD GOALS Ascending Thoracic Aorta: Postsurgical CT Evaluation Santiago Martínez MD smartinez-jimenez@saint-lukes.org Saint

More information

Spinal cord complications after thoracic aortic surgery: Long-term survival and functional status varies with deficit severity

Spinal cord complications after thoracic aortic surgery: Long-term survival and functional status varies with deficit severity From the Society for Vascular Surgery Spinal cord complications after thoracic aortic surgery: Long-term survival and functional status varies with deficit severity Mark F. Conrad, MD, Jason Y. Ye, BS,

More information

TEVAR following prior abdominal aortic aneurysm surgery: Increased risk of neurological deficit

TEVAR following prior abdominal aortic aneurysm surgery: Increased risk of neurological deficit From the Peripheral Vascular Surgery Society TEVAR following prior abdominal aortic aneurysm surgery: Increased risk of neurological deficit Felix J. V. Schlösser, MD, a Hence J. M. Verhagen, MD, PhD,

More information

Open reconstruction of thoracoabdominal aortic aneurysms

Open reconstruction of thoracoabdominal aortic aneurysms Art of Operative Techniques Open reconstruction of thoracoabdominal aortic aneurysms Yutaka Okita, Atsushi Omura, Katsuaki Yamanaka, Takeshi Inoue, Hiroya Kano, Rei Tanioka, Hitoshi Minami, Toshihito Sakamoto,

More information

Hypothermic cardiopulmonary bypass with intervals

Hypothermic cardiopulmonary bypass with intervals Safety and Efficacy of Hypothermic Cardiopulmonary Bypass and Circulatory Arrest for Operations on the Descending Thoracic and Thoracoabdominal Aorta Nicholas T. Kouchoukos, MD, Paolo Masetti, MD, Chris

More information

Gelweave TM. Thoracic and Thoracoabdominal Graft Geometries. Ante-Flo TM 4 Branch Plexus. Siena Valsalva TM Trifurcate Arch Graft. Coselli.

Gelweave TM. Thoracic and Thoracoabdominal Graft Geometries. Ante-Flo TM 4 Branch Plexus. Siena Valsalva TM Trifurcate Arch Graft. Coselli. Gelweave TM Thoracic and Thoracoabdominal Graft Geometries Ante-Flo TM 4 Branch Plexus Siena Valsalva TM Trifurcate Arch Graft Coselli Lupiae Product availability subject to local regulatory approval.

More information

Origins of the Segmental Arteries in the Aorta: An Anatomic Study for Selective Catheterization with Spinal Arteriography

Origins of the Segmental Arteries in the Aorta: An Anatomic Study for Selective Catheterization with Spinal Arteriography AJNR Am J Neuroradiol 26:922 928, April 2005 Origins of the Segmental Arteries in the Aorta: An Anatomic Study for Selective Catheterization with Spinal Arteriography Satoru Shimizu, Ryusui Tanaka, Shinichi

More information

Descending aorta replacement through median sternotomy

Descending aorta replacement through median sternotomy Descending aorta replacement through median sternotomy Mitrev Z, Anguseva T, Belostotckij V, Hristov N. Special hospital for surgery Filip Vtori Skopje - Makedonija June, 2010 Cardiosurgery - Skopje 1

More information

Hybrid Repair of a Complex Thoracoabdominal Aortic Aneurysm

Hybrid Repair of a Complex Thoracoabdominal Aortic Aneurysm Hybrid Repair of a Complex Thoracoabdominal Aortic Aneurysm Virendra I. Patel MD MPH Assistant Professor of Surgery Massachusetts General Hospital Division of Vascular and Endovascular Surgery Disclosure

More information

Spinal cord ischemia after elective stent-graft repair of the thoracic aorta

Spinal cord ischemia after elective stent-graft repair of the thoracic aorta Spinal cord ischemia after elective stent-graft repair of the thoracic aorta Roberto Chiesa, MD, Germano Melissano, MD, Massimiliano M. Marrocco-Trischitta, MD, Efrem Civilini, MD, and Francesco Setacci,

More information

Early- and medium-term results after aortic arch replacement with frozen elephant trunk techniques a single center study

Early- and medium-term results after aortic arch replacement with frozen elephant trunk techniques a single center study Featured Article Early- and medium-term results after aortic arch replacement with frozen elephant trunk techniques a single center study Sergey Leontyev*, Martin Misfeld*, Piroze Daviewala, Michael A.

More information

Optimised management of type A aortic dissection with visceral malperfusion concept to reconsider

Optimised management of type A aortic dissection with visceral malperfusion concept to reconsider Optimised management of type A aortic dissection with visceral malperfusion concept to reconsider Matthias Thielmann, MD, PhD, FAHA Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center

More information

H. J. Safit, M. P. Campbell, C. C. Miller III, D. C. Iliopoulos, A. Khoynezhad, G. V. Letsou and P. J. Asimacopoulos

H. J. Safit, M. P. Campbell, C. C. Miller III, D. C. Iliopoulos, A. Khoynezhad, G. V. Letsou and P. J. Asimacopoulos Eur J Vasc Endovasc Surg 14, 118-124 (1997) Cerebral Spinal Fluid Drainage and Distal Aortic Perfusion Decrease the Incidence of Neurological Deficit: The Results of 343 Descending and Thoracoabdominal

More information

Description. Section: Surgery Effective Date: April 15, Subsection: Surgery Original Policy Date: December 6, 2012 Subject:

Description. Section: Surgery Effective Date: April 15, Subsection: Surgery Original Policy Date: December 6, 2012 Subject: Last Review Status/Date: March 2015 Page: 1 of 6 Description Wireless sensors implanted in an aortic aneurysm sac after endovascular repair are being investigated to measure post procedural pressure. It

More information

Operation on the descending thoracic and thoracoabdominai

Operation on the descending thoracic and thoracoabdominai Pathogenesis of Spinal Cord Injury During Simulated Aneurysm Repair in a Chronic Animal Model Otto E. Dapunt, MD, Peter S. Midulla, MD, Ali M. Sadeghi, MD, PhD, Craig K. Mezrow, MS, David Wolfe, MD, Alejandro

More information

Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: The role of intrathecal papaverine

Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: The role of intrathecal papaverine Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: The role of intrathecal papaverine Brian Lima, MD, a,b Edward R. Nowicki, MD, a Eugene

More information

Percutaneous Approaches to Aortic Disease in 2018

Percutaneous Approaches to Aortic Disease in 2018 Percutaneous Approaches to Aortic Disease in 2018 Wendy Tsang, MD, SM Assistant Professor, University of Toronto Toronto General Hospital, University Health Network Case 78 year old F Lower CP and upper

More information

Spinal cord damage and operations for coarctation of

Spinal cord damage and operations for coarctation of Thorax 1987;42:1 1-18 Spinal cord damage and operations for coarctation of the aorta: aetiology, practice, and prospects ABSTRACT An inquiry was made into the clinical practice and paraplegia rate associated

More information

1000mg. 1 g/kg/hr g/kg/hr , 2003 X CT. 148 / 92mmHg 66 / SEP CSFP SEP. Tel:

1000mg. 1 g/kg/hr g/kg/hr , 2003 X CT. 148 / 92mmHg 66 / SEP CSFP SEP. Tel: 12 29 33 2003 2 1 56 4 10 9 1000mg 1 g/kg/hr 3 8 2 60 12 11 1 g/kg/hr 24 24 2 MRI 1 2 MRI 2 12 29 33, 2003 1 2 2 1 56 53 Tel: 0798-45-6852 663-8501 1-1 2002 11 5 2002 12 25 3 X CT 148 / 92mmHg 66 / 2000

More information

Late False Lumen Expansion Predicted by Preoperative Blood Flow Simulation in a Patient with Chronic Type B Aortic Dissection

Late False Lumen Expansion Predicted by Preoperative Blood Flow Simulation in a Patient with Chronic Type B Aortic Dissection Accepted Manuscript Late False Lumen Expansion Predicted by Preoperative Blood Flow Simulation in a Patient with Chronic Type B Aortic Dissection Chikara Ueki, MD, Hiroshi Tsuneyoshi, MD, PhD PII: S0022-5223(18)32652-7

More information

Complex Thoracic and Abdominal Aortic Repair Using Hybrid Techniques

Complex Thoracic and Abdominal Aortic Repair Using Hybrid Techniques Complex Thoracic and Abdominal Aortic Repair Using Hybrid Techniques Tariq Almerey MD, January Moore BA, Houssam Farres MD, Richard Agnew MD, W. Andrew Oldenburg MD, Albert Hakaim MD Department of Vascular

More information

THORACOABDOMINAL AORTIC ANEURYSMS HYBRID REPAIR

THORACOABDOMINAL AORTIC ANEURYSMS HYBRID REPAIR Update on Open and Endovascular Therapeutic Option for Aortic Repair CENTRE CARDIO-TORACIQUE DE MONACO Friday November 7 th, 2014 THORACOABDOMINAL AORTIC ANEURYSMS HYBRID REPAIR Roberto Chiesa Vascular

More information

Current strategies to prevent spinal cord ischemia in TAAA repair

Current strategies to prevent spinal cord ischemia in TAAA repair Current strategies to prevent spinal cord ischemia in TAAA repair Geert Willem Schurink Barend Mees Noud Peppelenbosch Michiel de Haan Michael Jacobs Maastricht University Medical Center, the Netherlands

More information

Thoracic aortic aneurysms are life threatening and

Thoracic aortic aneurysms are life threatening and Thoracic Aortic Aneurysms: Treatment With Endovascular Self-Expandable Stent Grafts Martin Grabenwöger, MD, Doris Hutschala, MD, Marek P. Ehrlich, MD, Fabiola Cartes-Zumelzu, MD, Siegfried Thurnher, MD,

More information

The SPIDER-Graft for Thoracoabdominal Aortic Repair a feasability study in pigs

The SPIDER-Graft for Thoracoabdominal Aortic Repair a feasability study in pigs The SPIDER-Graft for Thoracoabdominal Aortic Repair a feasability study in pigs Wipper S, Kölbel T, Manzoni D, Duprée A, Sandhu H, Nelis V, Debus ES University Heart Center Hamburg University Heart Center

More information

Despite recent advances in operative techniques, anesthetic

Despite recent advances in operative techniques, anesthetic Prevention and Detection of Spinal Cord Injury During Thoracic and Thoracoabdominal Aortic Repairs Torazo Wada, MD, Hideki Yao, MD, Takashi Miyamoto, MD, Sukemasa Mukai, MD, and Mitsuhiro Yamamura, MD

More information

Cerebrospinal fluid drains reduce risk of spinal cord injury for thoracic/thoracoabdominal aneurysm surgery: A review

Cerebrospinal fluid drains reduce risk of spinal cord injury for thoracic/thoracoabdominal aneurysm surgery: A review SNI: Spine OPEN ACCESS For entire Editorial Board visit : http://www.surgicalneurologyint.com Editor: Nancy E. Epstein, MD Winthrop Hospital, Mineola, NY, USA Review Article Cerebrospinal fluid drains

More information

Publicado : Interactive CardioVascular Thoracic Surgery 2011;12:650.

Publicado : Interactive CardioVascular Thoracic Surgery 2011;12:650. Pulmonary embolism due to biological glue after repair of type A aortic dissection Jose Rubio Alvarez,MD, PhD, 1 Juan Sierra Quiroga, MD, PhD, 1 Anxo Martinez de Alegria MD 2, Jose-Manuel Martinez Comendador,

More information

Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement

Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement Perspective on Cardiac Surgery Page 1 of 7 Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement Akiko Tanaka, Anthony L. Estrera Department of

More information

Total arch replacement with separated graft technique and selective antegrade cerebral perfusion

Total arch replacement with separated graft technique and selective antegrade cerebral perfusion Masters of Cardiothoracic Surgery Total arch replacement with separated graft technique and selective antegrade cerebral perfusion Teruhisa Kazui 1,2 1 Hamamatsu University School of Medicine, Hamamatsu,

More information

Toward Total Endovascular Therapy of the Aorta. Adam W. Beck, MD. Associate Professor of Surgery Division of Vascular Surgery and Endovascular Therapy

Toward Total Endovascular Therapy of the Aorta. Adam W. Beck, MD. Associate Professor of Surgery Division of Vascular Surgery and Endovascular Therapy Toward Total Endovascular Therapy of the Aorta Adam W. Beck, MD Associate Professor of Surgery Division of Vascular Surgery and Endovascular Therapy University of Alabama at Birmingham Disclosures Grant

More information

TAAA / Spinal Cord Protection

TAAA / Spinal Cord Protection TAAA / Spinal Cord Protection Hazim J. Safi, MD Professor and Chair Department of Cardiothoracic and Vascular Surgery McGovern Medical School The University of Texas Science Center at Houston Memorial

More information

Combined Endovascular and Surgical Repair of Thoracoabdominal Aortic Pathology: Hybrid TEVAR

Combined Endovascular and Surgical Repair of Thoracoabdominal Aortic Pathology: Hybrid TEVAR Combined Endovascular and Surgical Repair of Thoracoabdominal Aortic Pathology: Hybrid TEVAR William J. Quinones-Baldrich MD Professor of Surgery Director UCLA Aortic Center UCLA Medical Center Los Angeles,

More information

S100B proteins in the serum or the cerebrospinal fluid. Tau Protein in the Cerebrospinal Fluid is a Marker of Brain Injury After Aortic Surgery

S100B proteins in the serum or the cerebrospinal fluid. Tau Protein in the Cerebrospinal Fluid is a Marker of Brain Injury After Aortic Surgery Tau Protein in the Cerebrospinal Fluid is a Marker of Brain Injury After Aortic Surgery Norihiko Shiiya, MD, PhD, Takashi Kunihara, MD, PhD, Tsukasa Miyatake, MD, PhD, Kenji Matsuzaki, MD, and Keishu Yasuda,

More information

Kopp R, Puippe G, Rancic Z, Hofmann M, Pecoraro F, Pfammatter T, Lachat M.. University Hospital Zurich, Switzerland

Kopp R, Puippe G, Rancic Z, Hofmann M, Pecoraro F, Pfammatter T, Lachat M.. University Hospital Zurich, Switzerland Low risk of spinal cord ischemia after endovascular repair for suprarenal and thoracoabdominal aortic aneurysms using parallel stent graft implantation. Kopp R, Puippe G, Rancic Z, Hofmann M, Pecoraro

More information

Descending Thoracic Aortic Repair: Spinal Cord Protection Strategies Harendra Arora, M.D. University of North Carolina, Chapel Hill, NC

Descending Thoracic Aortic Repair: Spinal Cord Protection Strategies Harendra Arora, M.D. University of North Carolina, Chapel Hill, NC Session: L113 Session: L335 Descending Thoracic Aortic Repair: Spinal Cord Protection Strategies Harendra Arora, M.D. University of North Carolina, Chapel Hill, NC Disclosures: This presenter has no financial

More information

Incidence and management of intercostal patch aneurysms after repair of thoracoabdominal aortic aneurysms

Incidence and management of intercostal patch aneurysms after repair of thoracoabdominal aortic aneurysms Incidence and management of intercostal patch aneurysms after repair of thoracoabdominal aortic aneurysms Alexander Kulik, MD, MPH, Brent T. Allen, MD, and Nicholas T. Kouchoukos, MD Objective: The reimplantation

More information

Experimental Two-Stage Simulated Repair of Extensive Thoracoabdominal Aneurysms Reduces Paraplegia Risk

Experimental Two-Stage Simulated Repair of Extensive Thoracoabdominal Aneurysms Reduces Paraplegia Risk Experimental Two-Stage Simulated Repair of Extensive Thoracoabdominal Aneurysms Reduces Paraplegia Risk Stefano Zoli, MD, Christian D. Etz, MD, PhD, Fabian Roder, MS, Robert M. Brenner, MS, Carol A. Bodian,

More information