-12. -Ensherah Mokheemer - ABDULLAH ZREQAT. -Faisal Mohammad. 1 P a g e

Size: px
Start display at page:

Download "-12. -Ensherah Mokheemer - ABDULLAH ZREQAT. -Faisal Mohammad. 1 P a g e"

Transcription

1 -12 -Ensherah Mokheemer - ABDULLAH ZREQAT -Faisal Mohammad 1 P a g e

2 In the previous lecture we talked about: - cardiac index: we use the cardiac index to compare the cardiac output between different individuals, and we said that the cardiac index equals the cardiac output divided by body surface area, so cardiac index unit will be L/min/m 2. - You should know that there are differences in the basic cardiac output values between individuals, since it is affected by the size and weight so to solve this there is what we call the cardiac index - We also said that the cardiac output is proportional to oxygen consumption, the higher the oxygen consumption is the higher the cardiac output. - The cardiac output is the sum of all tissues blood flow, during exercise there is more oxygen consumption and more blood flow to skeletal muscles so the cardiac output increases during exercise. - Flow (cardiac output)= p/r (Ohm s law): * p: is the pressure difference between the aorta and the right atrium. The aortic pressure that we use on the equation is the mean arterial pressure (MAP) which is affected by systole and diastole. The mean arterial pressure= 1/3 systolic pressure+ 2/3 diastolic pressure. Why we took 2/3 of the diastolic pressure and only 1/3 of systolic pressure? that is because the duration of diastole equals 0.5s while the duration of the systole is 0.3s so diastole contributes more to the MAP. so p= 1/3 systolic pressure+2/3 diastolic pressure right atrium pressure (which is almost zero). * R is the total peripheral resistance: which equals all the resistance in all the vessels from aorta until reach the right atrium. If we rewrite the equation in another form it will be like this: 2 P a g e

3 Flow (CO)=The mean arterial pressure (MAP)/ the total peripheral resistance. MAP= CO* total peripheral resistance. - MAP of any person should always stay constant (homeostasis), if it increases our system will try to decrease it and vice versa. - From the previous equation we can conclude that we can change the MAP by changing CO or by changing Total peripheral resistance: 1- you can change the cardiac output by changing the stroke volume or heart rate or both. 2- You can change total peripheral resistance by vasodilation (decrease resistance) or vasoconstriction (increases resistance). -Normally the cardiac output is almost 5L, when during exercise there is an increase in the cardiac output and this increase in the cardiac output is mainly due to the increase in the blood flow to the cardiac muscles. Note : exercise can increase CO up to 700% ( almost 35 L). Note: the skeletal muscles usually constitute 40% of our weight and they normally receive about 1 L of blood/min, so 20% of our cardiac output goes to 40% of out body. But during exercise the blood flow reaches 8L per min. 3 P a g e

4 -Also, during exercise, the blood flow to the skin increases due to water loss. And the blood flow to the digestive system is reduced. -There are variations in tissue blood flow. And that the heart has one of the highest blood flow relative to its body weight (around 70ml/min/100gm). -Other tissues have higher blood flow but this is not for oxygen consumption, it's for filtration like in the kidney. While the heart receives good amount of blood flow only for oxygen consumption. -Other tissues like adrenal and thyroid glands have very high blood flow, they are small glands, the blood that is going to them is much higher than they need. 4 P a g e

5 - Cardiac output= Stroke volume* Heart Rate: Heart rate is controlled by sympathetic (positive chronotropic) and parasympathetic (negative chronotropic). Stroke volume is controlled intrinsically by End diastolic volume (Frank starling law) (increase venous return increase EDV contractility stroke volume), or extrinsically by sympathetic stimulation (positive inotropic). Now let s talk about the cardiac output curve: -The cardiac output curve relates the right atrium pressure to the cardiac output, and it is a mathematical representation of Frank-starling law. -The right atrium pressure is an indicator for EDV, the higher the EDV is, the higher the right atrium pressure. 5 P a g e

6 -The cardiac output is an indicator for the intraventricular pressure -keep this in your mind When the pressure in the right atrium equals zero the cardiac output will be 5L. * Cardiac reserve : Maximal % increase in CO in response to increase body needs -Normally, according to this curve the cardiac reserve is 10L. Remember: cardiac reserve= maximum CO- normal CO (15-5=10L). - The cardiac output curve might be shifted upward to the left: positive inotropic effect which is usually due to sympathetic stimulation, so very high sympathetic stimulation might shift the curve upward to the left and the is what we call HYPEREFFECTIVE HEART. Note: Athletes might have hyper effective heart, in this case they have hypertrophy of ventricles. -HYPOEFFECTIVE HEART the curve shifted downward to the right and it might occur because of sympathetic inhibition or myocardial infarction. - Hence that the normal curve represents normal sympathetic stimulation, the hypereffective curve represents maximum sympathetic stimulation and hypoeffective represents minimal (Zero) sympathetic stimulation. 6 P a g e

7 Maximum sympathetic stimulation: shifted upward to the left. Zero sympathetic stimulation: Shifted downward to the right. Parasympathetic stimulation: not very important because usually it does not affect. Effect of the intra-plural pressure on the cardiac output: -The heart is in the chest and it is surrounded by the lungs, and the lungs is surrounded by the pleura. -The pressure inside the pericardium is equal to the pressure inside the pleura. - The intra-plural pressure is always negative** around -5mmHg that s why the lungs are distended and there is a vacuum around them. ** remember that we considered the atmospheric pressure zero, so a negative pressure will be less than the atmospheric pressure. The atmospheric pressure is our reference point that is why it is 7 P a g e

8 considered zero, but it does not equal zero it equals 760mmHg so the pressure in the pleura will be 760-5= 755mmHg. - Normally the right atrium pressure is zero (760mmHg) when the pleural pressure around it is -5 (755mmHg). - In case of pleural effusion, the pleural pressure increases from -5 to -3(-5+2), this increase in the intra-pleural pressure will be reflected on the heart and the pressure will change in the right atrium from zero to +2 (zero+2) and this means that in order to fill the atrium we will need higher pressure gradient. This will shift the cardiac output curve to the right. - If the pleural pressure increases from -5 to zero ( -5+5) the right atrium pressure will become +5 (Zero+5), shifted to the right. - If the intra pleural pressure decreases, a decrease in the right atrial pressure is seen. - It is important to notice that in case of increase/decrease in IPP the whole curve will be shifted to the right/left and the maximum cardiac output according to Frank-Starling will 8 P a g e

9 be the same it will not be affected!! But it is shifted.( very important) - According to the figure above: 1- Let s consider the normal intrapleural pressure is (-4 mmhg) at this value the right atrium pressure (RAP) will be zero and the cardiac output at that pressure equals 5L and the maximum cardiac output is 15L. 2- When the intrapleural pressure is decreased to - 5.5mmHg the pressure in the right atrium will be reduced to -1.5mmHg and the cardiac output at that pressure will be equal to 5L and the maximum CO will be 15L. (shifted to the left). in this case the heart is working at less pressure 3- When the IPP increases to 2 (like in the case of pleural effusion) the pressure in the right atrium will be +6 and the CO at that pressure will be 5L and the maximum CO will remain 15L. (shifted to the right) in this case the heart is working on higher pressure. Hence that the normal CO and the maximum CO did not change they were only shifted!! That is because the Cardiac muscle is not affected directly because the pleura is far from the heart muscle (not on direct contact with it). - In the case of Cardiac tamponade pericardial effusion : The increase in the pericardium pressure will directly affect the heart muscle and it will prevent filling of the blood, thus reaching the maximum CO will become very difficult (we will need very high pressure to reach the maximum CO). From the figure above: -When the interpleural pressure was -4 mmhg we needed almost 2 mmhg to reach the maximum cardiac output. less severe. - However, when the interpleural was -4 mmhg and there was pericardial effusion we needed almost 8 mmhg to reach the maximum Co. more severe. 9 P a g e

10 As a conclusion because the pleural is not in direct contact with the heart muscle (far from it ), in case of pleural effusion the effect will not be severe. But because the pericardium is in direct contact with the heart muscle the pericardial effusion will have more sever effect. - If the cardiac tamponade becomes very severe, the cardiac output might not reach the maximum CO and it might reach 0 since the heart is unable to pump blood anymore and this eventually will cause heart failure. - So cardiac tamponade is an emergency case and it needs to be relieved by cutting through the chest using a sharp object. - cardiac tamponade --- increase RIGHT ATRIAL PRESSURE shift the curve to the right and sometimes downward Returning to our main subject which is the cardiac output curve: - Plateau of CO curve determined by heart strength (contractility + HR): 1- sympathetic stimulation raises the plateau up and shifts the curve to the left. hypereffective heart. 2-parasympathatic mostly does not have any significant effect. 3-Heart hypertrophy raises the plateau up and shifts the curve to the left. Hypereffective heart. 4- Myocardial infarction lowers the plateau and shifts the curve to the right due to mass decrease. Hypoeffective heart. 5- Valvular disease lowers the plateau and shifts the curve to the right due to decrease in the cardiac output, examples are stenosis or regurgitation, in case of regurgitation because of the valve (AV valve) incompetence some of the blood goes back to the atria from the ventricle, in case of semilunar valve incompetence some of the blood returns 10 P a g e

11 from the aorta to the ventricle in the case of aortic stenosis is a narrowing of the aortic valve opening. Aortic stenosis restricts the blood flow from the left ventricle to the aorta you can consider it as an increase in the resistance to blood flow due to the narrowing of the orifice and this leads to decrease in stroke volume and eventually decrease in cardiac output. 6- Myocarditis lowers the plateau because it affects the myocardium leading to reduction in the function of the myocardium (contractility). 7- Cardiac tamponade (pericardial effusion) it will prevent the filling of the ventricle, so it decreases cardiac output and thus lowers the plateau of the curve. 8- Metabolic damage also lowers the plateau. Factors that affects cardiac output: Cardiac output=heart rate * stroke volume *Heart rate is controlled by the Autonomic nervous system (sympathetic or parasympathetic) or Hormones (Thyroxin and catecholamines). *Stroke volume =End diastolic volume-end systolic volume 1-The increase in the End diastolic volume is called increase in preload and this is Frank-Starling law. 2-The decrease in the End systolic Volume is mainly due to positive inotropic and the increase in ESV in due to negative inotropic. a- EDV is mainly affected by: -The venous return (how much blood return back to the heart). Increase in venous return increases EDV increases preload. --The venous return = CO= RAP ( under physiological conditions) 11 P a g e

12 -Filling time, which is affected by the heart rate, increasing the heart rate leads to decrease in the cardiac output due to the decrease in the duration of ventricular diastole and this reduces the filling time of the ventricle. During exercise the heart reaches to its maximum heart rate and this is dangerous, you should not exceed 80% of your maximum heart rate, because the increase in heart rate leads to reduced stroke volume and thus decrease in cardiac output and eventually might lead to myocardial ischemia. There is a test called exercise stress test which is used to determine how well your heart responds during times when it s working its hardest. During the test, you ll be asked to exercise typically on a treadmill while you re hooked up to an electrocardiogram (EKG) machine. This allows your doctor to monitor your heart rate. If the ECG showed depression in the ST segment, the doctors will tell you to stop running and this depression is due to coronary obstruction (stenosis) which might lead to ischemia. b- ESV is affected by: - Contractility: Decrease in contractility increases ESV. - Vasoconstriction, increases the pressure, increases the resistance and thus decreasing the blood flow (cardiac output) by decreasing stroke volume. Vasoconstriction causes an increase in the afterload and increase in the ESV. 12 P a g e

13 *vasodilation decreases the afterload. - Contractility is increased by Epinephrine, Norepinephrine, Glucagon, Thyroid hormone. ** These figures are very important 13 P a g e

14 Regulation of Preload: -Increase in the venous pressure means increase in p: The difference between the venous pressure and the right atrium pressure. 14 P a g e

15 Regulation of afterload (contractility): - Main factor that controls contractility is sympathetic stimulation or inhibition. -Cardiac contractility is measured by measuring the maximum change in pressure per time (dp/dt). -Excess K+ decreases contractility. 15 P a g e

16 - Excess Ca++ increases contractility. Measurement of cardiac output: Direct methods: 1- - In animals you cut the aorta, collect the blood ejected per min, this gives you cardiac output. Obviously, we can't do this in humans. Indirect methods: 1- Electromagnetic flowmeter it is indirect but is done directly in heart surgery. 2- Indicator dilution (dye such as cardiogreen) 3- Thermal dilution 4- Oxygen Fick Method CO = (O2consumption / (A-V O2 difference) **remember that the cardiac output is the amount of blood ejected from the aorta per min. 1- Electromagnetic flowmeter: We have two poles of magnate (north and south). When a charged flow passes between the two poles, an electrical current is formed and it is proportional to the flow, the current can be followed up by a calibrated galvanometer. Because blood is full of electrolytes, It is a charged flow, and the current that would be formed (we can also call it voltage difference or potential difference) between the magnate is proportional to the flow. If we measure this flow per min, we can calculate the cardiac output. This method can be used around any artery, and many times, (only used during cardiac surgery). 2- Fick Method (oxygen consumption): -The blood coming from the right ventricle to the lungs through pulmonary artery. And it is deoxygenated. -The amount of blood that comes from the right ventricle to the lungs through the pulmonary artery per min is called Cardiac output. - The blood that come to the left ventricle by pulmonary veins is equal to CO. 16 P a g e

17 - the amount of oxygen that comes to the lung per minute equals cardiac output multiplied by oxygen concentration in the blood. - The amount of oxygen that come to left ventricle from the lungs by pulmonary veins = the cardiac output* the concentration of oxygen in the arterial blood. Which equals the concentration of oxygen in the blood that entered the lungs + the amount of oxygen which was up taken by the lungs. -Q1= Cardiac output*concentration of O2 in venous blood. -Q2= amount of Oxygen uptake by the lungs which can be measured by spirometer. -Q3= Cardiac output * (The concentration of O2 in the venous blood+ The concentration of oxygen uptake). Or the Cardiac output * the concentration of O2 in arterial blood. -Oxygen uptake= CO *(C arterial O2 C venous O2). -Cardiac output= Oxygen uptake/ (C arterial O2 C venous O2). THE END WORK HARD DREAM BIG 17 P a g e

Cardiac output and Venous Return. Faisal I. Mohammed, MD, PhD

Cardiac output and Venous Return. Faisal I. Mohammed, MD, PhD Cardiac output and Venous Return Faisal I. Mohammed, MD, PhD 1 Objectives Define cardiac output and venous return Describe the methods of measurement of CO Outline the factors that regulate cardiac output

More information

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD Heart Pump and Cardiac Cycle Faisal I. Mohammed, MD, PhD 1 Objectives To understand the volume, mechanical, pressure and electrical changes during the cardiac cycle To understand the inter-relationship

More information

Cardiac Output (C.O.) Regulation of Cardiac Output

Cardiac Output (C.O.) Regulation of Cardiac Output Cardiac Output (C.O.) Is the volume of the blood pumped by each ventricle per minute (5 Litre) Stroke volume: Is the volume of the blood pumped by each ventricle per beat. Stroke volume = End diastolic

More information

Cardiac Output (CO) Definitions. Cardiac Output and venous return. Dr Badri Paudel GMC. Cardiac Output. Venous Return

Cardiac Output (CO) Definitions. Cardiac Output and venous return. Dr Badri Paudel GMC. Cardiac Output. Venous Return Cardiac Output and venous return Dr Badri Paudel GMC Definitions Cardiac Output The quantity of blood pumped into the aorta each minute measured in milliliters (ml) per minute (min) or liters (L) per minute

More information

IP: Regulation of Cardiac Output

IP: Regulation of Cardiac Output ANP 1105D Winter 2013 Assignment 9: The Heart, part 2: Chap... Assignment 9: The Heart, part 2: Chapter 18 Signed in as Alex Sokolowski Help Close Resources Due: 11:59pm on Monday, March 25, 2013 Note:

More information

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise Chapter 9, Part 2 Cardiocirculatory Adjustments to Exercise Electrical Activity of the Heart Contraction of the heart depends on electrical stimulation of the myocardium Impulse is initiated in the right

More information

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

BIOL 219 Spring Chapters 14&15 Cardiovascular System

BIOL 219 Spring Chapters 14&15 Cardiovascular System 1 BIOL 219 Spring 2013 Chapters 14&15 Cardiovascular System Outline: Components of the CV system Heart anatomy Layers of the heart wall Pericardium Heart chambers, valves, blood vessels, septum Atrioventricular

More information

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart Cardiovascular Physiology Heart Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through

More information

d) Cardiovascular System Higher Human Biology

d) Cardiovascular System Higher Human Biology d) Cardiovascular System Higher Human Biology What can your remember about the heart and blood vessels? What is the Cardiovascular System? The cardiovascular system, also known as the circulatory system,

More information

During exercise the heart rate is 190 bpm and the stroke volume is 115 ml/beat. What is the cardiac output?

During exercise the heart rate is 190 bpm and the stroke volume is 115 ml/beat. What is the cardiac output? The Cardiovascular System Part III: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Be able to calculate cardiac output (CO) be able to define heart rate

More information

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction

*Generating blood pressure *Routing blood: separates. *Ensuring one-way blood. *Regulating blood supply *Changes in contraction *Generating blood pressure *Routing blood: separates pulmonary and systemic circulations *Ensuring one-way blood flow: valves *Regulating blood supply *Changes in contraction rate and force match blood

More information

Chapter 20: Cardiovascular System: The Heart

Chapter 20: Cardiovascular System: The Heart Chapter 20: Cardiovascular System: The Heart I. Functions of the Heart A. List and describe the four functions of the heart: 1. 2. 3. 4. II. Size, Shape, and Location of the Heart A. Size and Shape 1.

More information

The Cardiovascular System

The Cardiovascular System Chapter 18 Part A The Cardiovascular System 1/19/16 1 Annie Leibovitz/Contact Press Images Similarities of Cardiac and Skeletal Muscle RMP Ion concentration Deploarization Action Potential Repolarization

More information

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007 Cardiac Output MCQ Abdel Moniem Ibrahim Ahmed, MD Professor of Cardiovascular Physiology Cairo University 2007 90- Guided by Ohm's law when : a- Cardiac output = 5.6 L/min. b- Systolic and diastolic BP

More information

Cardiovascular System

Cardiovascular System Cardiovascular System The Heart Cardiovascular System The Heart Overview What does the heart do? By timed muscular contractions creates pressure gradients blood moves then from high pressure to low pressure

More information

The Cardiovascular System

The Cardiovascular System The Cardiovascular System The Cardiovascular System A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function of

More information

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 Terms you should understand: hemorrhage, intrinsic and extrinsic mechanisms, anoxia, myocardial contractility, residual

More information

The Cardiovascular System

The Cardiovascular System Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 11 The Cardiovascular System Slides 11.1 11.19 Lecture Slides in PowerPoint by Jerry L. Cook The Cardiovascular System

More information

Cardiovascular System

Cardiovascular System Cardiovascular System Purpose Transport oxygen and nutrients Take waste products away from tissues & organs Things we learned Blood pressure: the force of blood pushing against the walls of blood vessels

More information

SIKLUS JANTUNG. Rahmatina B. Herman

SIKLUS JANTUNG. Rahmatina B. Herman SIKLUS JANTUNG Rahmatina B. Herman The Cardiac Cycle Definition: The cardiac events that occur from the beginning of one heartbeat to the beginning of the next The cardiac cycle consists of: - Diastole

More information

Sheet 5 physiology Electrocardiography-

Sheet 5 physiology Electrocardiography- *questions asked by some students Sheet 5 physiology Electrocardiography- -why the ventricles lacking parasympathetic supply? if you cut both sympathetic and parasympathetic supply of the heart the heart

More information

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum It beats over 100,000 times a day to pump over 1,800 gallons of blood per day through over 60,000 miles of blood vessels. During the average lifetime, the heart pumps nearly 3 billion times, delivering

More information

The Heart. Size, Form, and Location of the Heart. 1. Blunt, rounded point; most inferior part of the heart.

The Heart. Size, Form, and Location of the Heart. 1. Blunt, rounded point; most inferior part of the heart. 12 The Heart FOCUS: The heart is composed of cardiac muscle cells, which are elongated, branching cells that appear striated. Cardiac muscle cells behave as a single electrical unit, and the highly coordinated

More information

- what other structures, besides the heart, does the mediastinum contain?

- what other structures, besides the heart, does the mediastinum contain? Basic A & P II Dr. L. Bacha Chapter Outline (Martini & Nath 2010) An Introduction to the Cardiovascular System - read the paragraphs under this heading on page 580 The Heart is a Four Chambered Organ describe

More information

AS Level OCR Cardiovascular System

AS Level OCR Cardiovascular System AS Level OCR Cardiovascular System Learning Objectives The link between the Cardiac Cycle and the Conduction system of the heart. The relationship between Stroke volume, Heart rate and Cardiac Output.

More information

Approximately the size of your fist Location. Pericardial physiology

Approximately the size of your fist Location. Pericardial physiology Heart Anatomy Approximately the size of your fist Location Superior surface of diaphragm Left of the midline Anterior to the vertebral column, posterior to the sternum Wednesday, March 28, 2012 Muscle

More information

BUSINESS. Articles? Grades Midterm Review session

BUSINESS. Articles? Grades Midterm Review session BUSINESS Articles? Grades Midterm Review session REVIEW Cardiac cells Myogenic cells Properties of contractile cells CONDUCTION SYSTEM OF THE HEART Conduction pathway SA node (pacemaker) atrial depolarization

More information

P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp , , , I. Major Functions of the Circulatory System

P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp , , , I. Major Functions of the Circulatory System P215 SPRING 2019: CIRCULATORY SYSTEM Chaps 13, 14 & 15: pp 360-390, 395-404, 410-428 433-438, 441-445 I. Major Functions of the Circulatory System 1. 2. 3. 4. II. Structure of the Heart 1. atria 2. ventricles

More information

Cardiovascular system

Cardiovascular system BIO 301 Human Physiology Cardiovascular system The Cardiovascular System: consists of the heart plus all the blood vessels transports blood to all parts of the body in two 'circulations': pulmonary (lungs)

More information

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co.

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Views Label the diagrams of the heart below: Interactive Physiology Study

More information

TEACH Lesson Plan Manual for Herlihy s The Human Body in Health and Illness 5 th edition

TEACH Lesson Plan Manual for Herlihy s The Human Body in Health and Illness 5 th edition TEACH Lesson Plan Manual for Herlihy s The Human Body in Health and Illness 5 th edition Chapter 17 Function of the Heart Lesson 17.1 Function of the Heart 1. Define cardiac cycle with respect to systole

More information

Cardiac Output. Graphics are used with permission of: adam.com ( Benjamin Cummings Publishing Co (

Cardiac Output. Graphics are used with permission of: adam.com (  Benjamin Cummings Publishing Co ( Interactive Physiology Cardiac Output Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.aw.com/bc) Page 1. Introduction Cardiac output is

More information

CARDIAC OUTPUT,VENOUS RETURN AND THEIR REGULATION. DR.HAROON RASHID. OBJECTIVES

CARDIAC OUTPUT,VENOUS RETURN AND THEIR REGULATION. DR.HAROON RASHID. OBJECTIVES CARDIAC OUTPUT,VENOUS RETURN AND THEIR REGULATION. DR.HAROON RASHID. OBJECTIVES Define Stroke volume, Cardiac output Venous return,& identity their normal values. Describe control (intrinsic & extrinsic)

More information

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum It beats over 100,000 times a day to pump over 1,800 gallons of blood per day through over 60,000 miles of blood vessels. During the average lifetime, the heart pumps nearly 3 billion times, delivering

More information

Practice Exercises for the Cardiovascular System

Practice Exercises for the Cardiovascular System Practice Exercises for the Cardiovascular System On the diagram below, color the oxygen-rich blood red and the oxygen-poor blood blue. Label the parts: Continued on the next page... Label the parts on

More information

SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006

SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006 SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006 The goal of this exercise to explore the behavior of the heart as a mechanical pump. For

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow Topics to be Covered MODULE F HEMODYNAMIC MONITORING Cardiac Output Determinants of Stroke Volume Hemodynamic Measurements Pulmonary Artery Catheterization Control of Blood Pressure Heart Failure Cardiac

More information

Properties of Pressure

Properties of Pressure OBJECTIVES Overview Relationship between pressure and flow Understand the differences between series and parallel circuits Cardiac output and its distribution Cardiac function Control of blood pressure

More information

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased Review Test 1. A 53-year-old woman is found, by arteriography, to have 5% narrowing of her left renal artery. What is the expected change in blood flow through the stenotic artery? Decrease to 1 2 Decrease

More information

Cardiovascular System: The Heart

Cardiovascular System: The Heart Cardiovascular System: The Heart I. Anatomy of the Heart (See lab handout for terms list) A. Describe the size, shape and location of the heart B. Describe the structure and function of the pericardium

More information

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to:

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Describe the functions of the heart 2. Describe the location of the heart,

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 September 18 & 20, 2017 Cardiovascular 3 & 4: Mechanical Actions of the Heart and Determinants of Cardiac Output

NROSCI/BIOSC 1070 and MSNBIO 2070 September 18 & 20, 2017 Cardiovascular 3 & 4: Mechanical Actions of the Heart and Determinants of Cardiac Output NROSCI/BIOSC 1070 and MSNBIO 2070 September 18 & 20, 2017 Cardiovascular 3 & 4: Mechanical Actions of the Heart and Determinants of Cardiac Output An essential component for the operation of the heart

More information

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart Circulation: Chapter 25 1. Limits of Diffusion A. Small organisms use diffusion B. rapid over small distances 2. Most animals have circulatory systems A. Blood B. Pump (Heart) or propulsive structures

More information

Cardiac Output 1 Fox Chapter 14 part 1

Cardiac Output 1 Fox Chapter 14 part 1 Vert Phys PCB3743 Cardiac Output 1 Fox Chapter 14 part 1 T. Houpt, Ph.D. Regulation of Heart & Blood Pressure Keep Blood Pressure constant if too low, not enough blood (oxygen, glucose) reaches tissues

More information

DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT.

DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT. DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT. BY: DISHA PRAKASH I MBBS, ROLL NO: 16M069 OBJECTIVES OF LEARNING Terminology and conceptual understanding of Cardiac Output. Factors regulating Cardiac Output.

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output.

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output. Circulation Blood Pressure and Antihypertensive Medications Two systems Pulmonary (low pressure) Systemic (high pressure) Aorta 120 mmhg Large arteries 110 mmhg Arterioles 40 mmhg Arteriolar capillaries

More information

Cardiovascular System. Heart

Cardiovascular System. Heart Cardiovascular System Heart Electrocardiogram A device that records the electrical activity of the heart. Measuring the relative electrical activity of one heart cycle. A complete contraction and relaxation.

More information

Blood Pressure Regulation. Slides 9-12 Mean Arterial Pressure (MAP) = 1/3 systolic pressure + 2/3 diastolic pressure

Blood Pressure Regulation. Slides 9-12 Mean Arterial Pressure (MAP) = 1/3 systolic pressure + 2/3 diastolic pressure Sheet physiology(18) Sunday 24-November Blood Pressure Regulation Slides 9-12 Mean Arterial Pressure (MAP) = 1/3 systolic pressure + 2/3 diastolic pressure MAP= Diastolic Pressure+1/3 Pulse Pressure CO=MAP/TPR

More information

THE HEART Dr. Ali Ebneshahidi

THE HEART Dr. Ali Ebneshahidi THE HEART Dr. Ali Ebneshahidi Functions is of the heart & blood vessels 1. The heart is an essential pumping organ in the cardiovascular system where the right heart pumps deoxygenated blood (returned

More information

ADVANCED ASSESSMENT Cardiovascular System

ADVANCED ASSESSMENT Cardiovascular System ONTARIO BASE HOSPITAL GROUP QUIT ADVANCED ASSESSMENT Cardiovascular System 2007 Ontario Base Hospital Group ADVANCED ASSESSMENT Cardiovascular System AUTHORS Mike Muir AEMCA, ACP, BHSc Paramedic Program

More information

Chapter 20 THE CARDIOVASCULAR SYSTEM: THE HEART

Chapter 20 THE CARDIOVASCULAR SYSTEM: THE HEART Chapter 20 THE CARDIOVASCULAR SYSTEM: THE HEART INTRODUCTION A. The cardiovascular system consists of the blood, heart, and blood vessels. B. The heart is the pump that circulates the blood through an

More information

Blood pressure. Formation of the blood pressure: Blood pressure. Formation of the blood pressure 5/1/12

Blood pressure. Formation of the blood pressure: Blood pressure. Formation of the blood pressure 5/1/12 Blood pressure Blood pressure Dr Badri Paudel www.badripaudel.com Ø Blood pressure means the force exerted by the blood against the vessel wall Ø ( or the force exerted by the blood against any unit area

More information

The circulatory system

The circulatory system Introduction to Physiology (Course # 72336) 1 הלב עקרונות בסיסיים (הכנה למעבדת לב) Adi Mizrahi mizrahia@cc.huji.ac.il Textbook Chapter 12 2 The circulatory system To the heart Away from the heart 3 L 2.5

More information

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B.

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B. PHYSIOLOGY MeQ'S (Morgan) Chapter 5 All the following statements related to capillary Starling's forces are correct except for: 1 A. Hydrostatic pressure at arterial end is greater than at venous end.

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 20 The Cardiovascular System: The Heart Introduction The purpose of the chapter is to: 1. Learn about the components of the cardiovascular system

More information

Introduction to Physiology (Course # 72336) 1. Adi Mizrahi Textbook Chapter 12

Introduction to Physiology (Course # 72336) 1. Adi Mizrahi Textbook Chapter 12 Introduction to Physiology (Course # 72336) 1 עקרונות בסיסיים (הכנה למעבדת לב) הלב Adi Mizrahi mizrahia@cc.huji.ac.il Textbook Chapter 12 2 The circulatory system To the heart Away from the heart 3 L 2.5

More information

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD Electrocardiography Abnormalities (Arrhythmias) 7 Faisal I. Mohammed, MD, PhD 1 Causes of Cardiac Arrythmias Abnormal rhythmicity of the pacemaker Shift of pacemaker from sinus node Blocks at different

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2018 #12 Understanding Preload and Afterload

McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2018 #12 Understanding Preload and Afterload McHenry Western Lake County EMS System Paramedic, EMT-B and PHRN Optional Continuing Education 2018 #12 Understanding Preload and Afterload Cardiac output (CO) represents the volume of blood that is delivered

More information

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives University of Florida Department of Surgery CardioThoracic Surgery VA Learning Objectives This service performs coronary revascularization, valve replacement and lung cancer resections. There are 2 faculty

More information

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system

Circulation. Sinoatrial (SA) Node. Atrioventricular (AV) Node. Cardiac Conduction System. Cardiac Conduction System. Linked to the nervous system Circulation Cardiac Conduction System AHS A H S Your body resembles a large roadmap. There are routes or arteries that take you downtown to the heart of the city and veins that take you to the outskirts

More information

Section 5.1 The heart and heart disease

Section 5.1 The heart and heart disease Section 5.1 The heart and heart disease Mammals are too large to rely on diffusion. They need a circulatory system to move substances around the body. Blood moves down pressure gradients, from high to

More information

Cardiovascular System Notes: Heart Disease & Disorders

Cardiovascular System Notes: Heart Disease & Disorders Cardiovascular System Notes: Heart Disease & Disorders Interesting Heart Facts The Electrocardiograph (ECG) was invented in 1902 by Willem Einthoven Dutch Physiologist. This test is still used to evaluate

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through two vascular systems

More information

The ancient Babylonians, Egyptians, Indians and Chinese believed the heart was the centre of thinking and emotions

The ancient Babylonians, Egyptians, Indians and Chinese believed the heart was the centre of thinking and emotions The Concept of Mind The ancient Babylonians, Egyptians, Indians and Chinese believed the heart was the centre of thinking and emotions Hippocrates 460 BC 370 BC - Thoughts, ideas, and feelings come from

More information

Haemodynamics. Milan Chovanec Department of Physiology 2.LF UK

Haemodynamics. Milan Chovanec Department of Physiology 2.LF UK Haemodynamics Milan Chovanec Department of Physiology 2.LF UK Major types of blood vessels Blood flow: 50cm/s 0.05cm/s Flow, pressure, resistance Flow, pressure, resistance ΔU = I x R Blood and vessels

More information

The Heart. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

The Heart. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris C h a p t e r 20 The Heart PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Introduction

More information

BME 5742 Bio-Systems Modeling and Control. Lecture 41 Heart & Blood Circulation Heart Function Basics

BME 5742 Bio-Systems Modeling and Control. Lecture 41 Heart & Blood Circulation Heart Function Basics BME 5742 Bio-Systems Modeling and Control Lecture 41 Heart & Blood Circulation Heart Function Basics Dr. Zvi Roth (FAU) 1 Pumps A pump is a device that accepts fluid at a low pressure P 1 and outputs the

More information

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives Lab 16 The Cardiovascular System Heart and Blood Vessels Laboratory Objectives Describe the anatomical structures of the heart to include the pericardium, chambers, valves, and major vessels. Describe

More information

THE CARDIOVASCULAR SYSTEM

THE CARDIOVASCULAR SYSTEM THE CARDIOVASCULAR SYSTEM AND RESPONSES TO EXERCISE Mr. S. Kelly PSK 4U North Grenville DHS THE HEART: A REVIEW Cardiac muscle = myocardium Heart divided into two sides, 4 chambers (L & R) RS: pulmonary

More information

Review of Cardiac Mechanics & Pharmacology 10/23/2016. Brent Dunworth, CRNA, MSN, MBA 1. Learning Objectives

Review of Cardiac Mechanics & Pharmacology 10/23/2016. Brent Dunworth, CRNA, MSN, MBA 1. Learning Objectives Brent Dunworth, CRNA, MSN, MBA Associate Director of Advanced Practice Division Chief, Nurse Anesthesia Vanderbilt University Medical Center Nashville, Tennessee Learning Objectives Review the principles

More information

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output Cardiac Anatomy Heart Failure Professor Qing ZHANG Department of Cardiology, West China Hospital www.blaufuss.org Cardiac Cycle/Hemodynamics Functions of the Heart Essential functions of the heart to cover

More information

Heart. Structure Physiology of blood pressure and heartbeat

Heart. Structure Physiology of blood pressure and heartbeat Heart Structure Physiology of blood pressure and heartbeat Location and Anatomy Location and Anatomy Pericardial cavity: surrounds, isolates, and anchors heart Parietal pericardium lined with serous membrane

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

Veins. VENOUS RETURN = PRELOAD = End Diastolic Volume= Blood returning to heart per cardiac cycle (EDV) or per minute (Venous Return)

Veins. VENOUS RETURN = PRELOAD = End Diastolic Volume= Blood returning to heart per cardiac cycle (EDV) or per minute (Venous Return) Veins Venous system transports blood back to heart (VENOUS RETURN) Capillaries drain into venules Venules converge to form small veins that exit organs Smaller veins merge to form larger vessels Veins

More information

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart

Cardiovascular System. I. Structures of the heart A. : Pericardium sack that surrounds the heart Cardiovascular System I. Structures of the heart A. : Pericardium sack that surrounds the heart 1. : Pericardial Cavity serous fluid filled space between the heart and the pericardium B. Heart Wall 1.

More information

The cardiovascular system is composed of a pump the heart and blood

The cardiovascular system is composed of a pump the heart and blood 5 E X E R C I S E Cardiovascular Dynamics O B J E C T I V E S 1. To understand the relationships among blood flow, pressure gradient, and resistance 2. To define resistance and describe the main factors

More information

Chp. 5 The cardiovascular system. What are the function of the cardiovascular system? Arteries and arterioles:

Chp. 5 The cardiovascular system. What are the function of the cardiovascular system? Arteries and arterioles: 5.1 Overview of the cardiovascular system Chp. 5 The cardiovascular system Includes the heart and blood vessels Brings nutrients to cells and helps get rid of wastes Blood is refreshed in the lung, kidneys,

More information

2.6 Cardiovascular Computer Simulation

2.6 Cardiovascular Computer Simulation 2.6 Cardiovascular Computer Simulation ROOM 23G22 Contents 1. INTRODUCTION... 4 1.1. GENERAL REMARKS... 4 1.2. LEARNING GOALS... 4 1.3. PHYSIOLOGICAL PARAMETERS... 5 1.4. GLOSSARY... 5 2. USING THE COMPUTER

More information

Blood Pressure Regulation. Faisal I. Mohammed, MD,PhD

Blood Pressure Regulation. Faisal I. Mohammed, MD,PhD Blood Pressure Regulation Faisal I. Mohammed, MD,PhD 1 Objectives Outline the short term and long term regulators of BP Know how baroreceptors and chemoreceptors work Know function of the atrial reflex.

More information

This is a TRANSPORT system that allows every cell: i) uptake of nutrients ( ex. oxygen, glucose) ii) excretes wastes (ex C02, ammonia)

This is a TRANSPORT system that allows every cell: i) uptake of nutrients ( ex. oxygen, glucose) ii) excretes wastes (ex C02, ammonia) Biology 20 Unit D This is a TRANSPORT system that allows every cell: i) uptake of nutrients ( ex. oxygen, glucose) ii) excretes wastes (ex C02, ammonia) requires action of: heart: muscular force to move

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

Functions of the Heart

Functions of the Heart Cardiovascular System The Heart What is the Cardiovascular System? Blood circulated in Arteries, veins, and capillaries by the Pumping action of the heart Functions of the Heart Generating blood pressure

More information

BIOLOGY 2060 LECTURE NOTES ANATOMY & PHYSIOLOGY II (A. IMHOLTZ) HEART P1 OF 5

BIOLOGY 2060 LECTURE NOTES ANATOMY & PHYSIOLOGY II (A. IMHOLTZ) HEART P1 OF 5 BIOLOGY 2060 LECTURE NOTES ANATOMY & PHYSIOLOGY II (A. IMHOLTZ) HEART P1 OF 5 1. Heart Functions a. Generates pressure that propels blood thru blood vessels. (Tissue perfusion.) b. Separates oxygenated

More information

Physiology - 8 Hemodynamics - 1 M.jafar 24/3/2016 Turquoise Team

Physiology - 8 Hemodynamics - 1 M.jafar 24/3/2016 Turquoise Team 21 Physiology - 8 Hemodynamics - 1 M.jafar 24/3/2016 Turquoise Team Hemodynamics Today we will take about hemodynamics which is the study of the movement of blood and of the forces concerned. Now how the

More information

Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, Name Student Number

Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, Name Student Number Anatomy and Physiology, Spring 2015 Exam II: Form A April 9, 2015 Name Student Number For Questions 1 2 refer to the following table. 1 Ventricular pressure is greater than aortic 6 AV valve is open 2

More information

Myocardial Infarction: Left Ventricular Failure

Myocardial Infarction: Left Ventricular Failure CARDIOVASCULAR PHYSIOLOGY 93 Case 17 Myocardial Infarction: Left Ventricular Failure Marvin Zimmerman is a 52-year-old construction manager who is significantly overweight. Despite his physician's repeated

More information

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart I. Heart anatomy -- general gross. A. Size/orientation - base/apex B. Coverings D. Chambers 1. parietal pericardium 2. visceral pericardium 3. Layers of heart wall a. epicardium Cardiac physiology b. myocardium

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Overview Heart and Vessels 2 Major Divisions Pulmonary Circuit Systemic Circuit Closed and Continuous Loop Location Aorta Superior vena cava Right lung Pulmonary trunk Base of heart

More information

Blood Pressure Regulation -1

Blood Pressure Regulation -1 CVS Physiology Lecture 18 Blood Pressure Regulation -1 Please study the previous sheet before studying this one, even if the first part in this sheet is revision. In the previous lecture we were talking

More information

Mr. Epithelium s Anatomy and Physiology Test SSSS

Mr. Epithelium s Anatomy and Physiology Test SSSS Mr. Epithelium s Anatomy and Physiology Test SSSS You have 50 minutes to complete this test packet. One 8.5 x 11 cheat sheet is allowed, along with 1 non-programmable calculator dedicated to computation.

More information

Cardiovascular System- Heart. Miss Wheeler Unit 8

Cardiovascular System- Heart. Miss Wheeler Unit 8 Cardiovascular System- Heart Miss Wheeler Unit 8 Overview CARDIOVASCULAR SYSTEM heart vessels Made up of heart, blood vessels, and blood Functions Heart- pump blood Vessels- (veins, arteries, capillaries)

More information